• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      考慮前序路段狀態(tài)的公交到站時(shí)間雙層BPNN預(yù)測(cè)模型

      2020-05-13 10:00:34王忠宇王艷麗
      關(guān)鍵詞:路段站點(diǎn)精度

      苗 旭,王忠宇,吳 兵,楊 航,王艷麗*

      (1.同濟(jì)大學(xué)道路與交通工程教育部重點(diǎn)實(shí)驗(yàn)室,上海201804;2.上海海事大學(xué)交通運(yùn)輸學(xué)院,上海201306)

      0 引言

      準(zhǔn)確預(yù)測(cè)公交到站時(shí)間不僅可以節(jié)約乘客出行時(shí)間,提高公共交通吸引力,還有助于運(yùn)營(yíng)管理者動(dòng)態(tài)調(diào)整運(yùn)行時(shí)刻表和發(fā)車間隔,提高運(yùn)營(yíng)管理效用.現(xiàn)有預(yù)測(cè)模型主要包括5種:一是回歸模型[1-2],如Chang[1]等開發(fā)的臨近非參數(shù)回歸模型,預(yù)測(cè)公交站點(diǎn)從起點(diǎn)到終點(diǎn)的多區(qū)間、多路徑的行駛時(shí)間;該類模型簡(jiǎn)單易懂,但精度和適應(yīng)性較低[3].二是時(shí)間序列模型[4-5],如童小龍等[5]考慮站點(diǎn)間行程時(shí)間的隨機(jī)性,利用經(jīng)驗(yàn)?zāi)J桨逊瞧椒€(wěn)時(shí)序分解為若干平穩(wěn)時(shí)序,并基于二次指數(shù)平滑法預(yù)測(cè)公交到站時(shí)間;該類模型預(yù)測(cè)效果取決于當(dāng)前交通狀態(tài)與歷史交通狀態(tài)的偏差,當(dāng)偏差較大時(shí),預(yù)測(cè)結(jié)果不準(zhǔn)確[6].三是支持向量回歸模型(Support Vector Regression,SVR)[10-11],如Peng等[10]基于主成分分析法對(duì)變量降維,利用遺傳算法對(duì)SVR參數(shù)標(biāo)定,從而建立改進(jìn)的SVR模型;該類模型具有很強(qiáng)的學(xué)習(xí)能力和容錯(cuò)能力,但需對(duì)其進(jìn)行大量訓(xùn)練且耗時(shí)較長(zhǎng),難以實(shí)時(shí)預(yù)測(cè).四是神經(jīng)網(wǎng)絡(luò)模型[7-9],如羅頻捷等[9]將遺傳算法和模糊推理系統(tǒng)融入多層前饋神經(jīng)網(wǎng)絡(luò)中,建立綜合多層前饋神經(jīng)網(wǎng)絡(luò)模型;該模型在預(yù)測(cè)精度上具有絕對(duì)優(yōu)勢(shì),但是訓(xùn)練函數(shù)、學(xué)習(xí)函數(shù)等參數(shù)選擇需要經(jīng)驗(yàn)或試取,也需大量數(shù)據(jù)訓(xùn)練模型.五是融合模型[12-14],如陳旭梅[12]、于濱[13]等提出的包含卡爾曼濾波及SVR的綜合模型,采用SVR模型預(yù)測(cè)各路段的初始行程時(shí)間,將該數(shù)據(jù)結(jié)果作為卡爾曼濾波算法的輸入矩陣,實(shí)現(xiàn)對(duì)公交行程時(shí)間的動(dòng)態(tài)預(yù)測(cè);該類模型具有較高精度但是也兼顧了所含模型的不足,如卡爾曼濾波模型具有很強(qiáng)的實(shí)時(shí)性,但僅適用于線性和高斯分布的狀態(tài)[15],公交到站時(shí)間的波動(dòng)性使得線性狀態(tài)模型難以描述.因此,有必要合理地設(shè)計(jì)模型結(jié)構(gòu),既充分利用機(jī)器學(xué)習(xí)模型(如神經(jīng)網(wǎng)絡(luò)及SVR模型)的精度優(yōu)勢(shì),又兼顧模型運(yùn)行效率.

      在模型輸入方面,已有研究以星期、天氣、路段長(zhǎng)度、交叉口數(shù)量等靜態(tài)因素作為到站時(shí)間影響因素[16],在復(fù)雜交通條件下往往不能取得很好的預(yù)測(cè)效果.也有學(xué)者提出融合道路使用率、車輛平均行駛速度[17]等動(dòng)態(tài)因素.但僅基于公交車輛本身的數(shù)據(jù),車速、道路占有率等動(dòng)態(tài)因素難以獲得,故充分利用公交車自身數(shù)據(jù)挖掘運(yùn)行特征中的有用信息則尤為重要.本文基于大量數(shù)據(jù)分析,發(fā)現(xiàn)目標(biāo)路段行程時(shí)間與前序路段狀態(tài)有一定關(guān)聯(lián),考慮前序路段狀態(tài)可提升目標(biāo)路段行程時(shí)間預(yù)測(cè)精度.

      基于上述考慮,選取預(yù)測(cè)精度較高的神經(jīng)網(wǎng)絡(luò)模型設(shè)計(jì)考慮前序路段運(yùn)行狀態(tài)的雙層BPNN(Back Propagation Neural Network)模型進(jìn)行公交到站時(shí)間預(yù)測(cè).雙層BPNN模型設(shè)計(jì)將基于靜態(tài)因素的預(yù)測(cè)過(guò)程提前,簡(jiǎn)化底層實(shí)時(shí)預(yù)測(cè)模型結(jié)構(gòu),克服以往模型中因考慮多重因素而耗時(shí)長(zhǎng)的不足.另外,挖掘前序路段行駛狀態(tài)與目標(biāo)路段行駛時(shí)間的關(guān)聯(lián)性,以期提升模型預(yù)測(cè)精度.

      1 基本設(shè)定

      1.1 前序路段

      以站點(diǎn)作為劃分節(jié)點(diǎn),將公交線路劃分為若干路段.前序路段指根據(jù)公交車輛前進(jìn)方向,目標(biāo)路段的上一個(gè)路段.如圖1所示,A~E代表公交站點(diǎn),公交車輛行駛方向由A至E,路段Lab為L(zhǎng)bc的前序路段,Lbc為L(zhǎng)cd的前序路段,依次類推.

      圖1 前序路段示意圖Fig.1 Pre-segment diagrammatic sketch

      1.2 行駛時(shí)間

      數(shù)據(jù)來(lái)自公交車進(jìn)出站GPS數(shù)據(jù),車輛抵達(dá)及駛離站點(diǎn)時(shí),均會(huì)產(chǎn)生包含時(shí)刻、站點(diǎn)、車輛編號(hào)等信息的數(shù)據(jù).可獲取車輛在站點(diǎn)的停留時(shí)間及站間路段行駛時(shí)間.兩相鄰站點(diǎn)間為一個(gè)區(qū)間,車輛在區(qū)間的運(yùn)行時(shí)間為車輛在站點(diǎn)的停留時(shí)間與車輛在路段的行駛時(shí)間之和.如圖1中區(qū)間AB的運(yùn)行時(shí)間為車輛在站點(diǎn)A的停靠時(shí)間加路段Lab的行駛時(shí)間.

      1.3 路段狀態(tài)相關(guān)性

      設(shè)前序路段狀態(tài)sa且目標(biāo)路段狀態(tài)sb的概率為pab=mabma,其中,ma為前序路段狀態(tài)a的次數(shù),mab是前序路段狀態(tài)a且目標(biāo)路段狀態(tài)b的次數(shù).pab可表征車輛在前序路段與目標(biāo)路段行駛狀態(tài)相關(guān)性,在目標(biāo)路段狀態(tài)b固定時(shí),如pab不隨前序路段狀態(tài)a的變化而變化,則目標(biāo)路段行駛狀態(tài)與前序路段行駛狀態(tài)無(wú)關(guān),否則兩者相關(guān).選取部分路段試算pab,計(jì)算結(jié)果如表1所示.可以看出,車輛在前序路段處于不同行駛狀態(tài),在目標(biāo)路段同一狀態(tài)出現(xiàn)概率存在差異.如前序路段處于狀態(tài)0時(shí),約有87%的車輛在龍居路—萬(wàn)德路路段處于狀態(tài)0;而前序路段處于狀態(tài)2時(shí),僅有約29%的車輛會(huì)在本路段處于狀態(tài)0.因此,推斷前序路段行駛狀態(tài)與目標(biāo)路段行駛狀態(tài)存在相關(guān)性.

      表 1 前序路段與目標(biāo)路段行駛狀態(tài)相關(guān)性分析Table 1 State correlation analysis between pre-segment and target segment

      2 雙層BPNN綜合預(yù)測(cè)模型

      2.1 模型總述

      提出基于雙層BPNN與前序路段運(yùn)行狀態(tài)的公交到站時(shí)間預(yù)測(cè)模型.模型計(jì)算過(guò)程如下.

      (1)頂層BPNN模型預(yù)測(cè).影響公交行駛時(shí)間的靜態(tài)變量主要包括:起始點(diǎn)編號(hào)、時(shí)間段(高峰、平峰、低峰)、天氣、路段長(zhǎng)度、信控交叉口數(shù)、節(jié)假日、歷史均值.本文數(shù)據(jù)均采集于工作日早晚高峰,故節(jié)假日及時(shí)間段因素不予考慮,其他因素作為備選變量,如圖2所示.采用前向選擇法選擇最佳變量集,思路為先選一個(gè)變量(此處為起始點(diǎn)編號(hào)),接著依次向變量集合中添加一個(gè)新的備選變量,當(dāng)新加入的變量使模型性能更優(yōu)時(shí)(此處評(píng)價(jià)指標(biāo)為均方根誤差減小),則保留該變量,否則不保留.最后基于BPNN模型預(yù)測(cè)車輛在區(qū)間i站點(diǎn)停留時(shí)間(ti)與路段行程時(shí)間(Ti1),獲得車輛到每個(gè)站點(diǎn)的初始行程時(shí)間.

      (2)考慮前序路段狀態(tài)的目標(biāo)路段行駛時(shí)間預(yù)測(cè).利用歷史數(shù)據(jù)基于K-means聚類算法對(duì)各路段運(yùn)行狀態(tài)劃分,利用概率統(tǒng)計(jì)法獲得前序路段與目標(biāo)路段間的轉(zhuǎn)移概率矩陣;利用馬爾科夫鏈模型對(duì)目標(biāo)路段行駛時(shí)間(Ti2)進(jìn)行預(yù)測(cè).

      (3)將頂層BPNN模型的預(yù)測(cè)值(Ti1),基于前序路段運(yùn)行狀態(tài)的預(yù)測(cè)值(Ti2),同一日之前班次運(yùn)行時(shí)間(Ti3)作為底層BPNN模型的輸入,動(dòng)態(tài)預(yù)測(cè)車輛在目標(biāo)路段的行程時(shí)間(Tip);將Tip代替初始路段行駛時(shí)間Ti1,動(dòng)態(tài)調(diào)整車輛到達(dá)各站點(diǎn)的時(shí)間.目標(biāo)區(qū)間的行駛時(shí)間為

      圖2 綜合預(yù)測(cè)模型結(jié)構(gòu)圖Fig.2 Comprehensive prediction model structure diagram

      2.2 考慮前序路段狀態(tài)的行駛時(shí)間預(yù)測(cè)方法

      (1)基于K-means聚類法對(duì)公交在各路段的行駛狀態(tài)劃分.通過(guò)對(duì)車輛行駛時(shí)間頻次圖分析可以看出,部分路段的車輛行駛時(shí)間呈現(xiàn)明顯的雙峰正態(tài)分布,如圖3(a)所示,此類路段大多僅分布一個(gè)信控交叉口,可將路段運(yùn)行狀態(tài)劃分為2類.而部分路段受到兩個(gè)甚至多個(gè)交叉口的影響,行程時(shí)間分布復(fù)雜,呈現(xiàn)多峰高斯分布,如圖3(b)所示.過(guò)多運(yùn)行狀態(tài)分類將導(dǎo)致路段某些狀態(tài)出現(xiàn)的概率極小,故將呈現(xiàn)多峰高斯分布的路段運(yùn)行狀態(tài)劃分為3類.

      圖3 路段行駛時(shí)間頻次分布直方圖Fig.3 Road segment travel time frequency distribution histogram

      (2)基于馬爾科夫鏈模型預(yù)測(cè)目標(biāo)路段行駛時(shí)間.基于馬爾科夫鏈基本性質(zhì),據(jù)前序路段狀態(tài)可得目標(biāo)路段行駛時(shí)間,公式為

      式中:Mb為根據(jù)歷史數(shù)據(jù)基于K-means聚類獲得目標(biāo)路段狀態(tài)b的中心值,N為目標(biāo)路段狀態(tài)個(gè)數(shù).

      2.3 BPNN模型預(yù)測(cè)算法

      雙層BPNN模型算法主要設(shè)計(jì)要素包含網(wǎng)絡(luò)結(jié)構(gòu)、學(xué)習(xí)規(guī)則和轉(zhuǎn)移函數(shù).

      (1)對(duì)于網(wǎng)絡(luò)結(jié)構(gòu),經(jīng)測(cè)試,兩層BPNN模型均采用單隱層就可滿足收斂需求,對(duì)隱含層分別試驗(yàn)2~6個(gè)神經(jīng)元模式,其中4個(gè)神經(jīng)元模式結(jié)果最佳.因此頂層和底層分別構(gòu)建了7-4-1與3-4-1結(jié)構(gòu).

      (2)對(duì)于學(xué)習(xí)規(guī)則,其參數(shù)設(shè)置是影響模型預(yù)測(cè)精度的關(guān)鍵因素.其中,學(xué)習(xí)率、性能函數(shù)的研究已較為成熟,采用默認(rèn)值.最常用的學(xué)習(xí)函數(shù)有動(dòng)量梯度下降法(traingdm)、自適應(yīng)梯度下降法(traingda)、有動(dòng)量和自適應(yīng)梯度下降法(traingdx)及Levenberg-Marquardt法(trainlm).在其他參數(shù)設(shè)置完全一致時(shí),對(duì)4種學(xué)習(xí)函數(shù)測(cè)試,結(jié)果如表2所示.4種訓(xùn)練函數(shù)的預(yù)測(cè)精度差別不大,其中,trainlm學(xué)習(xí)函數(shù)訓(xùn)練時(shí)間最短,17次迭代便完成模型訓(xùn)練,故采用trainlm學(xué)習(xí)函數(shù).

      表 2 4種學(xué)習(xí)函數(shù)預(yù)測(cè)結(jié)果對(duì)比Table 2 Prediction results comparison of four learning functions

      (3)轉(zhuǎn)移函數(shù)的研究已較為成熟,選擇tansig作為轉(zhuǎn)移函數(shù).

      3 實(shí)例驗(yàn)證

      3.1 數(shù)據(jù)來(lái)源

      選取上海市791路公交車2015年3月的20天工作日早晚高峰(07:00-10:00,17:00-20:00)數(shù)據(jù)作為研究對(duì)象.公交車在起終點(diǎn)站附近的站點(diǎn)上下車乘客較少,存在過(guò)站不停導(dǎo)致進(jìn)出站數(shù)據(jù)缺失的現(xiàn)象,故選取第3~26個(gè)站點(diǎn)的路段作為模型測(cè)試路段.其中,15天的8 884組數(shù)據(jù)作為模型訓(xùn)練數(shù)據(jù),5天的3 036組數(shù)據(jù)作為驗(yàn)證數(shù)據(jù).

      3.2 結(jié)果對(duì)比分析

      分別對(duì)23個(gè)區(qū)間行駛時(shí)間進(jìn)行預(yù)測(cè),將預(yù)測(cè)結(jié)果與其他模型進(jìn)行對(duì)比.對(duì)比模型如表3所示:BPNN-1模型僅考慮靜態(tài)因素,為本文的頂層模型;BPNN-2為考慮動(dòng)靜態(tài)因素的單層BPNN模型;BPNN-3輸入變量與BPNN-2一致,但設(shè)計(jì)為雙層BPNN模型,并未對(duì)前序路段進(jìn)行更深層次的挖掘;SVR模型為近幾年頻繁采用的預(yù)測(cè)模型.

      表 3 5種模型變量選擇表Table 3 Explanatory variables of five models

      模型評(píng)價(jià)指標(biāo)采用平均絕對(duì)誤差(Mean Absolute Error,MAE),平均絕對(duì)百分比誤差(Mean Absolute Percentage Error,MAPE)及均方根誤差(Root Mean Percentage Error,RMSE).

      3.2.1 整體結(jié)果對(duì)比

      表4為23個(gè)區(qū)間的平均預(yù)測(cè)誤差,可看出:①比較BPNN-1與BPNN-2預(yù)測(cè)結(jié)果,僅考慮靜態(tài)變量的BPNN-1模型預(yù)測(cè)精度較低;②比較BPNN-2與BPNN-3預(yù)測(cè)結(jié)果,雙層BPNN模型預(yù)測(cè)精度高于單層模型;③BPNN-3與本文模型預(yù)測(cè)結(jié)果對(duì)比證明,本文模型更好地挖掘了前序路段與目標(biāo)路段之間的相關(guān)關(guān)系,預(yù)測(cè)精度高;④采用相同輸入,SVR模型預(yù)測(cè)結(jié)果略優(yōu)于BPNN模型,與BPNN-3預(yù)測(cè)精度相近.

      表 4 5種模型預(yù)測(cè)結(jié)果Table 4 Prediction results of five models

      3.2.2 雨天結(jié)果對(duì)比

      公交行程時(shí)間與天氣息息相關(guān),根據(jù)是否有雨分成晴天高峰(SP類)及雨天高峰(RP類)兩類,AP類為不區(qū)分是否有雨的高峰時(shí)段,對(duì)比3種情況下模型預(yù)測(cè)誤差,結(jié)果如圖4所示.可以看出,BPNN-1模型、BPNN-2模型及SVR模型受降雨條件影響大,3種模型在雨天預(yù)測(cè)精度分別降低18.3%、77.93%和50.85%.兩個(gè)雙層預(yù)測(cè)模型受天氣變化影響均較小.圖5為雨天5種模型預(yù)測(cè)精度,可以看出在雨天,本文模型預(yù)測(cè)精度最高.

      圖4 不同天氣下5種模型預(yù)測(cè)誤差Fig.4 Prediction results of five models in different weather conditions

      圖5 雨天預(yù)測(cè)結(jié)果對(duì)比Fig.5 Prediction results comparison in rainy day

      3.2.3 路段誤差分析

      從路段角度考慮,如圖6所示.路段22的MAE與RMSE均最大,分別為91.36 s和146.35 s,原因是其長(zhǎng)度遠(yuǎn)大于其他路段.路段平均長(zhǎng)度為0.587 km,路段22為1.1 km,且布設(shè)4個(gè)信控交叉口,車輛行程時(shí)間不確定性更強(qiáng).本文模型的最大MAPE出現(xiàn)在23號(hào)路段,達(dá)到39%,主要原因是23號(hào)路段僅有215 m,路段行程時(shí)間短,故MAPE較大.

      圖6 本文模型預(yù)測(cè)誤差Fig.6 Prediction results of model our model

      4 結(jié)論

      充分考慮車輛在前序路段運(yùn)行狀態(tài),提出利用靜態(tài)變量進(jìn)行初始到站時(shí)間預(yù)測(cè),結(jié)合車輛實(shí)時(shí)運(yùn)行狀態(tài)動(dòng)態(tài)調(diào)整到站時(shí)間的雙層BPNN預(yù)測(cè)模型.該模型簡(jiǎn)化了底層實(shí)時(shí)預(yù)測(cè)模型結(jié)構(gòu),提升了模型預(yù)測(cè)精度.預(yù)測(cè)結(jié)論主要包括:僅考慮靜態(tài)變量的模型預(yù)測(cè)精度明顯低于動(dòng)靜態(tài)變量綜合考慮的模型;提出的預(yù)測(cè)模型更好地挖掘了前序路段與目標(biāo)路段運(yùn)行狀態(tài)的相關(guān)關(guān)系,預(yù)測(cè)精度更高;在雨天,雙層預(yù)測(cè)模型具有更強(qiáng)的穩(wěn)定性,本文模型比傳統(tǒng)BPNN模型精度提升57.25%.

      針對(duì)上述成果,仍有3個(gè)方向值得探索.首先,目前僅選取靜態(tài)變量預(yù)測(cè)站臺(tái)??繒r(shí)間,后續(xù)可補(bǔ)充公交刷卡數(shù)據(jù),提升站點(diǎn)??繒r(shí)間預(yù)測(cè)精度;其次,可補(bǔ)充平峰時(shí)段車輛運(yùn)行數(shù)據(jù),對(duì)比模型在高峰與平峰時(shí)段精度差異;最后,針對(duì)部分站點(diǎn)數(shù)據(jù)缺失情況,可進(jìn)一步討論不同數(shù)據(jù)缺失條件下模型的改進(jìn)方案.

      猜你喜歡
      路段站點(diǎn)精度
      冬奧車道都有哪些相關(guān)路段如何正確通行
      部、省、路段監(jiān)測(cè)運(yùn)維聯(lián)動(dòng)協(xié)同探討
      A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts
      基于XGBOOST算法的擁堵路段短時(shí)交通流量預(yù)測(cè)
      基于Web站點(diǎn)的SQL注入分析與防范
      電子制作(2019年14期)2019-08-20 05:43:42
      2017~2018年冬季西北地區(qū)某站點(diǎn)流感流行特征分析
      基于DSPIC33F微處理器的采集精度的提高
      電子制作(2018年11期)2018-08-04 03:25:38
      首屆歐洲自行車共享站點(diǎn)協(xié)商會(huì)召開
      怕被人認(rèn)出
      GPS/GLONASS/BDS組合PPP精度分析
      东乌珠穆沁旗| 翁源县| 凉山| 霸州市| 乌什县| 黄山市| 咸宁市| 澄江县| 华坪县| 略阳县| 方山县| 太和县| 阳春市| 古浪县| 尼勒克县| 乌拉特中旗| 云林县| 平谷区| 根河市| 七台河市| 泉州市| 连城县| 克东县| 闻喜县| 丹凤县| 涪陵区| 荆州市| 海门市| 门头沟区| 扎囊县| 望城县| 林口县| 临西县| 科技| 六盘水市| 瑞金市| 馆陶县| 盐津县| 镇赉县| 兴义市| 崇文区|