• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于學習動機理論的數學微課資源建設與實踐

    2020-03-24 10:58:01李敏王佳慧
    現代職業(yè)教育·高職高專 2020年22期
    關鍵詞:勾股定理直角三角形學習動機

    李敏 王佳慧

    [摘? ? ? ? ? ?要]? 信息技術與教育的深度融合,促進了現代教學模式的變革?;趯W習動機理論,探索微課教學設計策略,建設微課輔助教學資源,搭建初中數學微信輔助教學平臺,并通過微信輔助教學平臺的課外輔導實踐,說明微課教學資源輔助教學的有效性。

    [關? ? 鍵? ?詞]? 學習動機理論;初中數學;微課設計;微信公眾號

    [中圖分類號]? G647? ? ? ? ? ? ? ? ?[文獻標志碼]? A? ? ? ? ? ? ? [文章編號]? 2096-0603(2020)22-0020-03

    隨著信息技術的快速發(fā)展,信息技術與教育的深度融合形成比較完善的教育技術,已經深刻影響著人們的思維方式和學習模式。越來越多的信息化教學模式被納入傳統(tǒng)課堂教學的同時,也有許多信息化教育技術滲透到課堂教學之外,搭建了多種多樣的以學生為中心的自主學習平臺,幾乎實現了只要你愿意,就可以在任何時候、任何地點學習想要學習的知識和技術。本文基于學習動機理論,針對中學生課外學習數學課程需求,進行微課教學設計與教學資源平臺搭建的實踐應用研究。

    一、學習動機理論視角下的教學資源建設

    學習動機,簡而言之即為誘發(fā)和維持學習者完成學習的動力。有關學習動機理論目前比較流行是ARCS動機設計理論,1983年,美國佛羅里達大學的約翰·M·科勒教授在結合眾多動機理論及觀點之后,認為學習動機的生成依賴于注意、相關、自信和滿意4個既具有層次遞進性又高度相關的動機過程[1]。在教育界關于學習動機的主要理論有桑代克、斯金納的強化理論,馬斯洛的需要層次理論,以及學習動機的認知理論中所含的期望價值理論/成就動機理論、韋納的成敗歸因理論、班杜拉的自我效能感理論和科溫頓的自我價值理論[2]。

    ARCS模型視角下,動機的激發(fā)不是最終目標,有效地維持學習者的學習動機、體驗學習的滿足感從而促進學習遷移才是最終目標。對于初中數學教學而言,學習動機具有指引學習方向、激發(fā)學習興趣、維持學習動力之功能。按照這一理論指引,拓展教學空間,建設教學資源,搭建初中數學輔助學習平臺。

    在搭建輔助學習平臺后,分析初中數學教材,有選擇性地設計相應微課資源,推送相關材料,收到對微課資源學習反饋后,進行反思,同時不斷完善平臺的各項功能。在實踐過程中,能更清楚地意識到基于學習動機理論的微課設計是很重要的,巧妙的情境可以激發(fā)學生學習的學習欲望,也可以調動學生學習的積極性,讓學習者有沉下心繼續(xù)學下去的動力。設計微課時,要清楚初中生的年齡特征,做到知學生。

    總而言之,教學者要了解各方面的學習動機理論,才可以更好地激發(fā)學生的學習動機,為教學設計做好更充分的準備,讓學生學得開心,學得明白,有前進的動力,有努力的方向。

    二、初中數學微課教學資源整體設計

    (一)初中數學微課教學資源平臺的搭建

    隨著網絡技術的不斷升級,人們已經進入社交網絡時代。微信的發(fā)展尤其迅速,搭建微信平臺是一個不錯的選擇。微課平臺是區(qū)域性微課資源建設、共享和應用的基礎,主要有實時交流、消息發(fā)送和素材管理[3]。在搭建微信公眾號時,借助一臺終端,用郵箱注冊一個賬號,申請微信公眾平臺訂閱號認證,在公眾號設置一欄中命名平臺名稱,做好相關介紹,在功能處設置自動回復格式,在自定義菜單中設計三個主題板塊,分別為知識點、微課堂、習題詳解。其中知識點板塊一欄中有兩個子菜單,分別為初中教材和思維導圖,這強調了知識的連接性、流動性和適應性,這可充當課程預習或者鞏固板塊。除此之外,將權限開放,讓用戶可以通過查找公眾平臺賬戶或者掃一掃二維碼關注公眾平臺。搭建平臺后,借助微信公眾號的素材管理圖片、文字、語音、視頻等多種媒體方式上傳微課資源并進行推送,文字排版利用135編輯器進行梳理和整理美觀,圖片上傳可用bmp、png、jpg等格式,吸引粉絲,學習者關注此微信公眾號后就可以使用此平臺進行在線學習,微信平臺支持后臺留言反饋,不斷改進微課資源。

    (二)初中數學微課設計思路與策略

    在設計與開發(fā)微課教學資源時,要對微課的本質認識清晰,對微課的定位擁有核心價值追求,對微課的設計要涵蓋動機激勵,故基于學習動機理論,以初中數學的某些章節(jié)中的知識點為教學內容,進行課程設計、教學設計以及資源設計,緊扣教學的目標、圍繞教學的任務、把握分寸,點到即止,通過創(chuàng)造積極的學習環(huán)境,通過直觀、簡潔的感官刺激激發(fā)學習者的學習興趣,將學生引入學習狀態(tài),啟發(fā)引導學習者進行探究性學習,實現對學習內容的自主建構,學習者更好地學習知識和增長技能,真正地實現寓教于樂。錄制之前,制作好PPT,之后應用Camtasia Studio錄屏軟件進行微課教學資源錄制,錄制后做好降噪處理,錄制好的視頻可用愛剪輯、巧影、VUE Vlog等軟件剪輯視頻長度,添加字幕或轉場,讓視頻更加短小精悍,符合人的認知特點和注意力保持規(guī)律,讓學習者有更好的學習效果,進而細化微資源。

    微課設計要符合簡潔原則,聚焦立意,突出關鍵內容,一堂微課只講一個特定的知識點。[4]根據中學生學習的特點,將一些日常動畫情境改變成涵蓋數學知識與數學故事,利用可視化、案例法、游戲法等手段將知識以趣味化的方式表達出來,這樣既可以吸引學生學習,更有助于學生理解,充分實現了激發(fā)學生內在學習動機的目的。因此,首先對初中生當前在數學學習上的動機作初步了解,在設計的微課資源中,要注重知識導入要新穎緊湊,知識脈絡要清晰流暢,學習重難點要問題化,課后小結要簡潔直觀。微課不僅要有圖文、有視頻和音頻,再加上新時代中學生感興趣的積極向上的BGM,加上詳細并節(jié)奏適當的講解讓學習者感到舒適,不會產生厭倦心理,從而在學習的過程中更好地掌握數學知識的重點,并突破難點。只有引起學生深層思考、激發(fā)學生深度反思、促進學生深度學習,才能達到學習效果,才會得到學習者的信任,體現微課的價值。

    微課課程具有特殊性,利用信息技術達到微課資源技術層面上的實現。在初中數學中,遇到幾何意義上的理論,教師可利用幾何畫板中的動畫選項講授與平移、旋轉、位似、幾何體的平面展開圖等相關知識。

    三、教學案例設計與實踐

    本文以初中數學湘教版八年級下冊中“勾股定理”的第一課時為例,簡要介紹微課程教學設計的四個環(huán)節(jié),分別為創(chuàng)設情境、新課探究、知識鞏固、歸納總結。[5]

    (一)初中數學“勾股定理”微課教學設計

    教材分析:課程標準要求學生能體驗勾股定理的探索過程,會用勾股定理解決簡單問題,通過具體的例子了解定理的含義。勾股定理是初中數學中幾個重要的定理之一,它揭示了直角三角形三邊的數量關系,將數與形密切聯系起來,也是學習銳角三角函數和解直角三角形的基礎。

    學情分析:根據八年級學生的心理和認知發(fā)展規(guī)律的特征,他們不喜歡枯燥乏味的數字運算,喜歡動畫圖片,思維活躍,喜歡從興趣和熟知的生活體驗出發(fā)去學習新知識,也已經初步具有幾何圖形的觀察能力,已經掌握了直角三角形的有關性質。但不能意識到一些生活現象的本質屬性,缺乏解決問題的方法。

    教學目標:理解勾股定理,掌握勾股定理存在的條件,會用它解決有關直角三角形邊的簡單問題;經歷探索勾股定理的過程,體驗成功的喜悅,體會數形結合和由特殊到一般的思想;通過對勾股史的了解,體會勾股定理文化價值,欣賞勾股樹,讓學生充分體驗生活就是數學,數學與美。

    教學重難點:探索和證明勾股定理,會解決直角三角形的實際問題。

    教法分析:利用信息技術,采用“問題導向的探究式”教學法。

    教學過程設計:

    1.創(chuàng)設情境——導入課題(問題)

    由欣賞動畫“勾股樹”引入新課,引導學生尋找直角三角形三邊為邊長的正方形。

    問題:(1)在生活中有許多美麗的圖案是由幾何圖形構成的,

    觀察這棵美麗的樹,它是由哪些幾何圖形構成的?(2)三個相鄰的正方形圍成的是什么圖形呢?(3)圍成圖形中,哪些邊是已知的?要求的是哪條邊?我們一起來探究直角三角形中的三邊關系。

    2.探索新知

    將勾股樹中相鄰三個正方形和圍成的圖形抽象出來轉到另一個單獨顯示著三個正方形的,并且正方形有作小方格的圖片中,圖中△ABC是直角三角形,∠ACB=90°。

    問題:(1)直角三角形ABC的三邊AB,BC,AC的長各是多少?

    以AB,BC,AC為邊的三個正方形的面積各是多少?這兩個小正方形的面積與大正方形的面積之間有什么等量關系?三個正方形所圍成的直角三角形三邊有什么關系?

    (2)將三角形變換成等腰直角三角形,引導學生總結:等腰直角三角形的兩條直角邊平方和等于斜邊的平方。讓大家猜想按照此條件之前的勾股樹會變成什么圖形?

    (3)如果設這個三角形的邊分別為a,b,c,那么怎么用三個字母表示三個正方形之間的面積關系?引導學生總結:兩條直角邊上的正方形面積之和等于斜邊上的正方形的面積。猜想直角三角形兩直角邊的平方和等于斜邊的平方。用等面積法證明,此用幾何畫板演示,可得以下結論。

    勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

    3.鞏固提升

    一道辨析題和一道直角三角形求第三邊的題。

    4.總結歸納

    勾股定理的內容、運用的思想方法。

    (二)初中數學“勾股定理”微課資源建設

    在此微課的錄制中,運用了微課助手和Powerpoint,以及幾何畫板和錄音設備,做好課件后,應用Camtasia Studio錄屏軟件進行微課教學資源錄制,采用多媒體講解型,加上配音講解,注意快慢節(jié)奏的把握,控制播放時長在十分鐘以內,對課件的知識點進行講解,在授課中,可利用數位板對課件重要知識點處進行現時標記,錄制后做好降噪處理,用AE對微課片頭片尾進行操作,并利用軟件剪映做好轉場、動畫、有趣貼紙、背景音樂的處理,實現調動學習者對初中數學定理內容的視覺、聽覺等感官,加深對定理內容的理解,提高微課效果。

    四、結語

    在微信平臺的實踐中,發(fā)現只有充分激發(fā)學生的學習動機并提高學生的學習興趣和自主性,減少數學知識的枯燥乏味性,讓學生體會到學習的樂趣,才能得到更多人對此平臺的信任和進行良好的反饋。實習過程中,能夠明顯地看出,基于學習動機的微課的教學效果和課堂氛圍比平淡的微課教學更為融洽和引發(fā)學生的熱情。在此期待輔助教學平臺能為初中數學定理或概念的微課設計與錄制提供了一個可借鑒的經驗,提供一定的參考,并且讓關注者繼續(xù)加入我們的微課堂,變得熱愛數學,喜歡學數學,感受數學與美。

    參考文獻:

    [1]胡玲玲.ARCS動機模型在初中數學教學中實踐研究[D].揚州:揚州大學,2019.

    [2]馮忠良,姚梅林.教育心理學[M].北京:人民教育出版社,2000.

    [3]張曉蘭,陳奮.基于微信公眾號平臺的移動學習平臺建設[J].通化師范學院學報(自然科學),2016,37(4):5-7.

    [4]朱葉峰.教學新范式背景下初中數學微課的設計與運用策略研究[J].中學課程輔導:教師教育,2016(12):46-48.

    [5]朱思文.基于學習動機理論的數學概念教學:以“平面向量基本定理”為例[J].中學數學(高中版)上半月,2017(11):3-5.

    編輯 武生智

    猜你喜歡
    勾股定理直角三角形學習動機
    含30°角直角三角形在生活中的應用
    勾股定理緊握折疊的手
    用勾股定理解一類題
    應用勾股定理的幾個層次
    《勾股定理》拓展精練
    如何激發(fā)學生的數學學習動機
    甘肅教育(2020年21期)2020-04-13 08:08:44
    如何激發(fā)初中學生英語學習動機
    活力(2019年15期)2019-09-25 07:22:44
    5.2 圖形的相似與解直角三角形
    拼搭直角三角形
    大學生學習動機與學習成績的相關研究
    人間(2015年21期)2015-03-11 15:24:34
    木兰县| 灵璧县| 富民县| 武陟县| 涿州市| 同德县| 汨罗市| 阿瓦提县| 开江县| 宜城市| 浠水县| 广德县| 北辰区| 巴南区| 龙泉市| 景泰县| 万州区| 德钦县| 黄山市| 石嘴山市| 平乡县| 二手房| 青阳县| 长春市| 贵港市| 九江市| 巩义市| 肥乡县| 宁化县| 金阳县| 尚志市| 定陶县| 石嘴山市| 绵竹市| 吴旗县| 天津市| 隆化县| 张家口市| 林甸县| 霞浦县| 奉化市|