• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elucidating dominant factors of PO43-, Cd2+ and nitrobenzene removal by biochar: A comparative investigation based on distinguishable biochars

    2020-01-14 07:55:08ZhnglinLiuDongTinFeiShenLuluLongYnzongZhngGngYngYongmeiZengJingZhngJinsongHeYingZhuShihuiDeng
    Chinese Chemical Letters 2019年12期

    Zhnglin Liu,Dong Tin,Fei Shen,*,Lulu Long,Ynzong Zhng,Gng Yng,Yongmei Zeng,Jing Zhng,Jinsong He,Ying Zhu,Shihui Deng

    a Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China

    b Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China

    Keywords:

    Biochars

    Adsorption

    Typical pollutants

    Dominant factors

    Path analysis

    ABSTRACT

    Biochars produced from crab shell(CSB),oak sawdust(OB),Jerusalem artichoke tuber(JAB)and sorghum grain (SB) displayed distinguishable adsorption-related characteristics, such as specific surface area(SSA), ash content and acidic oxygen-containing functional groups(AFGs), which linked to the biochar adsorption mechanisms of most pollutants.Herein,PO43-,Cd2+,and nitrobenzene(NB)were employed for adsorption by these biochars to elucidate the dominant factors for the adsorption.Adsorption performance of the three pollutants onto these four biochars varied considerably,as exemplified by the excellent adsorption of PO43-and Cd2+onto CSB(225.3 and 116.0 mg/g,respectively)as compared with onto the other three biochars(4.2-37.1 mg/g for PO43-and 9.7-41.0 mg/g for Cd2+).OB displayed the best adsorption of NB (72.0 mg/g), followed by SB (39.5 mg/g), JAB (31.1 mg/g), and CSB (23.6 mg/g).The kinetics and isotherm adsorption assessments couple with material characterization suggested that the sorption of selected pollutants on biochars was attributed to the multiple mechanisms involved,including coprecipitation, chemical bonds, cation exchange, physical absorption, and complexation.Further path analysis suggested that AFGs and ash content in biochars were more important than SSA with regards to pollutant removal,especially,with ash playing a crucial role in the removal of Cd2+and PO43-,and AFGs being mainly responsible for NB adsorption.These findings might offer guidance on the preparation or modification of biochar with a targeted function for pollutant removal through an understanding the dominant factors.

    Biochar is a carbon-rich solid product generated from pyrolyzing various types of biomass at oxygen-limited conditions [1].Given their potential for soil amendment, waste management,pollution control, climate change mitigation and energy production [2,3], biochars have gained much interest in recent years.Particularly, biochars have been assessed as good adsorbents for the removal of various pollutants from aqueous solutions,including heavy metals, aromatics, pesticides, pharmaceuticals and over-enriched nutrients (N and P).Nevertheless, the varying nature of the different types of biochars leads to a varying adsorption performance [4,5].

    The characteristics of biochars is greatly affected by feedstocks,preparation conditions,and modification methods[6].The feedstocks for biochar preparation extensively cover lignocellulosic biomass(e.g.,crop straws,and woody residues),the digested biomass (e.g., aerobic digestion residues, mushroom cultivation residues, animal manures, and sludges), and the double digested substrates (e.g., anaerobic digestion residues of animal manures,and earthworm manure).Biochar characteristics also are potentially correlated with the preparation conditions, including heating rate, atmosphere, and holding temperature [7].In addition, biochar can be target modified by acids, bases, steam,carbonaceous materials, metal oxides, clay minerals [8].Correspondingly, the resultant biochars generally displays different performances on removing various inorganic pollutants[9,10]and organic pollutants [11,12], moreover, the adsorption mechanisms are greatly affected by the properties of the employed biochar as well as of the target pollutants.It therefore follows that, through the careful matching of biochar and target pollutant characteristics, a designed adsorption performance can potentially achieved,thus promoting the applicability of biochars as pollutant adsorbents [13].

    Given the varied physicochemical properties of biochars,assessment of the mechanisms of pollutant adsorption onto biochars is complicated.Moreover, the dominant factors of removing a pollutant are very hard to be clarified, leading to the limited application of biochars in pollutant control.Therefore, a good understanding the dominant mechanisms for the most common pollutants would be beneficial in order to standardize the process of biochar production, and to match suitable feedstocks,preparation conditions or modifications.

    Previous studies have reported that the adsorption mechanisms may greatly depend on biochar properties, including mineral components, surface functional groups (AFGs), specific surface area(SSA)[3,14].In this context,four feedstocks,namely crab shell(CS), oak sawdust (OS), Jerusalem artichoke tuber (JA) and sorghum grain (SG) were selected for preparing biochars, and the detailed information for biochar preparation and characterization can be checked in Supporting information.The resultant biochars exhibited distinguishable characteristics (Tables S1 and S2 in Supporting information), and thereby were employed to investigate the adsorption performances of three typical pollutants, namely phosphate (PO43-), cadmium (Cd2+) and nitrobenzene (NB), representing over-enriched nutrients, metal ions, and organic contaminants, respectively, as well as their possible adsorption mechanisms onto these four selected biochars.Path analysis model, a multi-statistical regression method, was employed to correlate the basic characteristics of biochars and their pollutant adsorption, by which the dominant factors for the adsorption of three typical pollutants by biochars were clarify.Overall, this work aimed to provide a new insight for the preparation of biochars with better adsorption performances for the corresponding pollutants.

    Generally,kinetic parameters are very important to understand the adsorption mechanisms of biochars [15].The pseudo-secondorder model canwell describe the adsorptionprocess of PO43-,Cd2+and NB(Fig.S1 and Table S3 in Supporting information).The pseudo second-order equation is widely accepted to describe the chemisorption involving valency forces through the sharing or exchange of electrons between the sorbent and adsorbate.Therefore, the adsorption process of the selected contaminants by the four biochars was greatly controlled by the chemical adsorption mechanism[16].

    Besides,in order to evaluate the maximum adsorption capacity to PO43-,Cd2+ad NB by the four biochars,the adsorption data were simulated using Langmuir and Freundlich models(Fig.1),and the isotherm parameters calculated from these models were given in Table S4(Supporting information).For PO43-,the Langmuir model exhibited a good agreement for CSB, JAB, SB and OB, which was better than that of the Freundlich model.These results potentially suggest that a monolayer adsorption occurred with the involvement of chemical and physical adsorption [17].The maximum capacity for PO43-adsorption of CSB was calculated to be 225.3 mg/g, which was 6.1-fold higher than that for JAB(37.1 mg/g), 13.5-fold higher than that of SB (16.7 mg/g), and 54.1-fold higher than that of OB(4.2 mg/g).For Cd2+,the Langmuir model was more suitable for the fitness of the adsorption onto CSB,whereas that onto JAB, SB, and OB was better simulated by the Freundlich model.These results suggest that Cd2+adsorption onto CSB mainly occurred in monolayers, yet that onto JAB, SB and OB were not only affected by the surface porosity, but also by the internal porosity [18].The adsorption capacities of Cd2+onto the tested biochars followed the order of CSB >>JAB >OB >>SB,with CSB exhibiting greater sorption capacity than that of plant-based feedstocks, likely due to the poorly-developed pore structure on JAB, SB, and OB.However, it should be noted that the sorption affinity of the biochars to Cd2+correlated poorly with their SSA,therefore suggesting that factors other than SSA might also be responsible for the sorption of Cd2+onto biochars [14].Finally,regarding organic pollutants,NB removal by the four biochars was better described by the Langmuir model.Moreover,JAB,SB and OB exhibited much greater adsorption capacities (31.1, 39.5 and 72.0 mg/g, respectively), compared with that of CSB (23.6 mg/g).According to these adsorption capacities, it was obvious that the selected biochars exhibited a distinguishable performance in the removal of PO43-,Cd2+and NB,which may be potentially attributed to the significant difference of the physical and chemical characteristics on the employed biochars.

    The FT-IR spectra of JAB,SB,and OB before PO43-,Cd2+and NB sorption (Fig.S2 in Supporting information) showed bands at approximately 3435 cm-1, attributed to hydroxyl (alcohols, phenols, and organic acids) stretching [19].The absorption band at 2920 cm-1was mainly attributed to the vibration of methylene-CH2in the aliphatic chain[20].COO-asymmetric stretching was detected at approximately 1590 cm-1.The band at 1384 cm-1was attributed to symmetric bonding vibration of methylene or the phenolic-OH stretching vibration [4].The band at 1100 cm-1was attributed to P-O or Si-O stretching vibration, and the band at 874 cm-1was possibly due to stretching vibration for C-O groups[21].CSB exhibited relatively weak bands from -OH stretching(3430 cm-1), -CH2vibration (2920 cm-1) and COO- asymmetric stretching (1590 cm-1), indicating that CSB contained relatively fewer functional groups.Additionally,the bands at 1420 cm-1and 874 cm-1were due to the presence of the CO32-group due to the abundant calcium carbonate content in CSB [9].Following PO43-sorption, the bands at 3435 cm-1(-OH) (OB), 1384 cm-1( phenolic-OH)(CSB,JAB, SB,and OB),and 874 cm-1(CO32-group)(CSB)tended to be weak,and the bands at 1590 cm-1(COO-)(CSB),1100 cm-1(P-O)(CSB,JAB,SB,and OB),and 570 cm-1(PO43-group)(CSB, JAB and SB) became stronger [9].These changes indicated that the adsorption of PO43-by the different biochars was attributed to various factors such as AFGs and mineral element content.Following Cd2+sorption, the band at 3435 cm-1(-OH)(CSB, JAB, and OB) was weakened, implying that adsorption may be attributed to the existing AFGs [22]; conversely, the bands at 1420 cm-1and 874 cm-1(CSB, JAB, SB, and OB) were stronger,indicating that mineral precipitation(CdCO3,etc.)in biochars was formed during Cd2+adsorption.Finally,following NB sorption,the stretching vibration peak for C-N located at 874 cm-1and the stretching vibration peaks at 1420 cm-1can be attributed to the benzene skeleton (OB), indicating that the NB adsorption onto biochars occurred substantially[23].The band at 3435 cm-1(-OH)(CSB, JAB, SB and OB) tended to be weaker, and shifted to 3425 cm-1, 3414 cm-1, 3424 cm-1, and 3430 cm-1.Further, the bands at 1590 cm-1(COO-) shifted to 1575 cm-1,1574 cm-1and 1598 cm-1(JAB, SB and OB, respectively).These results indicated that AFGs may be involved in NB adsorption.

    Fig.1.Adsorption isotherms for PO43- (a), Cd2+ (b) and NB (c).

    The crystal structure of biochars was assessed by powder XRD(Fig.S3 in Supporting information).Calcite was detected as the major component in CSB and OB,whereas the major component in JAB was sylvite.SB did not form any obvious crystal structure.Following PO43-or Cd2+adsorption,new mineral peaks appeared in CSB,OB,and JAB,with phosphorus or cadmium immobilization being observed.Thus, surface precipitation may be an important mechanism in the removal of PO43-or Cd2+by biochars.

    As discussed above, it appears that multiple mechanisms,including coprecipitation, chemical bonds, cation exchange,physical adsorption, and complexation, are involved in pollutant removal by biochars.However, it is hard to differentiate the dominant factors, potentially complicating the modification or preparation of biochars targeted towards the removal of a certain pollutant.

    In order to elucidate the dominant mechanism of biochar adsorption of PO43-, Cd2+and NB, the widely accepted physicochemical properties for adsorption, such as SSA, AFG and ash content, were correlated with adsorption capacities using path analysis model.The direct and indirect effects of the investigated factors on PO43-, Cd2+, and NB adsorption were assessed (Fig.2).The direct influence rate of ash content on PO43-adsorption reached 75.5%, which was much higher than that of AFGs (0.28%)and SSA (0.67%).The indirect effects, including the interaction of ash content×AFGs, ash content×SSA, and AFGs×SSA, were negligible, suggesting that the ash content in biochars played a leading role in the adsorption of PO43-,whereas the AFGs and SSA had little effect on PO43-adsorption.The mineral elements in ash(such as Mg2+,Ca2+,and Al3+)have been reported to exhibit some positive correlations with PO43-adsorption,and precipitation with metal oxides or metal ions was correspondingly considered as a major mechanisms for the adsorption PO43-[24,25].Based on these results, the preparation of biochars with a high phosphate removal capacity can be achieved by selecting feedstocks with high ash content such as anaerobically digested wastes, sludge and external skeleton of shellfish [24].Additionally, the targeted biochars can be designed at a relatively higher pyrolysis temperature using the feedstocks with low or medium ash content or modified by adding minerals or forming metal oxides [26,27].

    With regards to the adsorption of Cd2+by the four biochars(Fig.2b),the direct influence rate of ash content,AFGs and SSA was 34.6%,6.2%and 3.0%,respectively,suggesting that the ash content in biochar played an important role in Cd2+adsorption.Ion exchange(Ca2+,Mg2+,K+and Na+)and surface precipitation(such as Cd-phosphate precipitate) were the possible mechanisms involved in Cd2+sorption [2].The role of AFGs on the surface was also considerable in Cd2+sorption by biochars,with Cd2+easily forming strong surface complexes with these functional groups[14].However, the indirect effects of AFGs on Cd2+sorption were negatively related to ash content in biochars,moreover,the degree of the indirect effects of AFGs were stronger than the direct effects AFGs.These results implied that the direct effects of AFGs on Cd2+adsorption were potentially due to the decrease in pH of the solution by the greater number of AFGs on biochar, which may weaken the occurrence of adsorption behaviors related to ash content(such as coprecipitation).Based on these facts,in order to achieve biochars with a high capacity for metal ion removal,feedstock selection should consider the ash content and volatile matter in compromise so that the function of ash and the AFGs of biochars can be developed in balance.The desirable feedstocks would therefore consist of agricultural residues with high ash content or their digested residues at medium pyrolysis temperatures [2,14].Further, integrating biochars from different feedstocks into a biochar compound with abundant AFGs and ash fraction may be another possible way to improve their metal adsorption performances.Finally, for NB adsorption (Fig.2c), the direct influence rate of the AFGs content reached 31.2%, followed by ash content (17.2%), and considerably higher than that of SSA(0.11%).Generally, the interactions between NB and biochars may be attributed to π-π interactions; although most AFGs would reduce the surface electron density of the biochar, and thus weaken the π-π interactions, AFGs increase the oxygen content and thus increase the adsorption of polar contaminants [28].Further,AFGs may also facilitate the formation of hydrogen bonds,which partially contribute to NB sorption on polar surfaces[29,30].In addition, previous studies have indicated that biochars rich in minerals might selectively adsorb NB onto the minerals, thus forming organo-mineral complexes and facilitating NB removal[31].Additionally,the values of A,A-IndB and A-IndC were almost zero,implying that the direct effect of SSA and the indirect effects of SSA on NB sorption by ash and AFGs were quite weak.These results indicated that the AFGs content was the most important factor affecting the adsorption of NB by the four tested biochars,followed by ash content,rather than SSA,despite previous studies indicating that pore-filling is greatly involved in organic contaminant removal [11].Furthermore, ash content had a direct contribution on NB adsorption, however, the indirect effects of AFGs on NB adsorption by ash was negative, which can partially weaken the adsorption,because higher amount of ash fraction can hinder the contact of AFGs on the surface of biochar with NB.Thus,for the preparation of biochars with special adsorption performance for polar organic pollutants,feedstocks with a high volatile matter and low ash content should be considered at the low/medium temperature pyrolysis or by hydrothermal carbonization in order to achieve abundant AFGs [29,30].Additionally, other targeted modification pathways to achieve AFGs by acids or oxidation (e.g., HNO3, HCl, H2O2) deserve further investigation[8,10].

    Fig.2.Direct and indirect influences of SSA,ash content and AFGs on the adsorption of PO43-(a),Cd2+(b)and NB(c)by biochars.A:the direct effect of SSA;B:the direct effect of AFGs; C: the direct effect of ash content; u-Indv represents the indirect effect of independent variable u through independent variable v (except for u).

    Besides, another popularly investigated pollutants, such as methylene blue (MB), rhodamine B (RB), congo red (CR), methyl orange(MO),Cu2+,and p-nitroaniline(PNA),were also investigated on the adsorption performances by the four biochars using the path analysis(Figs.S4a-f in Supporting information).Basically,the uniform results can be achieved, in which ash content and the derived AFGs were mainly responsible for the adsorption of ionic or polar organic pollutants (MB, RB, CR and PNA), and metal iron(Cu2+).SSA of biochars was not the dominant factor to affect the adsorption.

    In summary,the four biochars produced from CS,OS,JA,and SG feedstocks displayed different physicochemical properties and sorption performances for PO43-, Cd2+and NB.Based on the investigations on adsorption models and biochar characterization,coprecipitation, chemical bonds, cation exchange, complexation,and physical adsorption were involved in the removal of these pollutants.Path analysis indicated that the derived AFGs and ash fraction were mainly responsible for pollutant removal rather than SSA, and further that ash content was the dominant factor in promoting PO43-and Cd2+adsorption.The amount of AFGs on the surface of biochars may improve their NB adsorption capacity.The obtained results are useful for estimating biochar adsorption performance for different pollutants, offering a prepartion guidance to achieve a more accurate matching of biochar with pollutant removal.

    Acknowledgment

    This work was supported by the Department of Science and Technology of Sichuan Province(Nos.2017SZ0028,2017HH0047).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2019.04.016.

    欧美激情高清一区二区三区| 亚洲九九香蕉| 日韩大码丰满熟妇| 国产精品久久电影中文字幕| 欧美乱色亚洲激情| 搡老熟女国产l中国老女人| 欧美日韩瑟瑟在线播放| 亚洲欧美日韩另类电影网站| 又黄又爽又免费观看的视频| 久久久久久人人人人人| 国产三级黄色录像| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区在线不卡| 激情在线观看视频在线高清| 91成人精品电影| 久久久久久大精品| 操出白浆在线播放| 一区二区三区国产精品乱码| 成人特级黄色片久久久久久久| 一区福利在线观看| 最近最新免费中文字幕在线| 欧美一级毛片孕妇| 国产区一区二久久| 黄色女人牲交| 巨乳人妻的诱惑在线观看| 日本 av在线| 国产免费av片在线观看野外av| 国产精品免费一区二区三区在线| 欧美黄色片欧美黄色片| 在线天堂中文资源库| 久久中文字幕人妻熟女| 亚洲国产精品成人综合色| 久久性视频一级片| 亚洲成a人片在线一区二区| 大码成人一级视频| 久久影院123| 99久久99久久久精品蜜桃| 亚洲色图av天堂| 午夜两性在线视频| 日韩一卡2卡3卡4卡2021年| 国产色视频综合| 日韩中文字幕欧美一区二区| 成人av一区二区三区在线看| 天天躁狠狠躁夜夜躁狠狠躁| 久久婷婷人人爽人人干人人爱 | 三级毛片av免费| 中出人妻视频一区二区| 中文字幕最新亚洲高清| 黄色毛片三级朝国网站| 国产精品亚洲美女久久久| 成人特级黄色片久久久久久久| 午夜免费成人在线视频| 黄色女人牲交| 国产黄a三级三级三级人| 51午夜福利影视在线观看| 亚洲五月婷婷丁香| 国产精华一区二区三区| 亚洲人成伊人成综合网2020| 成熟少妇高潮喷水视频| 久久热在线av| av电影中文网址| 亚洲三区欧美一区| 亚洲精品在线观看二区| 国产免费av片在线观看野外av| 亚洲精品粉嫩美女一区| 欧美日韩乱码在线| 1024视频免费在线观看| 日韩欧美国产在线观看| 亚洲国产欧美日韩在线播放| 久久香蕉国产精品| 日韩有码中文字幕| av电影中文网址| 亚洲自拍偷在线| 国产伦人伦偷精品视频| 久久伊人香网站| 国产精品1区2区在线观看.| 一区二区日韩欧美中文字幕| 麻豆av在线久日| 亚洲第一电影网av| 欧美亚洲日本最大视频资源| 国产精品爽爽va在线观看网站 | 欧美黄色淫秽网站| 欧美精品亚洲一区二区| 国产91精品成人一区二区三区| 日韩大码丰满熟妇| 亚洲欧美日韩高清在线视频| 成人国产一区最新在线观看| 国产亚洲精品久久久久5区| 在线av久久热| 亚洲专区国产一区二区| 99热只有精品国产| 国产亚洲av嫩草精品影院| 日韩大尺度精品在线看网址 | 亚洲成国产人片在线观看| 熟妇人妻久久中文字幕3abv| 国产精品久久久人人做人人爽| 这个男人来自地球电影免费观看| 亚洲欧美日韩高清在线视频| av天堂在线播放| 欧美激情高清一区二区三区| 国产人伦9x9x在线观看| 精品国产超薄肉色丝袜足j| 国产精品二区激情视频| 久久久精品国产亚洲av高清涩受| 亚洲国产精品合色在线| 岛国视频午夜一区免费看| 久久久国产成人免费| 免费一级毛片在线播放高清视频 | 国产成人啪精品午夜网站| 亚洲欧美日韩另类电影网站| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器 | 日韩一卡2卡3卡4卡2021年| 啦啦啦观看免费观看视频高清 | 久久精品国产99精品国产亚洲性色 | 男女午夜视频在线观看| a级毛片在线看网站| 久久午夜综合久久蜜桃| 国产精品影院久久| 久久久久久久久久久久大奶| 免费在线观看日本一区| 精品久久久久久,| 69av精品久久久久久| 黄色丝袜av网址大全| 国产午夜福利久久久久久| 久久香蕉国产精品| 成人亚洲精品av一区二区| 久久国产精品影院| 一个人免费在线观看的高清视频| 欧美中文综合在线视频| 成人国产综合亚洲| 长腿黑丝高跟| 亚洲一区高清亚洲精品| 亚洲国产高清在线一区二区三 | 久久精品aⅴ一区二区三区四区| 亚洲av日韩精品久久久久久密| 免费搜索国产男女视频| 久久午夜亚洲精品久久| 成年女人毛片免费观看观看9| 免费在线观看日本一区| 久热爱精品视频在线9| 欧美在线黄色| 久久精品人人爽人人爽视色| 大香蕉久久成人网| 免费久久久久久久精品成人欧美视频| 国产亚洲精品av在线| 999久久久精品免费观看国产| 在线观看免费视频网站a站| 国产av精品麻豆| 国产欧美日韩综合在线一区二区| 亚洲精品av麻豆狂野| 不卡一级毛片| 国产av一区二区精品久久| 亚洲国产高清在线一区二区三 | 欧美在线一区亚洲| 精品无人区乱码1区二区| 国产精品电影一区二区三区| 精品少妇一区二区三区视频日本电影| 欧美av亚洲av综合av国产av| 亚洲狠狠婷婷综合久久图片| 精品福利观看| 精品电影一区二区在线| 免费在线观看完整版高清| 免费人成视频x8x8入口观看| 女人被狂操c到高潮| 在线国产一区二区在线| 男人舔女人的私密视频| 黄色视频不卡| 久久九九热精品免费| 黄色丝袜av网址大全| 一级a爱视频在线免费观看| 午夜a级毛片| av网站免费在线观看视频| 色av中文字幕| 欧美日韩精品网址| 一区福利在线观看| 夜夜爽天天搞| 日本在线视频免费播放| 亚洲欧美精品综合一区二区三区| 精品国产一区二区三区四区第35| 亚洲av第一区精品v没综合| 欧美成人免费av一区二区三区| 久久精品亚洲精品国产色婷小说| 亚洲精品一区av在线观看| 成在线人永久免费视频| 亚洲情色 制服丝袜| 乱人伦中国视频| 国产精品久久久久久人妻精品电影| 午夜免费鲁丝| avwww免费| 99在线视频只有这里精品首页| 欧美乱码精品一区二区三区| 99国产精品免费福利视频| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产区一区二| 大型av网站在线播放| 黄色a级毛片大全视频| 人人妻人人澡欧美一区二区 | 午夜福利高清视频| 在线观看午夜福利视频| 欧美 亚洲 国产 日韩一| 亚洲,欧美精品.| av片东京热男人的天堂| 欧美日韩黄片免| 丝袜美腿诱惑在线| 久久人妻av系列| 人人妻人人澡欧美一区二区 | 亚洲av成人不卡在线观看播放网| 十八禁人妻一区二区| 精品久久久精品久久久| 久久精品影院6| 亚洲成a人片在线一区二区| 国产亚洲av高清不卡| 成人亚洲精品一区在线观看| 91老司机精品| 两个人免费观看高清视频| 18禁黄网站禁片午夜丰满| 777久久人妻少妇嫩草av网站| 国产黄a三级三级三级人| 校园春色视频在线观看| 最好的美女福利视频网| 久99久视频精品免费| 欧美激情久久久久久爽电影 | 熟妇人妻久久中文字幕3abv| 99精品欧美一区二区三区四区| 成人国语在线视频| 男人舔女人的私密视频| 欧美乱妇无乱码| 超碰成人久久| 国产黄a三级三级三级人| 国产精品久久电影中文字幕| 色在线成人网| 人人妻人人澡人人看| 久热爱精品视频在线9| 亚洲狠狠婷婷综合久久图片| 国产99久久九九免费精品| 日韩 欧美 亚洲 中文字幕| 免费在线观看黄色视频的| 老熟妇乱子伦视频在线观看| 香蕉丝袜av| 人妻丰满熟妇av一区二区三区| 久久国产精品男人的天堂亚洲| 真人一进一出gif抽搐免费| 欧美日韩瑟瑟在线播放| 久久久精品欧美日韩精品| 成人18禁高潮啪啪吃奶动态图| 91成人精品电影| 国产亚洲av嫩草精品影院| 欧美 亚洲 国产 日韩一| 久久久水蜜桃国产精品网| 午夜久久久在线观看| 自线自在国产av| 亚洲精品久久国产高清桃花| 亚洲专区字幕在线| 国产一区二区三区综合在线观看| 欧美大码av| 搡老岳熟女国产| 99精品久久久久人妻精品| 97人妻天天添夜夜摸| 久久久久久大精品| 免费在线观看日本一区| 美女高潮喷水抽搐中文字幕| 成人18禁在线播放| 精品人妻1区二区| 久久久久九九精品影院| 国产精品99久久99久久久不卡| 久久久精品欧美日韩精品| 淫妇啪啪啪对白视频| 亚洲国产看品久久| 欧美黄色淫秽网站| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人看| 女同久久另类99精品国产91| 最近最新中文字幕大全免费视频| 一本大道久久a久久精品| 国产一区二区在线av高清观看| 欧美国产日韩亚洲一区| 搡老岳熟女国产| 热99re8久久精品国产| 一区二区三区激情视频| 电影成人av| 成人永久免费在线观看视频| 黑丝袜美女国产一区| 久久久久久久久免费视频了| 久久精品国产清高在天天线| 国产亚洲欧美精品永久| 亚洲精品在线美女| 精品久久久久久久毛片微露脸| 在线观看日韩欧美| 欧美久久黑人一区二区| 12—13女人毛片做爰片一| 91成年电影在线观看| 久久久国产成人精品二区| 亚洲av五月六月丁香网| 国产精品免费一区二区三区在线| 精品熟女少妇八av免费久了| 美国免费a级毛片| 欧美黑人精品巨大| 精品欧美国产一区二区三| 99久久99久久久精品蜜桃| av在线播放免费不卡| 成年人黄色毛片网站| 亚洲av片天天在线观看| 日本 av在线| 午夜精品久久久久久毛片777| 免费在线观看视频国产中文字幕亚洲| 亚洲,欧美精品.| 日韩欧美在线二视频| 男女午夜视频在线观看| 桃色一区二区三区在线观看| 人人妻人人澡欧美一区二区 | 精品久久久久久,| 午夜老司机福利片| 伊人久久大香线蕉亚洲五| 一本久久中文字幕| 久久香蕉精品热| 一区二区日韩欧美中文字幕| 一级作爱视频免费观看| 欧美乱码精品一区二区三区| 一区福利在线观看| 久9热在线精品视频| 国产亚洲精品综合一区在线观看 | 欧美最黄视频在线播放免费| 久久国产乱子伦精品免费另类| 电影成人av| 国产成人免费无遮挡视频| 欧美在线黄色| 如日韩欧美国产精品一区二区三区| 9191精品国产免费久久| 久热这里只有精品99| 99久久国产精品久久久| 国产精品一区二区精品视频观看| 女生性感内裤真人,穿戴方法视频| 可以免费在线观看a视频的电影网站| 精品不卡国产一区二区三区| 亚洲狠狠婷婷综合久久图片| 正在播放国产对白刺激| 久久人人精品亚洲av| 嫁个100分男人电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 一个人免费在线观看的高清视频| 91在线观看av| 大陆偷拍与自拍| 成人精品一区二区免费| 国产三级黄色录像| 丝袜美足系列| 天天添夜夜摸| 一本综合久久免费| 亚洲精品中文字幕一二三四区| 一本综合久久免费| 日日干狠狠操夜夜爽| 久久精品亚洲精品国产色婷小说| 18禁美女被吸乳视频| 女人爽到高潮嗷嗷叫在线视频| 国产精品爽爽va在线观看网站 | 欧美不卡视频在线免费观看 | 极品教师在线免费播放| 在线观看舔阴道视频| 亚洲狠狠婷婷综合久久图片| 韩国av一区二区三区四区| 国产成人精品在线电影| 咕卡用的链子| 国产伦人伦偷精品视频| 欧美激情久久久久久爽电影 | 国产成人欧美| 久99久视频精品免费| 老熟妇仑乱视频hdxx| 久久香蕉激情| 午夜精品国产一区二区电影| 亚洲黑人精品在线| 亚洲中文日韩欧美视频| 日韩欧美国产一区二区入口| 国产一级毛片七仙女欲春2 | 淫秽高清视频在线观看| 9色porny在线观看| 国产免费av片在线观看野外av| 国产单亲对白刺激| 日韩免费av在线播放| 一区二区三区精品91| 搞女人的毛片| 国产精品九九99| 在线av久久热| 亚洲一区二区三区色噜噜| 两个人视频免费观看高清| 黑人欧美特级aaaaaa片| 国产免费av片在线观看野外av| 人妻久久中文字幕网| 女人高潮潮喷娇喘18禁视频| 免费在线观看黄色视频的| 身体一侧抽搐| 电影成人av| 成人国产综合亚洲| 国产av精品麻豆| 国产亚洲精品综合一区在线观看 | 国产乱人伦免费视频| 91av网站免费观看| 麻豆一二三区av精品| 一a级毛片在线观看| 久久久久久亚洲精品国产蜜桃av| 身体一侧抽搐| 中亚洲国语对白在线视频| 亚洲最大成人中文| 亚洲无线在线观看| 精品一区二区三区av网在线观看| 国产av一区二区精品久久| 可以免费在线观看a视频的电影网站| 神马国产精品三级电影在线观看 | 日韩欧美三级三区| 精品午夜福利视频在线观看一区| 午夜福利高清视频| 好男人在线观看高清免费视频 | 精品一区二区三区视频在线观看免费| 俄罗斯特黄特色一大片| 亚洲精品av麻豆狂野| 亚洲av美国av| 亚洲国产精品久久男人天堂| 免费看a级黄色片| 99久久国产精品久久久| 欧美日韩黄片免| 1024视频免费在线观看| 中文字幕精品免费在线观看视频| 成人免费观看视频高清| 人妻丰满熟妇av一区二区三区| 亚洲第一青青草原| www.精华液| 亚洲第一av免费看| aaaaa片日本免费| 亚洲中文字幕一区二区三区有码在线看 | 午夜免费观看网址| 女人精品久久久久毛片| 亚洲一区二区三区色噜噜| 午夜福利在线观看吧| 亚洲一区中文字幕在线| 国产精品九九99| 啦啦啦观看免费观看视频高清 | 亚洲免费av在线视频| 一边摸一边做爽爽视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产亚洲av高清一级| 久久人妻av系列| 亚洲欧美日韩无卡精品| 久久久国产成人免费| 麻豆成人av在线观看| 欧美日韩亚洲综合一区二区三区_| 黄色a级毛片大全视频| 啦啦啦免费观看视频1| 好男人在线观看高清免费视频 | 欧美国产精品va在线观看不卡| 亚洲va日本ⅴa欧美va伊人久久| АⅤ资源中文在线天堂| 色尼玛亚洲综合影院| 色在线成人网| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| 久久久久国内视频| 欧美人与性动交α欧美精品济南到| 啦啦啦韩国在线观看视频| 午夜福利一区二区在线看| 性欧美人与动物交配| 大陆偷拍与自拍| 国产av一区在线观看免费| 97碰自拍视频| 日韩av在线大香蕉| 国产成+人综合+亚洲专区| 国产私拍福利视频在线观看| 久久精品国产99精品国产亚洲性色 | 成人国产综合亚洲| av视频在线观看入口| 女人爽到高潮嗷嗷叫在线视频| 天天添夜夜摸| 欧美精品亚洲一区二区| 久久香蕉激情| 精品久久久久久,| svipshipincom国产片| 长腿黑丝高跟| 又黄又粗又硬又大视频| 一本久久中文字幕| 人人妻,人人澡人人爽秒播| 一卡2卡三卡四卡精品乱码亚洲| 欧美老熟妇乱子伦牲交| 国产精品电影一区二区三区| 一夜夜www| 亚洲三区欧美一区| 很黄的视频免费| 一a级毛片在线观看| 黄片播放在线免费| 久久中文字幕一级| 中文亚洲av片在线观看爽| 女警被强在线播放| 男女下面进入的视频免费午夜 | 久久精品国产综合久久久| 免费搜索国产男女视频| 久久久久久人人人人人| 人妻久久中文字幕网| 亚洲成av片中文字幕在线观看| 亚洲国产日韩欧美精品在线观看 | 久久久久精品国产欧美久久久| АⅤ资源中文在线天堂| 天天一区二区日本电影三级 | 亚洲少妇的诱惑av| 亚洲第一电影网av| 国产成人精品在线电影| 亚洲精品一卡2卡三卡4卡5卡| 精品熟女少妇八av免费久了| 午夜福利欧美成人| 亚洲欧美日韩高清在线视频| 日本免费a在线| 女同久久另类99精品国产91| 精品无人区乱码1区二区| 久久亚洲精品不卡| 亚洲精品av麻豆狂野| 两个人视频免费观看高清| 不卡一级毛片| 大码成人一级视频| 99国产精品免费福利视频| 无限看片的www在线观看| 桃红色精品国产亚洲av| 午夜影院日韩av| 久久午夜综合久久蜜桃| 俄罗斯特黄特色一大片| 日韩中文字幕欧美一区二区| 国产97色在线日韩免费| 日韩欧美三级三区| 中文字幕精品免费在线观看视频| 亚洲成av人片免费观看| 在线视频色国产色| 我的亚洲天堂| 午夜亚洲福利在线播放| 久久精品91蜜桃| av片东京热男人的天堂| 久久中文看片网| 美国免费a级毛片| 黄片大片在线免费观看| 色在线成人网| 黄色a级毛片大全视频| 免费女性裸体啪啪无遮挡网站| 亚洲欧美激情在线| 在线av久久热| 91精品三级在线观看| 亚洲最大成人中文| av福利片在线| 两个人免费观看高清视频| 热re99久久国产66热| 中亚洲国语对白在线视频| 神马国产精品三级电影在线观看 | 欧美成人免费av一区二区三区| 国产欧美日韩精品亚洲av| 757午夜福利合集在线观看| 一级作爱视频免费观看| 国产高清激情床上av| 在线国产一区二区在线| 一本久久中文字幕| 亚洲国产精品sss在线观看| 日韩大尺度精品在线看网址 | 黄色 视频免费看| 色综合欧美亚洲国产小说| 亚洲精品粉嫩美女一区| 国产精品1区2区在线观看.| 免费在线观看亚洲国产| 在线免费观看的www视频| 老司机深夜福利视频在线观看| 给我免费播放毛片高清在线观看| 亚洲第一av免费看| 日日爽夜夜爽网站| 麻豆av在线久日| 男女午夜视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲av熟女| 男人舔女人的私密视频| 级片在线观看| 国产亚洲精品久久久久5区| 老司机靠b影院| 国产激情久久老熟女| 成人亚洲精品一区在线观看| 亚洲成人免费电影在线观看| 狂野欧美激情性xxxx| 在线天堂中文资源库| 老司机在亚洲福利影院| 无人区码免费观看不卡| 国产精品免费一区二区三区在线| 不卡av一区二区三区| 免费在线观看黄色视频的| 丰满的人妻完整版| 又黄又粗又硬又大视频| 在线观看日韩欧美| 丰满的人妻完整版| 熟妇人妻久久中文字幕3abv| 中文字幕人妻熟女乱码| 他把我摸到了高潮在线观看| 又黄又粗又硬又大视频| 大香蕉久久成人网| 久久欧美精品欧美久久欧美| 亚洲av电影不卡..在线观看| 日韩三级视频一区二区三区| 亚洲欧美精品综合一区二区三区| bbb黄色大片| 精品国产一区二区三区四区第35| 最近最新中文字幕大全电影3 | 高清毛片免费观看视频网站| 亚洲国产精品999在线| 国产1区2区3区精品| 高清毛片免费观看视频网站| 国产真人三级小视频在线观看| 久久 成人 亚洲| 久久久久九九精品影院| 精品国产一区二区三区四区第35| 亚洲av成人一区二区三| 久久九九热精品免费| 日本 av在线| 国产伦一二天堂av在线观看| 欧美人与性动交α欧美精品济南到| 少妇被粗大的猛进出69影院| 又黄又粗又硬又大视频| 国产麻豆成人av免费视频| 免费在线观看完整版高清|