• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Accuracy Eludes Competitors in Facebook Deepfake Detection Challenge

    2020-03-21 16:58:12RaminSkibba
    Engineering 2020年12期

    Ramin Skibba

    Senior Technology Writer

    The improving power of artificial intelligence (AI) is perhaps most evident in the increasingly realistic manipulation of video and other digital media[1],with the latest generation of AI-altered videos, known as deepfakes [2], prompting a primarily Facebooksponsored competition to identify them as such. Launched in December 2019, the Deepfake Detection Challenge (DFDC) closed to entries in March 2020 [3]. The results are now in Refs. [3-5].While somewhat unimpressive, underscoring the difficulty of addressing this growing challenge, they importantly provide a benchmark for automated detection strategies and suggest productive directions for further research.

    With little to no help from a human’s guiding hand, the advanced computer algorithms used to create today’s deepfakes can readily produce manipulated videos and text that are becoming ever more difficult to distinguish from the real thing [1,6,7].While such technology has many positive applications, computer scientists and digital civil liberties advocates have grown increasingly concerned about its use to inadvertently or deliberately mislead viewers and spread disinformation and misinformation[8].

    ‘‘These tools are undergoing very fast development,” said Siwei Lyu, professor of computer science and director of the Media Forensic Laboratory at the State University of New York in Buffalo,NY, USA. ‘‘The trend I am seeing is higher quality, more realistic,and faster, with some algorithms using just somebody’s face to generate a video on the fly.”

    To create the DFDC, Facebook collaborated with Partnership on AI (an AI research and advocacy organization based in San Francisco, CA, USA, that includes Google and Amazon as corporate members),Microsoft,and university scientists in the United States,United Kingdom,Germany,and Italy[3].‘‘The challenge generated a lot of attention from the research community,” said Lyu, who served as an academic advisor for the competition.

    The contest provided more than 100 000 newly created 10 s video clips(the DFDC dataset)of face-swap manipulations to train the detection models of the 2114 researchers in academia and industry who submitted entries [4,9]. The contestants’ codes were tasked with identifying the deepfakes in the dataset, which included videos altered with a variety of techniques,some of which were likely unfamiliar to existing detection models [3,4]. Their algorithms were then tested against a black box dataset of more than 4000 video clips, including some augmented via advanced methods not used in the training dataset. The results of the competition—and winners of 1 million USD in prize money—were announced in June 2020.

    The best models accurately picked out more than 80% of the manipulated videos in the training dataset. With the black box dataset, however, they did not fare as well. In this more realistic scenario,with no training on similarly manipulated data,the most successful code correctly identified only 65% of the deepfakes [4].The other four winning teams posted results that were close behind.The low success rate‘‘reinforces that building systems that generalize to unseen deepfake generation techniques is still a hard and open research problem,”said Kristina Milian,a Facebook company spokesperson.

    While ‘‘cheapfakes” are easy to make on almost any machine and easy to spot,the best of today’s deepfakes are made with complex computer hardware,including a graphics processing unit,said Edward Delp, a professor of computer engineering at Purdue University in West Layfayette, IN, USA. In such altered videos, the lip sync or head tilt might be only slightly and subtly off.The winning code in the DFDC, submitted by machine learning engineer Selim Seferbekov at the mapping firm Mapbox in Minsk, Belarus,used machine learning tools to pick up pixels around a person’s head as it moved that were inconsistent with the background. ‘‘It was a pretty sophisticated approach,” Delp said.

    Deepfake code now often includes distracting factors, such as resizing or cropping of the video frames, blurring them a little, or recompressing them,which can introduce artifacts that complicate detection, Delp said. The accuracy of a detection algorithm therefore depends on the diversity and quality of examples in the dataset it was trained on, as shown by the DFDC results.

    The key to accurate detection involves correctly spotting inconsistencies, said Matt Turek,a program manager in the Information Innovation Office at the US Defense Advanced Research Projects Agency (DARPA) in Arlington, VA, USA. In addition to digital artifacts,one can examine a video’s physical integrity,such as whether the lighting and shadows match correctly,and can look for semantic inconsistencies, such as whether the weather in a video matches what is known independently. One can also analyze the social context of a deepfake’s creation and discovery to infer the intent of the person who published it [10]. DARPA has begun dedicated research in this area in its new semantic forensics program [11].

    In all detection efforts, the biggest problem might not be missing a couple manipulated videos but incorrectly flagging many more unaltered ones. ‘‘It is the false positives that kill you,” said Nasir Memon, a professor of computer science at New York University in New York City, NY, USA. If most of the events are benign, he said, what is known as the ‘‘base rate fallacy” always makes detection problematic. For example, it is likely that only a handful of the millions of videos people upload to YouTube every day have been manipulated.Given such numbers,even a detection algorithm with 99% accuracy would flag many thousands of benign videos incorrectly, making it difficult to quickly catch the truly malicious ones.‘‘You cannot respond to all of them,”Memon said.

    To reduce the impact of false positives, some digital forensic experts are focusing on the opposite side of the problem, which was not incorporated into the DFDC contest. ‘‘Instead of chasing down what is fake,I have been working on establishing the provenance of what is not fake,” said Shweta Jain, a professor of computer science at John Jay College of Criminal Justice in New York City, NY, USA.

    Using blockchain technology, Jain has developed E-Witness, a way to register a unique ‘‘hash,” or fingerprint, for image or video files that can be recomputed to verify their integrity [12]. The process is similar to using watermarks with photographs but more difficult for someone to tamper with since the original hash will always live in a blockchain, Jain said. The hash can include ‘‘meta data” about the file, including information about the device that made the image or video,location data,and data compression algorithm used.DARPA researchers are also working on secure ways to attribute media to a particular source, but these efforts remain in early development, Turek said.

    Meanwhile,the ability to create algorithms that produce altered yet convincing media while evading detection continues to improve as well [9]. ‘‘You always assume your adversary knows your techniques,” Memon said. ‘‘Then it becomes a cat and mouse game.” In the most recent developments of this game, Microsoft has developed its own deepfake detection tool [13], and TikTok has followed other social media companies, including Facebook and Twitter [14,15], in beginning to take steps to ban deepfakes on its platform [16].

    女生性感内裤真人,穿戴方法视频| 成人av一区二区三区在线看| 91在线观看av| 18+在线观看网站| 国产 一区 欧美 日韩| www国产在线视频色| 99久久精品国产亚洲精品| 日本黄色片子视频| 精品午夜福利视频在线观看一区| 成年女人毛片免费观看观看9| 热99re8久久精品国产| 中文字幕精品亚洲无线码一区| 国产中年淑女户外野战色| 成年免费大片在线观看| 欧美3d第一页| 成年女人毛片免费观看观看9| 人妻久久中文字幕网| 校园春色视频在线观看| 夜夜夜夜夜久久久久| 熟女少妇亚洲综合色aaa.| 丰满人妻熟妇乱又伦精品不卡| 两个人看的免费小视频| 成人一区二区视频在线观看| 亚洲国产日韩欧美精品在线观看 | 两个人的视频大全免费| 国产99白浆流出| 伊人久久大香线蕉亚洲五| 人人妻人人澡欧美一区二区| 午夜福利欧美成人| 亚洲18禁久久av| 欧美性猛交黑人性爽| 亚洲欧美日韩卡通动漫| 99久久无色码亚洲精品果冻| 一本一本综合久久| 真人一进一出gif抽搐免费| 很黄的视频免费| 亚洲男人的天堂狠狠| 窝窝影院91人妻| 久久精品国产亚洲av涩爱 | aaaaa片日本免费| 1024手机看黄色片| 欧美激情在线99| 91久久精品国产一区二区成人 | 亚洲国产欧美网| 成人18禁在线播放| 怎么达到女性高潮| 国产亚洲精品av在线| 国产伦在线观看视频一区| 日韩国内少妇激情av| 波野结衣二区三区在线 | 国产精品久久久久久精品电影| 国产高清视频在线观看网站| 欧美一区二区国产精品久久精品| 国产精品自产拍在线观看55亚洲| 免费看美女性在线毛片视频| 嫩草影院入口| 午夜精品久久久久久毛片777| 精品无人区乱码1区二区| 丰满人妻熟妇乱又伦精品不卡| 九色国产91popny在线| 久久精品国产99精品国产亚洲性色| www国产在线视频色| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美黑人巨大hd| 母亲3免费完整高清在线观看| 青草久久国产| 桃色一区二区三区在线观看| 国产精品久久电影中文字幕| 淫妇啪啪啪对白视频| 久久久久久久久中文| 亚洲色图av天堂| 三级国产精品欧美在线观看| 亚洲真实伦在线观看| 他把我摸到了高潮在线观看| 亚洲18禁久久av| 欧美日韩中文字幕国产精品一区二区三区| 偷拍熟女少妇极品色| 一个人观看的视频www高清免费观看| 亚洲最大成人手机在线| 久久久久性生活片| 亚洲国产精品久久男人天堂| 制服人妻中文乱码| 国产伦精品一区二区三区四那| 色综合婷婷激情| 欧美激情久久久久久爽电影| 久久香蕉精品热| 97碰自拍视频| 国产精品av视频在线免费观看| 亚洲精品色激情综合| 乱人视频在线观看| 亚洲黑人精品在线| 一级作爱视频免费观看| 欧美另类亚洲清纯唯美| 国产成人av激情在线播放| 免费在线观看日本一区| 韩国av一区二区三区四区| 成人国产综合亚洲| 久久精品人妻少妇| 日韩欧美一区二区三区在线观看| 国产一区二区亚洲精品在线观看| 99久久无色码亚洲精品果冻| 热99re8久久精品国产| 国产在线精品亚洲第一网站| 久久久久免费精品人妻一区二区| 亚洲专区国产一区二区| 亚洲专区中文字幕在线| 最新中文字幕久久久久| 乱人视频在线观看| 一夜夜www| 人人妻,人人澡人人爽秒播| 美女黄网站色视频| 一个人免费在线观看电影| 99国产精品一区二区蜜桃av| 99精品久久久久人妻精品| 日韩大尺度精品在线看网址| 国产毛片a区久久久久| 欧美av亚洲av综合av国产av| 欧美性猛交黑人性爽| 给我免费播放毛片高清在线观看| 国产精品 欧美亚洲| 在线国产一区二区在线| 亚洲成人久久性| 91久久精品电影网| 日韩欧美 国产精品| 日韩大尺度精品在线看网址| 99国产精品一区二区三区| 亚洲一区二区三区色噜噜| 97人妻精品一区二区三区麻豆| 18禁国产床啪视频网站| 精品久久久久久久毛片微露脸| 欧美成人a在线观看| 欧美日韩福利视频一区二区| 成年女人毛片免费观看观看9| 国产探花在线观看一区二区| 白带黄色成豆腐渣| 欧美又色又爽又黄视频| 香蕉av资源在线| 午夜亚洲福利在线播放| 99在线视频只有这里精品首页| 精品日产1卡2卡| 可以在线观看毛片的网站| 一个人看视频在线观看www免费 | 久久久久久大精品| av女优亚洲男人天堂| 欧美另类亚洲清纯唯美| 国产熟女xx| 成人av一区二区三区在线看| 香蕉av资源在线| 99久久无色码亚洲精品果冻| 国产69精品久久久久777片| 成人一区二区视频在线观看| 丰满的人妻完整版| 亚洲av日韩精品久久久久久密| 欧美成人一区二区免费高清观看| 亚洲成a人片在线一区二区| 国产综合懂色| 欧美绝顶高潮抽搐喷水| 日韩中文字幕欧美一区二区| 一级a爱片免费观看的视频| 国产三级黄色录像| 欧美成狂野欧美在线观看| 校园春色视频在线观看| 国产精品亚洲美女久久久| 悠悠久久av| 色综合亚洲欧美另类图片| 精品久久久久久久毛片微露脸| 一本一本综合久久| 久久伊人香网站| 岛国在线观看网站| 午夜免费成人在线视频| 亚洲av美国av| 免费观看人在逋| 麻豆国产av国片精品| 熟女少妇亚洲综合色aaa.| 搡老熟女国产l中国老女人| 欧美三级亚洲精品| 免费电影在线观看免费观看| 国产高清有码在线观看视频| 一级黄片播放器| 国产精品一区二区免费欧美| 免费无遮挡裸体视频| 精品人妻1区二区| 国产av不卡久久| 高清毛片免费观看视频网站| 婷婷丁香在线五月| 老司机深夜福利视频在线观看| 国产三级在线视频| 波多野结衣高清作品| 18美女黄网站色大片免费观看| 免费看日本二区| 无限看片的www在线观看| 老熟妇仑乱视频hdxx| 99久久精品热视频| 啪啪无遮挡十八禁网站| 国产69精品久久久久777片| 欧美最黄视频在线播放免费| 夜夜看夜夜爽夜夜摸| 男女下面进入的视频免费午夜| av在线天堂中文字幕| 国产美女午夜福利| 国产在线精品亚洲第一网站| 免费av不卡在线播放| 2021天堂中文幕一二区在线观| 长腿黑丝高跟| 一本久久中文字幕| 中文在线观看免费www的网站| 内射极品少妇av片p| 亚洲精品一区av在线观看| 亚洲18禁久久av| 久久九九热精品免费| 亚洲第一欧美日韩一区二区三区| 中文字幕av在线有码专区| 国产av在哪里看| 舔av片在线| 午夜精品在线福利| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在 | 男女之事视频高清在线观看| 国产精品美女特级片免费视频播放器| 午夜久久久久精精品| 在线a可以看的网站| 日本 av在线| 国产黄色小视频在线观看| 久久久久性生活片| 亚洲国产欧美网| 伊人久久大香线蕉亚洲五| 国产一区二区激情短视频| 成年人黄色毛片网站| 国产在视频线在精品| 少妇高潮的动态图| 少妇丰满av| 啪啪无遮挡十八禁网站| 校园春色视频在线观看| 亚洲最大成人中文| 神马国产精品三级电影在线观看| 国产亚洲欧美在线一区二区| 亚洲欧美日韩高清专用| 亚洲在线自拍视频| 欧美日韩黄片免| 亚洲,欧美精品.| 一本久久中文字幕| 制服人妻中文乱码| 精品福利观看| 草草在线视频免费看| 欧美日韩乱码在线| av片东京热男人的天堂| 免费看光身美女| 一区福利在线观看| 69av精品久久久久久| 亚洲成a人片在线一区二区| 亚洲国产日韩欧美精品在线观看 | 99在线视频只有这里精品首页| 人妻丰满熟妇av一区二区三区| 12—13女人毛片做爰片一| 深夜精品福利| 欧美色视频一区免费| a级一级毛片免费在线观看| av中文乱码字幕在线| 免费看美女性在线毛片视频| 亚洲欧美激情综合另类| 国产午夜精品论理片| 人人妻人人澡欧美一区二区| 18禁在线播放成人免费| aaaaa片日本免费| 国产伦在线观看视频一区| 国产男靠女视频免费网站| 亚洲精品美女久久久久99蜜臀| 99久久无色码亚洲精品果冻| 亚洲av电影不卡..在线观看| www国产在线视频色| 看免费av毛片| 久久久久九九精品影院| 亚洲精品日韩av片在线观看 | 午夜亚洲福利在线播放| 高清毛片免费观看视频网站| 美女cb高潮喷水在线观看| 日日夜夜操网爽| 欧美+亚洲+日韩+国产| 国产精品爽爽va在线观看网站| 18禁黄网站禁片午夜丰满| 午夜视频国产福利| 日韩欧美国产一区二区入口| 国产精品女同一区二区软件 | 亚洲美女视频黄频| 亚洲五月天丁香| 亚洲第一电影网av| 日本黄色视频三级网站网址| 久久久久久久久久黄片| 国产亚洲av嫩草精品影院| 日日摸夜夜添夜夜添小说| ponron亚洲| 欧美一区二区国产精品久久精品| 夜夜夜夜夜久久久久| 日韩精品中文字幕看吧| 精华霜和精华液先用哪个| 啪啪无遮挡十八禁网站| www.熟女人妻精品国产| 小说图片视频综合网站| 色吧在线观看| 欧美成狂野欧美在线观看| 日日夜夜操网爽| 免费看a级黄色片| 日本a在线网址| 色尼玛亚洲综合影院| 在线观看免费视频日本深夜| 久久精品国产亚洲av香蕉五月| 久久九九热精品免费| 成人精品一区二区免费| av天堂在线播放| 亚洲av第一区精品v没综合| 蜜桃久久精品国产亚洲av| 欧美三级亚洲精品| 午夜福利免费观看在线| 亚洲成a人片在线一区二区| 日韩国内少妇激情av| 男女做爰动态图高潮gif福利片| 俺也久久电影网| 免费在线观看日本一区| 国产爱豆传媒在线观看| 99国产综合亚洲精品| 欧美极品一区二区三区四区| 国产老妇女一区| 国产av不卡久久| 亚洲成a人片在线一区二区| 婷婷亚洲欧美| 长腿黑丝高跟| 成年免费大片在线观看| 亚洲最大成人中文| 丰满的人妻完整版| 久9热在线精品视频| 欧美高清成人免费视频www| 免费av毛片视频| 亚洲成人久久爱视频| 99国产精品一区二区三区| 深夜精品福利| 国产69精品久久久久777片| 变态另类成人亚洲欧美熟女| 国产一区二区激情短视频| 久久草成人影院| 夜夜看夜夜爽夜夜摸| 最近视频中文字幕2019在线8| 国产精品久久久久久久久免 | av专区在线播放| 3wmmmm亚洲av在线观看| 日本一二三区视频观看| 久久久精品大字幕| 神马国产精品三级电影在线观看| 国产精品久久久久久人妻精品电影| 制服人妻中文乱码| av天堂在线播放| a在线观看视频网站| 中文字幕高清在线视频| 久久精品夜夜夜夜夜久久蜜豆| 一本一本综合久久| 亚洲一区二区三区不卡视频| 男女做爰动态图高潮gif福利片| 欧美日韩一级在线毛片| 成人高潮视频无遮挡免费网站| 久久久久久久久大av| 欧美色欧美亚洲另类二区| 国语自产精品视频在线第100页| 国产一区二区在线av高清观看| 久久草成人影院| 亚洲精品在线美女| 叶爱在线成人免费视频播放| 亚洲不卡免费看| 久久久久久人人人人人| 51午夜福利影视在线观看| 两个人看的免费小视频| 国产午夜精品久久久久久一区二区三区 | 日本五十路高清| 性色avwww在线观看| 好看av亚洲va欧美ⅴa在| 美女黄网站色视频| 三级毛片av免费| 欧美精品啪啪一区二区三区| 深夜精品福利| 久久精品国产99精品国产亚洲性色| 亚洲电影在线观看av| 观看美女的网站| 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 欧美xxxx黑人xx丫x性爽| 可以在线观看毛片的网站| 国产一区在线观看成人免费| 麻豆成人午夜福利视频| 激情在线观看视频在线高清| 长腿黑丝高跟| 精品午夜福利视频在线观看一区| 成人av一区二区三区在线看| 一区二区三区免费毛片| 成人精品一区二区免费| 欧美午夜高清在线| 无人区码免费观看不卡| 午夜两性在线视频| 亚洲性夜色夜夜综合| 国产综合懂色| 美女免费视频网站| 国产真实乱freesex| 国产精品99久久99久久久不卡| 有码 亚洲区| 亚洲久久久久久中文字幕| 91字幕亚洲| 性色avwww在线观看| 日韩大尺度精品在线看网址| 人人妻,人人澡人人爽秒播| 午夜免费激情av| 搞女人的毛片| 天堂动漫精品| 亚洲精品456在线播放app | 一级黄片播放器| 一区二区三区激情视频| 乱人视频在线观看| 久久人妻av系列| 少妇人妻一区二区三区视频| 好男人在线观看高清免费视频| 又黄又粗又硬又大视频| 99在线人妻在线中文字幕| 蜜桃久久精品国产亚洲av| 男人舔奶头视频| 欧美xxxx黑人xx丫x性爽| 亚洲无线观看免费| 麻豆国产97在线/欧美| 精品99又大又爽又粗少妇毛片 | 成人亚洲精品av一区二区| 精品电影一区二区在线| 嫩草影院入口| 国产午夜精品论理片| 变态另类丝袜制服| 级片在线观看| 国产av在哪里看| av女优亚洲男人天堂| 黄色成人免费大全| 久久久精品欧美日韩精品| 两人在一起打扑克的视频| 全区人妻精品视频| 岛国在线免费视频观看| 成人精品一区二区免费| 高清日韩中文字幕在线| 特大巨黑吊av在线直播| 亚洲真实伦在线观看| 一本久久中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 美女黄网站色视频| 成年女人毛片免费观看观看9| 精品人妻偷拍中文字幕| www.www免费av| 日韩精品中文字幕看吧| 最近视频中文字幕2019在线8| 国产成人av激情在线播放| 日本 av在线| 美女高潮的动态| 亚洲成人久久性| 国产精品 国内视频| 亚洲无线观看免费| 哪里可以看免费的av片| 精品人妻一区二区三区麻豆 | 日韩欧美 国产精品| 日日干狠狠操夜夜爽| 网址你懂的国产日韩在线| 精品久久久久久久人妻蜜臀av| 国产高清激情床上av| 久久久国产成人精品二区| 2021天堂中文幕一二区在线观| 真人一进一出gif抽搐免费| 女同久久另类99精品国产91| 亚洲黑人精品在线| 欧美激情久久久久久爽电影| 国产精品自产拍在线观看55亚洲| 国产精品一区二区免费欧美| 男女做爰动态图高潮gif福利片| 欧美成人免费av一区二区三区| 好男人电影高清在线观看| 国产亚洲精品久久久com| 又黄又爽又免费观看的视频| 欧美性感艳星| 日韩欧美在线乱码| 国产精品三级大全| 免费观看精品视频网站| www.色视频.com| 法律面前人人平等表现在哪些方面| 午夜福利18| 亚洲人成伊人成综合网2020| 两个人的视频大全免费| 桃红色精品国产亚洲av| 亚洲专区国产一区二区| 99久久无色码亚洲精品果冻| 国产免费男女视频| 天天添夜夜摸| 99久久99久久久精品蜜桃| 久久精品综合一区二区三区| 怎么达到女性高潮| 十八禁网站免费在线| 国产成人a区在线观看| 久久久成人免费电影| 欧美日韩亚洲国产一区二区在线观看| 最好的美女福利视频网| 可以在线观看的亚洲视频| 成人av一区二区三区在线看| 免费观看的影片在线观看| 又紧又爽又黄一区二区| 亚洲精品影视一区二区三区av| 色老头精品视频在线观看| 欧美一区二区亚洲| 成人精品一区二区免费| 亚洲精品国产精品久久久不卡| 看免费av毛片| 亚洲18禁久久av| 久久久久久久亚洲中文字幕 | 老汉色av国产亚洲站长工具| 观看免费一级毛片| 丰满人妻一区二区三区视频av | 欧美三级亚洲精品| 国产成人影院久久av| 亚洲专区国产一区二区| 国产精品久久视频播放| 欧美日韩瑟瑟在线播放| 日日干狠狠操夜夜爽| 两性午夜刺激爽爽歪歪视频在线观看| 最近视频中文字幕2019在线8| 日韩欧美在线乱码| a级毛片a级免费在线| 午夜精品一区二区三区免费看| 最新中文字幕久久久久| 精品午夜福利视频在线观看一区| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 又粗又爽又猛毛片免费看| 一级作爱视频免费观看| 我的老师免费观看完整版| 午夜福利视频1000在线观看| 成人高潮视频无遮挡免费网站| 日韩av在线大香蕉| 手机成人av网站| 一个人观看的视频www高清免费观看| 国产精品一区二区三区四区免费观看 | 啦啦啦免费观看视频1| 久久久国产成人精品二区| 不卡一级毛片| 在线观看免费午夜福利视频| 国产爱豆传媒在线观看| 国产美女午夜福利| 此物有八面人人有两片| 少妇人妻精品综合一区二区 | 在线观看日韩欧美| 色哟哟哟哟哟哟| 欧美日韩一级在线毛片| 中文字幕av成人在线电影| 很黄的视频免费| av天堂在线播放| 精品午夜福利视频在线观看一区| 97人妻精品一区二区三区麻豆| 亚洲av电影不卡..在线观看| 在线观看一区二区三区| 亚洲国产中文字幕在线视频| 国产91精品成人一区二区三区| 真实男女啪啪啪动态图| 床上黄色一级片| 中文字幕高清在线视频| 舔av片在线| 精品福利观看| 男人和女人高潮做爰伦理| 999久久久精品免费观看国产| 欧美日韩一级在线毛片| 国产精品久久久久久亚洲av鲁大| 成年免费大片在线观看| 一级a爱片免费观看的视频| 欧美乱妇无乱码| 91久久精品电影网| 老司机午夜十八禁免费视频| 18禁黄网站禁片免费观看直播| www.熟女人妻精品国产| 深夜精品福利| 天堂av国产一区二区熟女人妻| 五月玫瑰六月丁香| 在线国产一区二区在线| 69人妻影院| 熟女电影av网| 在线观看日韩欧美| 久久久久久九九精品二区国产| 亚洲成a人片在线一区二区| 3wmmmm亚洲av在线观看| 日韩欧美国产在线观看| 国产av不卡久久| 国产熟女xx| 亚洲欧美一区二区三区黑人| 国产乱人伦免费视频| 欧美成狂野欧美在线观看| 亚洲专区中文字幕在线| 免费看日本二区| 久久婷婷人人爽人人干人人爱| 久久人妻av系列| 国产国拍精品亚洲av在线观看 | 12—13女人毛片做爰片一| 99久久精品国产亚洲精品| 搡老岳熟女国产| 久久久久精品国产欧美久久久| 国产精品久久久人人做人人爽| 天堂网av新在线| 中文字幕熟女人妻在线| 国内精品一区二区在线观看| 99riav亚洲国产免费| 国产乱人视频| 成熟少妇高潮喷水视频| 99精品欧美一区二区三区四区| 亚洲av中文字字幕乱码综合| 日日干狠狠操夜夜爽| 精品国产亚洲在线| 99热6这里只有精品| 国产不卡一卡二| 亚洲在线自拍视频| 精品久久久久久久毛片微露脸| 日本熟妇午夜| 黄片大片在线免费观看| 大型黄色视频在线免费观看|