• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      二階差分方程周期邊值問(wèn)題正解存在的最優(yōu)條件

      2020-04-10 06:44:31王晶晶路艷瓊

      王晶晶 路艷瓊

      摘要:運(yùn)用錐上的不動(dòng)點(diǎn)指數(shù)理論,獲得了格林函數(shù)非負(fù)時(shí)二階離散周期邊值問(wèn)題

      關(guān)鍵詞:周期邊值問(wèn)題:正解:非負(fù)格林函數(shù):不動(dòng)點(diǎn)指數(shù)

      中圖分類號(hào):0175.8

      文獻(xiàn)標(biāo)志碼:A

      DOI: 10.3969/j.issn.1000-5641.201811039

      0 引 言

      眾所周知,我們所處的這個(gè)世界上普遍存在著大量的周期現(xiàn)象,諸如天體力學(xué)中球體的運(yùn)動(dòng),生物工程中果蠅種群的繁殖,血紅細(xì)胞的生成等.而這些周期現(xiàn)象都可以用周期邊值問(wèn)題來(lái)刻畫(huà),因此微分方程周期邊值問(wèn)題的研究深受許多學(xué)者的關(guān)注.離散周期邊值問(wèn)題不僅可以為連續(xù)周期邊值問(wèn)題提供數(shù)值計(jì)算格式,而且在人口動(dòng)力系統(tǒng)、非線性擴(kuò)散、生物生態(tài)學(xué)等許多問(wèn)題中具有重要的應(yīng)用.因此對(duì)離散周期邊值問(wèn)題正解存在性和多解性的研究近年來(lái)十分活躍.特別地,在格林函數(shù)定號(hào)的情形下,文獻(xiàn)[1-6]獲得了二階離散周期邊值問(wèn)題正解存在的重要結(jié)果.相應(yīng)連續(xù)的情形可見(jiàn)參考文獻(xiàn)[7-10].1999年,Atici與Guseinov[1]利用錐上的不動(dòng)點(diǎn)理論研究了二階離散周期邊值問(wèn)題

      [參考文獻(xiàn)]

      [1]

      ATICI F M,GUSEINOV G S Positive periodic solutions for nonlinear difference equations with periodic coefficients [J] Journal of Mathematical Analysis and Applications. 1999, 232(1): 166-182. DOI: 10.1006/jmaa.1998.6257

      [2]

      ATICI F M.CABADA A. Existence and uniqueness results for discrete second-order periodic boundary value problems [J] Computersand Mathematics with Applications, 2003, 45(6/7/8/9): 1417-1427. DOI: 10.1016/S0898-1221(03)00097-X

      [3] 王麗穎,張麗穎,李曉月二階離散周期邊值問(wèn)題的正解[J]東北師大學(xué)報(bào)(自然科學(xué)版),2007(2): 11-15 DOI: 10.3321/j.issn:1000-1832 2007 02 003

      [4] 李曉月,王麗穎二階離散周期邊值問(wèn)題的單個(gè)和多個(gè)正解[J]數(shù)學(xué)物理學(xué)報(bào),2009. 29(5):1187-1195

      [5]MA R Y. LU Y Q, CHEN T Existence of one-signed solutions of discrete second-order periodic boundary value problems [J] Abstractand Applied Analysis. 2012(2): 160-176

      [6] 蔣玲芳.二階奇異離散周期邊值問(wèn)題正解的存在性和多解性[J]內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版),2013. 44(4): 345-351

      [7] 姚慶六.變系數(shù)非線性二階周期邊值問(wèn)題的正解[J]應(yīng)用數(shù)學(xué)學(xué)報(bào),2008(3): 564-573. DOI: 10.3321/j.issn:0254-3079.2008.03.018

      [8] 陳彬.格林函數(shù)變號(hào)的三階周期邊值問(wèn)題[J]山東大學(xué)學(xué)報(bào)(理學(xué)版),2016, 51(8): 79-83

      [9]GAO C H, ZHANG F, MA R Y. Existence of positive solutions of second-order periodic boundary value problems with sign-changing Green'sfiinction [J]用數(shù)學(xué)學(xué)報(bào)(英文版),2017,33(2): 263-268

      [10]CABADA A, ENGUICA R. LOPEZ-SOMOZA L Positive solutions for second-order boundary value problems with sign changing Green'sfiinctions [J]. Electronic Journal of Differential Equations, 2017, 2017(245): 1-17

      [11]ZHANG G W,SUN J X. Positive solutions of m_point boundary value problems [J]. Journal of Mathematical Analysis andApplications, 2004, 291(2): 406-418. DOI: 10.1016/jjmaa.2003.11.034.

      [12]CUI Y J,ZOU Y M Nontrivial solutions of singular superlinear m-point boundary value problems [J] Applied Mathematics andComputation, 2007, 187(2): 1256-1264. DOI: 10.1016/j.amc.2006.09036

      [13] WANG F.ZHANG F Positive solutions for a periodic boundarv value problem without assumptions of monotonicity andconvexity [J]. Bulletin of Mathematical Analysis and Applications, 2011(2): 261-268

      [14]GUO D J,LAKSHMIKANTHAM V. Nonlinear Problems in Abstract Cones[M]New York: Academic Press. 1988

      (責(zé)任編輯:林磊)

      长丰县| 子长县| 富宁县| 互助| 乌兰察布市| 晋中市| 衡南县| 利辛县| 得荣县| 葫芦岛市| 兰州市| 井冈山市| 宕昌县| 灵山县| 正定县| 绥宁县| 苏尼特左旗| 监利县| 松阳县| 云阳县| 南川市| 澜沧| 石门县| 申扎县| 禹城市| 临汾市| 克拉玛依市| 青铜峡市| 黔江区| 林甸县| 洞头县| 乐清市| 镇雄县| 文水县| 芜湖市| 曲水县| 鹤岗市| 大足县| 鄄城县| 新化县| 清河县|