• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    帶有混合約束的特殊三次規(guī)劃問題的全局最優(yōu)性充分條件

    2015-09-16 10:08:42周莉李國權重慶師范大學數(shù)學學院重慶401331
    關鍵詞:最優(yōu)性充分條件拉格朗

    周莉,李國權(重慶師范大學數(shù)學學院,重慶401331)

    帶有混合約束的特殊三次規(guī)劃問題的全局最優(yōu)性充分條件

    周莉,李國權
    (重慶師范大學數(shù)學學院,重慶401331)

    利用拉格朗日函數(shù)和L-次微分的方法,研究了帶有雙值和不等式約束的特殊三次規(guī)劃問題的全局最優(yōu)性充分條件;首先刻畫出該類三次規(guī)劃問題的拉格朗日函數(shù)的抽象次微分,得到了特殊三次規(guī)劃問題的全局最優(yōu)性充分條件;然后,舉例說明利用所給出的全局最優(yōu)性充分條件判定當前可行解就是全局最優(yōu)解是有效的.

    三次規(guī)劃;拉格朗日函數(shù);L-次微分;全局最優(yōu)性充分條件

    1 預備知識

    全局最優(yōu)化在數(shù)學規(guī)劃理論中是一個重要的研究領域,它的理論研究之一是怎樣刻畫一個全局優(yōu)化問題的解,全局最優(yōu)充分性條件是用來說明一個解是全局最優(yōu)解的一個重要理論依據(jù).三次規(guī)劃數(shù)學模型在三次多項式近似優(yōu)化[1]、凸優(yōu)化[2]、工程設計和結構優(yōu)化[3]等領域有著廣泛的應用.而三次問題的研究成果可以應用到二次規(guī)劃問題[4],文獻[5-7]對含有箱子或二元約束的特殊三次規(guī)劃問題的全局最優(yōu)性條件進行了研究,取得了一定的進展.此處是基于文獻[5]和文獻[8,9],利用拉格朗日函數(shù)和L-次微分的方法,研究了帶有雙值和不等式約束的特殊三次規(guī)劃問題的全局最優(yōu)性充分條件.同時給出例子說明給出的最優(yōu)性條件能有效地用于確定給定的三次極小化問題的全局極小值,所得結果改進和推廣了文獻[4,5]中的相應結果.

    R表示實線性空間,Rn表示n維歐幾里得空間.對于向量x,y∈Rn,x≥y?xi≥yi,i=1,2,…,n,記號A≥是半正定矩陣.

    考慮如下三次規(guī)劃問題:

    定義1[10](L-次微分)設則稱l為f在x0處的L-次梯度,f在x0的所有L-次梯度的集合稱為f在x0的L-次微分.

    注:若L是所有線性函數(shù)所成的集合,f是一個下半連續(xù)的凸函數(shù),則,這里指一般凸分析意義上的凸函數(shù)的次梯度.

    2 主要結論

    先考慮如下問題:

    令L為一些特殊的三次函數(shù)作成的集合:

    證畢.

    分兩種情況討論:

    例1

    ΒTx+c=0,取λ=1≥0,則,則,取則Q= diag(-3,-6,1,-6),且滿足Α-Q≥0,對于任意的,且有,則x為問題的全局極小點.

    例2

    [1]CANFIED R A.Multipoint Cubic Surrogate Function for Sequential Approximate Optimization[J].Structural and Multidisciplinary Optimization,2004(27):326-336

    [2]NESTEROV Y.Accelerrating the Cubic Regularization of Newton’s Method On Convex Problem[J].Mathematical Programming,2008,12(1):159-181

    [3]LIN C S,CHANG P R,LUTH JY S.Formulation and Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots[J].IEEE Transaction on Automatic Control,1983,28(12):1066-1074

    [4]WU Z Y,YANG Y J,BAIF S,et al.Necessary Optimality Conditions and Optimization Methods for Quadratic Knapsack Problem[J].Journal of Optimization Theory and Applications,2011(151):241-259

    [5]ZHANG X M,WANG Y J,MA W M.Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem[J].Mathematical Problems in Engineering,2012(2012):1-16

    [6]周雪剛.具有超矩形約束的三次規(guī)劃的全局最優(yōu)性條件[J].重慶師范大學學報:自然科學版,2014,31(4):21-25

    [7]WANG Y J,LIANG Z A.Global Optimality Conditions for Cubic Minimization Problem with Box or Binary Constraints[J].Journal of Global Optimization,2010(47):583-595

    [8]WU Z Y,JEYAKUMAR V,RUBINOV A M.Sufficient Conditions for Global Optimality of Bivalent Nonconvex Quadratic Programs with Inequality Constraints[J].Journal of Optimization Theory and Applications,2007(133):123-130

    [9]張甲,田志遠,李敬玉.一類非凸二次規(guī)劃的全局最優(yōu)性條件[J].青島大學學報,2010,23(3):20-23

    [10]李國權,吳至友.帶有二次約束的一些非凸二次規(guī)劃問題的全局最優(yōu)性條件[J].重慶師范大學學報:自然科學版,2008,25(3):1-4

    The Global Optimal Sufficient Conditions for a Special Cubic Minimization Problem with Mixed Constrains

    ZHOU Li,LIGuo-quan
    (School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)

    By employing Lagrangian function and L-subdifferential approach,the global optimal sufficient conditions for a class of cubic programming problem involving bivalent and inequality constrains is researched.Firstly,the abstract subdifferential for Lagrangian function of the class of cubic programming problems is calculated explicitly.Then some global optimal sufficient conditions for cubic programming problem with bivalentand inequality constrains are obtained.Finally,some examples are given to illustrate the optimality conditions.

    cubic program;Lagrangian function;L-subdifferential;global optimal sufficient conditions

    O224

    A

    1672-058X(2015)09-0016-04

    10.16055/j.issn.1672-058X.2015.0009.004

    2014-12-04;

    2015-01-04.

    周莉(1990-),女,重慶萬州人,碩士研究生,從事全局優(yōu)化理論與方法研究.

    猜你喜歡
    最優(yōu)性充分條件拉格朗
    集合、充分條件與必要條件、量詞
    二維Mindlin-Timoshenko板系統(tǒng)的穩(wěn)定性與最優(yōu)性
    DC復合優(yōu)化問題的最優(yōu)性條件
    不確定凸優(yōu)化問題魯棒近似解的最優(yōu)性
    有限μM,D-正交指數(shù)函數(shù)系的一個充分條件
    Nearly Kaehler流形S3×S3上的切觸拉格朗日子流形
    拉格朗日代數(shù)方程求解中的置換思想
    基于拉格朗日的IGS精密星歷和鐘差插值分析
    大跨屋蓋結構MTMD風振控制最優(yōu)性能研究
    拉格朗日點
    太空探索(2014年3期)2014-07-10 14:59:39
    基隆市| 武夷山市| 伊宁县| 长宁区| 汨罗市| 宿迁市| 隆德县| 巢湖市| 金乡县| 广灵县| 商水县| 绥德县| 新乐市| 凉山| 刚察县| 鱼台县| 新丰县| 玉树县| 左权县| 郓城县| 泽库县| 华安县| 当涂县| 宁陕县| 黔江区| 长武县| 五华县| 安塞县| 赫章县| 丽水市| 布尔津县| 迁西县| 九龙县| 西安市| 三门县| 台东市| 陇西县| 桓仁| 广宗县| 苏尼特左旗| 吉首市|