• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combustion Performance of Fe2O3-containing Nanothermites Prepared by Ball Milling Method

    2020-04-20 08:24:28JIANGAifengXIADebinLIMengruLINKaifengQIANGLiangshengLIJiaheFANRuiqingYANGYulin
    含能材料 2020年4期

    JIANG Ai-feng,XIA De-bin,LI Meng-ru,LIN Kai-feng,QIANG Liang-sheng,LI Jia-he,F(xiàn)AN Rui-qing,YANG Yu-lin

    (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China)

    Abstract:Various preparation methods have been widely explored to improve the combustion performance of nanothermites in recent years.In this work,two kinds of Fe2O3-containing nanothermites were successfully prepared by in-situ ball milling method and conventional ultrasonic blending method respectively.The morphologies and performance of as-prepared products have been fully characterized by thermogravimetric analysis(TGA),X-ray diffraction(XRD),contact angle tests,scanning electron microscopy(SEM),high-speed imaging experiments and infrared temperature measurement.The results show that the Fe2O3-doped nanothermites via in-situ ball milling method exhibit better performance than that made by ultrasonic blending method.The optimal nanothermites with 17%Fe2O3doped amount possess the maximum mass gain percentage of 13.1%per 100℃.Compared with the products made by ultrasonic blending method,the heating voltage and initial combustion temperature of in-situ ball milled nanothermites decrease to 12 V and 600℃,respectively.In addition,the combustion flame of in-situ ball milled nanothermites is more stable and homogeneous than the corresponding one.

    Key words:nanothermites;in-situ ball milling;ultrasonic blending;contact angle;combustion flame

    1 Introduction

    Thermites,commonly composed of metal and metal oxide[1-8],is one major kind of energetic materials(EMs)and extremely attracts researcher’s growing attentions due to their high energy densities,rapid reaction rate,ready availability and wide range of tunability[9-13].Especially,nanothermites assembled with nano-scale particles remarkably reduces the mass diffusion distance and promotes the intimate mixing[14-17]of the fuels and oxidizers,and yields an enhanced performance.For example,Aumann et al.[18]presented that Al/MoO3nanocomposites possess improved energy release rate,which was attributed to the nano-scaled particle sizes.Beside the particle size controlling,the well mixture of fuels and oxidizers should be another key point to the high performanceofthermites.Therefore,variousmethods have been employed to prepare the nanothermites,such as ultrasonic blending method[19-21],physical vapor deposition method(PVD)[22-24]and sol-gel method[25-26].However,these methods are still suffered from the low-yield,high-cost and complicated process disadvantages.

    Ball milling technique[27-29]is an another typical method for preparing the composite samples,in which particles can be refinedviamechanical forces.The products can achieve the overall-increased surface area and controllable structural defects by ball milling method,which enhance the chemical activity.Therefore,the well-mixed thermites with high density could be obtained cost-effectively and massive productively through ball milling method.However,the particle size controlling together with relatively small output is still a big problem for this method.Very recently,aluminum particles with uniform nano-sized by modified ball milling method were successfully prepared[30].

    Based on this experience,a series of Fe2O3-containing nanothermites with different oxide content were successfully prepared byin-situball milling method on a large scale.At the same time,the common ultrasonic blending method has also been utilized to prepare the nanothermites with the same doped amounts for comparison.The mixing uniformity,thermal behavior and hydrophobicity of asprepared products were investigated by a series of measurements and calculations.Additionally,the combustion performances between the composites preparedviatwo methods were also deeply discussed.

    2 Experiments

    2.1 Reagents and Instruments

    The 4A molecular sieve was purchased from Sinopharm Chemical Reagent Co.,Ltd.and treated by calcinating at 400℃for 2 h in a muffle furnace.Dimethyl Sulfoxide(DMSO)was obtained from Aladdin and pre-purifiedviadecompressing distillation technique by refluxing with calcium hydride(CaH2)under a dry nitrogen(N2)atmosphere for 24 h to keep anhydrous and oxygen free.Afterwards,the distilled DMSO solvent mixed with activated 4A molecular sieve under magnetic stirring for 8 h for deeply purified.Micron aluminum powders were received from Anshan Industry Fine Aluminum Powders Company Limited.Ferric oxide(Fe2O3)was purchased from Innochem.CaH2and trimethoxy(vinyl)silane (A171)were obtained from Alfa Aesar.Cyclohexane and ammonium chloride(NH4Cl)were obtained from Aladdin.

    2.2 Methods

    2.2.1 Sample preparation

    The loading,sampling and covering processes were all operated in a glovebox under high purity N2.The ball milling method was carried out by QM-3SP4 planetary ball-mill in the steel vials and the milling mediums were steel balls with a diameter of 5 mm.The mixture of micron aluminum powders,F(xiàn)e2O3,and NH4Cl,and steel balls with 1∶50 mass ratio,were all added into the steel vials and sealed tightly,then ball milling for 14 h.In addition,the added mass loading of Fe2O3is 1%,5%,9%,13%,17%and 21%of micron aluminum powders,respectively.After ball milling process,all products were washed by purified DMSO for 3 times to remove NH4Cl.

    Then,the mixture of 0.5 mL A171 and 100 mL cyclohexane were added into a two-neck flask as primed solution.Afterwards,10 g ball-milled products were added into well-mixed primed solution and stirring for one hour at 80℃.The separation of solids and liquids were executed by vacuum filtration and washed 3 times by using cyclohexane.Finally,the products were dried in the vacuum drying oven for an hour at room temperature.The ultrasonic blending method was also performed as follows:the mixture of 10 g ball-milled aluminum nanoparticles and 100 mL purified cyclohexane were added to a two-neck flask.Then,various Fe2O3(1%~21%)powders and 0.5 mL A171were added in afterwards.Subsequently,the suspension was continued ultrasonic dispersed for 1 h and the solution was removed via vacuum filtration by cyclohexane washing for 3 times.Finally,the samples were dried with the same conditions.

    2.2.2 Experimental Measurements

    The crystalline of as-prepared composites were performed by X-ray powder diffraction(XRD)analysis(Cu Kα)using a PANalytical Empyrean instru-ment with a range of 10°to 90°.Thermogravimetric analysis(TGA)was detected by SDT Q600 from room temperature to 850oC at the heating rate of 10℃·min-1under air flow.High speed imaging images were measured by Germany Dantec Dynamics high speed camera at a frame rate of 1500 fps and 640×480 resolution.The combustion flames temperature was simultaneously measured by Germany DIAS Infrared Systems under air atmosphere.Samples were treated by ultrasonicating in cyclohexane for 30 min and adhered on a-10 mm long Ni-Cr wire(220 μm).The metal wire was heated by energization and controlled by changing the voltage.Contact angles was conducted via JC2000C from Shanghai Zhongchen.Scanning electron microscope(SEM)were employed by Hitachi SU 8000HSD.

    3 Results and discussion

    3.1 Particles structure

    In order to verify the structures of as-prepared nanothermites by ball milling method,the XRD was conducted and the results shown in Fig.1a.The XRD patterns of samples doped with 1%and 5%Fe2O3mainly shows the aluminum peaks(2θ=38.47°,44.74°,65.13°,78.23°and 82.44°).In addition,the weak diffraction peaks at 2θ=33.12°and 35.61°are presented,which could be attributed to the presence of Fe2O3.When the doped amounts are gradually increased up to 21%,the XRD patterns obviously identified the existence of aluminum and Fe2O3,and the intensity of the Fe2O3diffraction peaks increased by doped amounts.The similar results were also observed in the patterns of nanothermites prepared by ultrasonic blending method (Fig.1b).These resultsexhibitthatFe2O3are successfully doped in aluminum nanoparticles prepared by the two methods.

    3.2 Thermal stability

    Fig.1 X-ray diffraction(XRD)patterns of nanothermites doped with different amounts of Fe2O3via different methods(Note:the peaks marked by red dotted lines represent Al peaks and the unmarked peaks are all Fe2O3peaks)

    In order to compare the oxidation effect of Fe2O3on aluminum nanoparticles prepared byin-situball milling method and ultrasonic blending method,the TGA measurements are conducted(Fig.2).With regard to the nanothermites prepared byin-situball milling method,the initial oxidation temperature of all compisites gradually decreases as the Fe2O3doped amounts increase from 1%to 17%,indicating the addition of Fe2O3is indeed able to accelerate the oxidation rate of aluminum nanoparticles.However,when the doped amount increased to 21%,the initial oxidation temperature is no obvious change and the mass gain slightly decreased.Therefore,the addition of Fe2O3may bring about two ef-fects,decreasing in aluminum content and accelerating the oxidation rate of aluminum nanoparticles.As a consequence,the optimal Fe2O3doped amount of nanothermites prepared byin-situball milling method for accelerating the oxidation rate is 17%.As for the nanothermites prepared by ultrasonic blending method,the optimal product for promoting oxidation of aluminum nanoparticles is the nanothermites doped with 5%Fe2O3(Fig.2b)and the oxidation rate gradually decreases as the doped amounts increase when the Fe2O3doped amounts exceed 9%,indicating that the mixing degree of the nanothermites prepared by the ultrasonic blending method is not so similar as that ofin-situball milling method.

    Fig.2 TGA curves of nanothermites doped with different amounts of Fe2O3via two methods

    To compare and theoretically analyze the rising rate of the TGA curves of nanothermites obtained from two methods,fitting functions were employed by Origin software[31]and the results are shown in Fig.3,F(xiàn)ig.4 and Table 1.The fitting functions ofinsituball-milled nanothermites and ultrasonic-blended nanothermites were set tof(Bx)andf(Sx),respectively,and the fitting curves derivatives were set torespectively.Given that the curves fitting and calculation processes of different doped amounts of Fe2O3are similar,so the TGA curves of doped 17%Fe2O3ball-milled composite and doped 5%Fe2O3ultrasonic-blended composite were selected and investigated.The functions of the fitting curves are presented as follows:

    Fig.3 TGA fitting curves of nanothermites doped with different amounts of Fe2O3prepared by in-situ ball milling method.

    Fig.4 TGA fitting curves of nanothermites doped with different amounts of Fe2O3prepared by ultrasonic blending method.

    Table 1 Maximum rising rate(850℃)of TGA fitting curves derivatives of nanothermites prepared by in-situ ball milling method and ultrasonic blending method %

    For the purpose of obtaining the rising rates of the fitting curves,the derivative functions of abovementioned functions are calculated as follows:

    Therefore,the maximum rising rate of TGA fitting curves were calculated at 850℃and the oxidation rates of all samples were reflected by mass gain percentage per 100℃.Obviously,the maximum mass gain percentage per 100℃of optimalin-situball-milled nanothermites was 13.1%.The maximum mass gain percentage per 100℃of ultrasonicblended nanothermites was only 12.2%,indicating the two fitting curves with 5%and 9%doped composites shown similar oxidation rates.However,the mass gain of the 5%doped composite is higher than that of 9%,illustrating the oxidation degree of nanothermites doped with 5%Fe2O3is more complete than that of nanothermites doped with 9%Fe2O3.

    As a consequence,the optimal doped amounts of nanothermites prepared by the two methods were 17%and 5%for ball-milled and ultrasonic-blended composites,respectively,and thein-situball-milled nanothermites possess higher oxidation rate in comparison with the ultrasonic-blended nanothermites,which is consistent with the results presented by TGA curves.

    3.3 Microscopic morphology

    To exhibit the particles size,element distribution and microscopic morphology of nanothermites prepared by the two methods,scanning electron microscope(SEM)and mapping scanning of energy dispersive spectrometer(EDS)analysis were conducted and the results are presented in Fig.5.

    Fig.5 Microscopic morphology and element distribution of in-situ ball-milled and ultrasonic-blended nanothermites:(a)Element distribution of in-situ ball-milled nanothermites doped with 17%Fe2O3from EDS mapping;(b)Element distribution of ultrasonic-blended nanothermites doped with 17%Fe2O3from EDS mapping;(c)corresponding SEM images of in-situ ball-milled nanothermites doped with 17%Fe2O3;(d)corresponding SEM images of ultrasonic-blended nanothermites doped with 5 Fe2O3;(e)Schematic diagram of in-situ ball-milled nanothermites doped with 17%Fe2O3 and(f)Schematic diagram of ultrasonic-blended nanothermites doped with 5%Fe2O3.

    Obviously,aluminum and iron elements in the prepared nanothermites are both displayed clearly,(Fig.5a and Fig.5b),which is in agreement with the XRD results.The enlarged SEM image and schematic diagram ofin-situball-milled nanothermites doped with 17%Fe2O3are shown in Fig.5c and Fig.5e,illustrating the ball-milled particles are indeed nanosized particles and spherical.However,the self-agglomeration phenomenon can be observed in the enlarged SEM image and schematic diagram of ultrasonic-blended nanothermites,indicating uneven mixing of Al and Fe2O3particles(Fig.5d and Fig.5f)and greatly reduced mixing intimacy.As a consequence,Al and Fe2O3particles of ball-milled nanothermites dispersed more uniformly than that of ultrasonic-blended nanothermites.

    3.4 Hydrophobicity

    The hydrophobicity of nanothermites prepared by two methods were investigated and the contact angles were detected and the results presented in Fig.6.

    Fig.6 Contact angles of nanothermites doped different amounts of Fe2O3via different methods.

    Clearly,the contact angles of nanothermites obtained from ball milling method,ultrasonic blending method and pristine Fe2O3are 113.01°,96.54°and 17.93°,respectively.The result could be ascribed to the exposure of Fe2O3nanoparticles to the surrounding atmosphere and water,stemming from the uneven mixing of Al and Fe2O3particles.In contrast,the contact angle ofin-situball-milled nanothermites doped with 17%Fe2O3(113.01°)is much larger than that of the ultrasonic-blended composite,indicating thatin-situball-milled composites possess better hydrophobicity than that os ultrasonic-blended composites.Therefore,in-situball-milled nanothermites are more conducive to preservation in comparison to ultrasonic blended nanothermites.[32]

    3.5 Combustion performance

    To obtain the real-time flame temperature and combustion phenomena of nanothermites prepared by the two methods,infrared temperature measurement and high-speed imaging experiments were conducted on two compisites.

    Fig.7 Images of real-time infrared temperature measurementofnanothermitesprepared via differentmethods.(Note:The cross symbols(+)represent the tracked automatically highest temperature points.)

    As shown in Fig.7,the initial heating voltage is 12 V and the initial heating temperature is around 600℃.For thein-situball-milled composite,the temperature slowly increases to approximately 630℃,indicating the passivation agent starts to rupture and partial aluminum nanoparticles of nanothermites begin to be oxidized.Then the temperature rapidly increases over 900℃ within 0.4 s,pointing to the oxidation of massive aluminum nanoparticles of nanothermites and heat release.Hereafter,the temperature continued to increase up to about 1170℃and the combustion flame is stable.In con-trast,as for the ultrasonic-blended compoiste,it is difficult to be ignited at 12 V voltage,so higher voltage(15 V)was applied for the ignition.At this time,the composite rapidly reacts and the temperature rises up to nearly 1100℃.With the rapid increase of temperature,the nanothermites prepared by ultrasonic blending method exist the phenomenon of particle sputtering and the temperature dropped rapidly or even fell below 1000℃.This is because the aluminum nanoparticles and the Fe2O3contained in nanothermites prepared by ultrasonic blending method are seriously self-aggregated,resulting in inhomogeneous mixing and unstable combustion.Consequently,the initial combustion temperature of the nanothermites prepared byin-situball milling method is lower than that of the nanothermites preparedviaultrasonic blending method,and the combustion flame is more homogeneous and stable.

    4 Conclusions

    (1)The Fe2O3powders and aluminum particles of nanothermites preparedviaball milling method are mixed more evenly,nevertheless,the nanothermites prepared by ultrasonic blending method exist clearly distinguished respective agglomerated aluminum particles and Fe2O3particles.

    (2)The contact angle of the nanothermites prepared byin-situball milling method is 113.01°,which is significantly larger than that of corresponding ultrasonic blending method(96.54°).With the optimal doped Fe2O3amount(17%)byin-situball milling,the maximum mass gain percentage per 100℃ is 13.1%,which is larger than that for ultrasonic-blended doped 5%Fe2O3product(12.2%).

    (3)Thein-situball milled nanothermites could be ignited at lower heating voltage(12 V)and lower initial combustion temperature(~600℃)than those of ultrasonic-blended nanothermites(15 V and~700℃),and the combustion flame is more stable and homogeneous.This investigation is expected to promote the development of nanothermites.

    亚洲久久久国产精品| 熟女电影av网| 久久久久久久久久久丰满| 成人二区视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产欧美在线一区| 亚洲四区av| 国产日韩欧美视频二区| 色5月婷婷丁香| 男女啪啪激烈高潮av片| 亚洲精品久久久久久婷婷小说| 一级片'在线观看视频| 久久韩国三级中文字幕| 欧美3d第一页| 日韩电影二区| 亚洲av中文av极速乱| av免费观看日本| 成人18禁高潮啪啪吃奶动态图 | 99久久精品一区二区三区| av.在线天堂| 国产成人91sexporn| 一级毛片电影观看| 国产亚洲一区二区精品| 欧美人与善性xxx| 大陆偷拍与自拍| 久久久久精品久久久久真实原创| 高清不卡的av网站| 亚洲精品国产av蜜桃| 欧美日本中文国产一区发布| 日韩中字成人| 嫩草影院入口| 国产亚洲av片在线观看秒播厂| 久久女婷五月综合色啪小说| 亚洲美女视频黄频| av卡一久久| 中文字幕免费在线视频6| 日韩,欧美,国产一区二区三区| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 中文字幕免费在线视频6| 日韩,欧美,国产一区二区三区| 午夜av观看不卡| 久久综合国产亚洲精品| 亚洲国产成人一精品久久久| 国产欧美亚洲国产| 极品人妻少妇av视频| av卡一久久| 亚洲图色成人| 夜夜看夜夜爽夜夜摸| 桃花免费在线播放| 夜夜骑夜夜射夜夜干| 极品少妇高潮喷水抽搐| 制服丝袜香蕉在线| 国产精品免费大片| 天堂俺去俺来也www色官网| 国产精品人妻久久久久久| 国产免费一级a男人的天堂| 国产欧美另类精品又又久久亚洲欧美| 丝袜脚勾引网站| 精品视频人人做人人爽| 91午夜精品亚洲一区二区三区| 免费久久久久久久精品成人欧美视频 | 在线观看美女被高潮喷水网站| 欧美3d第一页| 国产高清不卡午夜福利| 亚洲国产欧美在线一区| 国产成人aa在线观看| h视频一区二区三区| 纵有疾风起免费观看全集完整版| a级毛片免费高清观看在线播放| 久久久久国产精品人妻一区二区| 亚洲精品一二三| 亚洲精品,欧美精品| 一级二级三级毛片免费看| 天堂俺去俺来也www色官网| 午夜福利,免费看| 成人手机av| 青青草视频在线视频观看| 亚洲成人一二三区av| 国产在线视频一区二区| 桃花免费在线播放| 亚洲人与动物交配视频| 熟女av电影| 国产精品国产三级专区第一集| 制服人妻中文乱码| 999精品在线视频| 九草在线视频观看| 五月玫瑰六月丁香| 99热全是精品| 成人亚洲精品一区在线观看| 777米奇影视久久| 久久久久网色| 久热这里只有精品99| 午夜日本视频在线| 黄色毛片三级朝国网站| 国产免费又黄又爽又色| 汤姆久久久久久久影院中文字幕| 91精品国产国语对白视频| av线在线观看网站| 我的老师免费观看完整版| 九色成人免费人妻av| 久久精品夜色国产| 久久精品国产亚洲av涩爱| 日韩中字成人| 日韩亚洲欧美综合| 欧美激情国产日韩精品一区| 久久久久久久久大av| 久久国内精品自在自线图片| 日韩在线高清观看一区二区三区| 最新中文字幕久久久久| 中文乱码字字幕精品一区二区三区| 免费人成在线观看视频色| 久久久亚洲精品成人影院| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩成人在线一区二区| 国产精品久久久久久av不卡| 国产一区有黄有色的免费视频| 交换朋友夫妻互换小说| 最近中文字幕高清免费大全6| 成年av动漫网址| 九九在线视频观看精品| 亚洲精品国产色婷婷电影| 欧美3d第一页| 国产免费现黄频在线看| 男女边吃奶边做爰视频| 亚洲av不卡在线观看| 欧美最新免费一区二区三区| 男女边吃奶边做爰视频| √禁漫天堂资源中文www| a级毛色黄片| 看免费成人av毛片| 最近最新中文字幕免费大全7| 女性被躁到高潮视频| 亚洲人成网站在线观看播放| 菩萨蛮人人尽说江南好唐韦庄| 高清欧美精品videossex| 亚洲丝袜综合中文字幕| 3wmmmm亚洲av在线观看| 成年人午夜在线观看视频| 国产成人午夜福利电影在线观看| 国产一区二区在线观看av| 亚洲av免费高清在线观看| 亚洲人成网站在线观看播放| 国产成人91sexporn| 亚洲欧美中文字幕日韩二区| 黄色配什么色好看| 亚洲内射少妇av| 妹子高潮喷水视频| av.在线天堂| 成人影院久久| 涩涩av久久男人的天堂| 日韩人妻高清精品专区| 18禁在线无遮挡免费观看视频| 国产色婷婷99| 看非洲黑人一级黄片| 亚洲成人手机| 亚洲欧美成人精品一区二区| 成人国语在线视频| 妹子高潮喷水视频| 纵有疾风起免费观看全集完整版| 免费观看性生交大片5| av在线app专区| 中文天堂在线官网| 精品少妇内射三级| 男人添女人高潮全过程视频| 免费播放大片免费观看视频在线观看| 国产 精品1| 十八禁网站网址无遮挡| 日日撸夜夜添| 欧美丝袜亚洲另类| 天天操日日干夜夜撸| 久久综合国产亚洲精品| 在线观看人妻少妇| 亚洲熟女精品中文字幕| 午夜激情av网站| 日韩,欧美,国产一区二区三区| 日韩大片免费观看网站| 免费看av在线观看网站| 永久免费av网站大全| 黑人欧美特级aaaaaa片| 青春草视频在线免费观看| 男人操女人黄网站| 国产精品一区www在线观看| 日本黄色日本黄色录像| 男女边吃奶边做爰视频| 在线观看人妻少妇| av福利片在线| 欧美xxxx性猛交bbbb| 欧美激情极品国产一区二区三区 | 免费日韩欧美在线观看| 亚洲中文av在线| 高清av免费在线| 亚洲av不卡在线观看| 国产免费一级a男人的天堂| 日本av手机在线免费观看| 久久久久久久亚洲中文字幕| 少妇丰满av| a 毛片基地| 看免费成人av毛片| av天堂久久9| 老熟女久久久| 日韩人妻高清精品专区| 2021少妇久久久久久久久久久| 欧美激情 高清一区二区三区| 精品久久久久久电影网| 少妇 在线观看| 国产精品.久久久| 日韩av免费高清视频| 特大巨黑吊av在线直播| 交换朋友夫妻互换小说| 国产在视频线精品| 国产成人精品福利久久| 在线观看国产h片| 国产日韩欧美亚洲二区| 大香蕉久久成人网| 大香蕉97超碰在线| 人人妻人人澡人人爽人人夜夜| 丰满乱子伦码专区| 丁香六月天网| 久久精品国产自在天天线| 国产精品一区www在线观看| 性高湖久久久久久久久免费观看| 成人18禁高潮啪啪吃奶动态图 | 日韩不卡一区二区三区视频在线| a级毛片黄视频| 日韩,欧美,国产一区二区三区| 又粗又硬又长又爽又黄的视频| 欧美成人精品欧美一级黄| 交换朋友夫妻互换小说| 免费观看的影片在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲av福利一区| 香蕉精品网在线| 男女免费视频国产| 国产免费一区二区三区四区乱码| 精品少妇黑人巨大在线播放| 亚洲精品国产色婷婷电影| 免费黄频网站在线观看国产| 人人妻人人澡人人看| 狂野欧美激情性bbbbbb| 欧美日韩一区二区视频在线观看视频在线| 国产成人av激情在线播放 | 国产一区二区在线观看av| 少妇熟女欧美另类| 22中文网久久字幕| 国产精品嫩草影院av在线观看| 国产在线免费精品| 亚洲国产精品一区三区| 少妇被粗大的猛进出69影院 | 精品一区在线观看国产| 日本91视频免费播放| 成人黄色视频免费在线看| 国产精品久久久久久精品电影小说| 国产精品.久久久| av天堂久久9| 精品久久久噜噜| 日韩精品有码人妻一区| 亚洲成人一二三区av| 伊人亚洲综合成人网| 久久午夜福利片| 久久av网站| 午夜激情久久久久久久| 一个人免费看片子| 久久久久久伊人网av| 亚洲成人一二三区av| 欧美精品人与动牲交sv欧美| 热99国产精品久久久久久7| 日韩熟女老妇一区二区性免费视频| 久久久久人妻精品一区果冻| 久久这里有精品视频免费| 国产一区二区在线观看av| 热re99久久精品国产66热6| 日本黄大片高清| 美女福利国产在线| 岛国毛片在线播放| 久久青草综合色| 少妇的逼水好多| av又黄又爽大尺度在线免费看| 欧美日韩亚洲高清精品| 如日韩欧美国产精品一区二区三区 | 免费人成在线观看视频色| 精品久久久久久电影网| 飞空精品影院首页| 亚洲精品日韩av片在线观看| 免费看av在线观看网站| 日本与韩国留学比较| 在线 av 中文字幕| 欧美xxⅹ黑人| 大香蕉97超碰在线| 狠狠婷婷综合久久久久久88av| 大香蕉久久网| 久久97久久精品| 18+在线观看网站| 一级片'在线观看视频| av在线app专区| 26uuu在线亚洲综合色| 青春草国产在线视频| 欧美精品一区二区大全| 午夜老司机福利剧场| 伊人久久精品亚洲午夜| 精品少妇久久久久久888优播| 久久久精品免费免费高清| 一本色道久久久久久精品综合| 自线自在国产av| 成人手机av| 在线免费观看不下载黄p国产| 高清黄色对白视频在线免费看| 美女内射精品一级片tv| 久久女婷五月综合色啪小说| 亚洲高清免费不卡视频| 夫妻性生交免费视频一级片| 91精品伊人久久大香线蕉| 十八禁网站网址无遮挡| 日本爱情动作片www.在线观看| 亚洲精品一二三| 免费av中文字幕在线| 免费黄频网站在线观看国产| 国产精品国产三级国产av玫瑰| 亚洲不卡免费看| 哪个播放器可以免费观看大片| 亚洲欧美日韩另类电影网站| 亚洲精品亚洲一区二区| 少妇熟女欧美另类| 免费人妻精品一区二区三区视频| 建设人人有责人人尽责人人享有的| 男的添女的下面高潮视频| 在现免费观看毛片| 国产女主播在线喷水免费视频网站| 人妻人人澡人人爽人人| 一级毛片黄色毛片免费观看视频| 高清欧美精品videossex| 久久久久久久久久人人人人人人| av国产久精品久网站免费入址| 欧美激情极品国产一区二区三区 | 女的被弄到高潮叫床怎么办| 最黄视频免费看| 欧美丝袜亚洲另类| 亚洲天堂av无毛| 久久精品久久久久久久性| 边亲边吃奶的免费视频| 简卡轻食公司| 视频在线观看一区二区三区| 久久人人爽人人片av| 久久热精品热| 少妇 在线观看| 日韩人妻高清精品专区| 丝袜脚勾引网站| 边亲边吃奶的免费视频| 狂野欧美激情性bbbbbb| 蜜臀久久99精品久久宅男| 51国产日韩欧美| 男的添女的下面高潮视频| 久久久久网色| 久久久亚洲精品成人影院| 精品人妻熟女av久视频| 久久久久久久久久久久大奶| 少妇 在线观看| 日韩av在线免费看完整版不卡| 国产片特级美女逼逼视频| 精品熟女少妇av免费看| 女性被躁到高潮视频| 国产免费福利视频在线观看| 丝袜脚勾引网站| 男的添女的下面高潮视频| 丝袜脚勾引网站| av网站免费在线观看视频| 成年人午夜在线观看视频| 人妻夜夜爽99麻豆av| 欧美 亚洲 国产 日韩一| 日本-黄色视频高清免费观看| 高清欧美精品videossex| av.在线天堂| 2021少妇久久久久久久久久久| 欧美三级亚洲精品| 成年人午夜在线观看视频| 边亲边吃奶的免费视频| 亚洲五月色婷婷综合| 亚洲一区二区三区欧美精品| 久久久久国产精品人妻一区二区| 色网站视频免费| 人人澡人人妻人| 精品亚洲乱码少妇综合久久| 欧美最新免费一区二区三区| 日韩三级伦理在线观看| 国产老妇伦熟女老妇高清| 女的被弄到高潮叫床怎么办| 久久久久久久久久久免费av| 色哟哟·www| 纯流量卡能插随身wifi吗| 永久免费av网站大全| 日韩av免费高清视频| 蜜桃国产av成人99| 视频在线观看一区二区三区| 男人爽女人下面视频在线观看| 看免费成人av毛片| 午夜激情久久久久久久| 久久久a久久爽久久v久久| 久久99精品国语久久久| 精品少妇久久久久久888优播| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美 日韩 精品 国产| 国产精品国产三级专区第一集| 国产精品99久久99久久久不卡 | 精品久久蜜臀av无| 亚洲精品一区蜜桃| 视频区图区小说| 飞空精品影院首页| 男女啪啪激烈高潮av片| 2018国产大陆天天弄谢| 大又大粗又爽又黄少妇毛片口| 久久久久久久久大av| 性色av一级| 天天躁夜夜躁狠狠久久av| 午夜老司机福利剧场| 国产成人精品在线电影| 久久 成人 亚洲| 国产成人精品福利久久| 青春草亚洲视频在线观看| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看av| 超碰97精品在线观看| 日本与韩国留学比较| 久久精品国产亚洲网站| 我的老师免费观看完整版| 大片免费播放器 马上看| 99re6热这里在线精品视频| 在线观看国产h片| 欧美老熟妇乱子伦牲交| 国产亚洲欧美精品永久| 久久久久久久大尺度免费视频| 免费观看a级毛片全部| 国产黄色视频一区二区在线观看| 成年美女黄网站色视频大全免费 | 国产成人精品无人区| 2021少妇久久久久久久久久久| 女性生殖器流出的白浆| 综合色丁香网| 熟女av电影| 久久久精品94久久精品| 成人综合一区亚洲| 亚洲av男天堂| 蜜桃久久精品国产亚洲av| 一区二区三区精品91| 免费观看的影片在线观看| 久久女婷五月综合色啪小说| 免费观看性生交大片5| 蜜桃在线观看..| 中文精品一卡2卡3卡4更新| 精品人妻一区二区三区麻豆| 99热国产这里只有精品6| 成人二区视频| 亚洲精品,欧美精品| 国产精品久久久久久精品电影小说| 精品国产一区二区三区久久久樱花| 啦啦啦视频在线资源免费观看| 亚洲av综合色区一区| 丝袜美足系列| 99精国产麻豆久久婷婷| 午夜老司机福利剧场| 国产熟女欧美一区二区| 美女内射精品一级片tv| 久久毛片免费看一区二区三区| 亚洲一级一片aⅴ在线观看| 飞空精品影院首页| 在线观看免费日韩欧美大片 | 插逼视频在线观看| 亚洲婷婷狠狠爱综合网| 女人久久www免费人成看片| 国产黄片视频在线免费观看| 中国美白少妇内射xxxbb| 91久久精品国产一区二区三区| 欧美97在线视频| 亚洲一级一片aⅴ在线观看| 久久精品国产鲁丝片午夜精品| 又大又黄又爽视频免费| 超碰97精品在线观看| 久久99蜜桃精品久久| 久久精品国产亚洲网站| 亚洲精品视频女| 狂野欧美激情性bbbbbb| 欧美精品一区二区大全| 中文乱码字字幕精品一区二区三区| 肉色欧美久久久久久久蜜桃| av国产久精品久网站免费入址| 亚洲经典国产精华液单| 春色校园在线视频观看| 久久久午夜欧美精品| 午夜精品国产一区二区电影| 日韩三级伦理在线观看| 欧美激情 高清一区二区三区| 在线观看免费高清a一片| 久久人妻熟女aⅴ| 免费黄色在线免费观看| 久久久久精品久久久久真实原创| 中文字幕久久专区| 亚洲情色 制服丝袜| 亚洲经典国产精华液单| 丝袜脚勾引网站| 亚洲天堂av无毛| 乱码一卡2卡4卡精品| a级毛片免费高清观看在线播放| 日本黄色日本黄色录像| 欧美 亚洲 国产 日韩一| 亚洲精品久久久久久婷婷小说| 国产爽快片一区二区三区| 国产一区亚洲一区在线观看| 亚洲精品一二三| 亚洲成人手机| 久久久亚洲精品成人影院| 亚洲av不卡在线观看| 大码成人一级视频| 国产伦理片在线播放av一区| 成人无遮挡网站| 日韩人妻高清精品专区| 99热这里只有精品一区| 国产精品免费大片| 国产欧美亚洲国产| 在线 av 中文字幕| 制服诱惑二区| 午夜影院在线不卡| 观看美女的网站| 美女脱内裤让男人舔精品视频| 九色亚洲精品在线播放| 日韩伦理黄色片| 欧美97在线视频| 亚洲精品久久午夜乱码| 大话2 男鬼变身卡| 嘟嘟电影网在线观看| 国产欧美另类精品又又久久亚洲欧美| 日韩成人伦理影院| 久久午夜福利片| 午夜日本视频在线| 国产在线一区二区三区精| 国国产精品蜜臀av免费| 女性生殖器流出的白浆| 久久久久精品性色| 日韩伦理黄色片| 一级毛片aaaaaa免费看小| av在线播放精品| 纵有疾风起免费观看全集完整版| 国产精品蜜桃在线观看| 午夜激情久久久久久久| 成年人免费黄色播放视频| 国产精品嫩草影院av在线观看| 国产精品一国产av| 亚洲第一av免费看| av国产精品久久久久影院| 人妻夜夜爽99麻豆av| 国产精品蜜桃在线观看| 少妇的逼好多水| 国产精品一区二区三区四区免费观看| 精品一区二区三区视频在线| 少妇丰满av| 人妻 亚洲 视频| 久久韩国三级中文字幕| 亚洲精品亚洲一区二区| 亚洲少妇的诱惑av| 成人影院久久| 全区人妻精品视频| 国产精品久久久久久精品古装| 国产精品人妻久久久影院| 十八禁网站网址无遮挡| 男人爽女人下面视频在线观看| av福利片在线| 80岁老熟妇乱子伦牲交| 亚洲高清免费不卡视频| 国产极品天堂在线| 日本91视频免费播放| 在线观看美女被高潮喷水网站| 制服丝袜香蕉在线| 飞空精品影院首页| 国产精品三级大全| .国产精品久久| 日韩一区二区三区影片| 最近最新中文字幕免费大全7| 欧美+日韩+精品| 久久久久网色| 亚洲欧美成人综合另类久久久| 久热这里只有精品99| 精品卡一卡二卡四卡免费| 汤姆久久久久久久影院中文字幕| 老女人水多毛片| 日本av手机在线免费观看| 亚洲精品aⅴ在线观看| 内地一区二区视频在线| 中文字幕最新亚洲高清| 狠狠婷婷综合久久久久久88av| 999精品在线视频| 亚洲内射少妇av| 夫妻性生交免费视频一级片| 天堂俺去俺来也www色官网| 国产精品人妻久久久影院| 欧美激情极品国产一区二区三区 | 亚洲精品一二三| 国产精品久久久久成人av| 哪个播放器可以免费观看大片| 日韩一区二区视频免费看| 91精品伊人久久大香线蕉| 蜜臀久久99精品久久宅男| 在线观看一区二区三区激情| 啦啦啦中文免费视频观看日本| 国产精品 国内视频| 精品人妻一区二区三区麻豆| 午夜免费鲁丝| 男的添女的下面高潮视频| 亚洲少妇的诱惑av| 黄色怎么调成土黄色| 中文天堂在线官网| 97在线人人人人妻| 日本av手机在线免费观看| 精品人妻偷拍中文字幕| 国产亚洲av片在线观看秒播厂| 久久青草综合色| 亚洲精品视频女| 天天影视国产精品|