• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field

    2020-01-10 07:39:10MarianNEGREA
    Plasma Science and Technology 2020年1期

    Marian NEGREA

    Department of Physics Association Euratom-MEdC, Romania University of Craiova, A.I.Cuza str.13,200585 Craiova, Romania

    Abstract We calculate the diffusion coefficients for ions moving in a prescribed electromagnetic field.The field is considered to be a superposition of an electrostatic stochastic field and a space-dependent and sheared magnetic field.We have considered as parameters involved in the calculation of the diffusion coefficients the shear ion Kubo number , the electrostatic Kubo number K, the parallel shear ion Kubo number , and the parallel thermal ion Kubo number . A geometrical parameter which is the measure of the product of the stochastic perpendicular correlation length and the gradient in the magnetic field strength (see definitions in the text) is found not to be important in our calculation. The results concerning the diffusion coefficients obtained in our model are in agreement with experimental data and with those corresponding to other models, and the neoclassical and anomalous values for the diffusion coefficients are obtained.

    Keywords: magnetic field, turbulence, diffusion(Some figures may appear in colour only in the online journal)

    1. Introduction

    Transport of particles in fusion plasma is still a very important issue for researchers. The theoretical results obtained for the transport coefficients from classical transport theory (see e.g.[1]) are not in agreement with the experimental results. The agreement is improved if the geometry of the magnetic field is taken into account for the calculation of the transport coefficients and the neoclassical transport theory is built (see e.g.[2] and [3]). Even neoclassical theory cannot explain some aspects of the diffusion of particles in a chaotic (turbulent)plasma. In this kind of plasma, transport is called anomalous if turbulence dominates the classical and neoclassical contributions to transport. The approximation that treated trapping in a new manner compared with the papers of Isichenko M B [4, 5], the numerical treatment given in [6] and [7] and used also in our paper to calculate the diffusion coefficients is the decorrelation trajectory method(DCT).There exist also a large amount of experimental, theoretical, and numerical papers(see,for example,references[8-26])that are dedicated to the understanding and control of transport in magnetically confined plasmas. The DCT is presented in the following selection of papers [8, 9, 11, 14, 22, 23].

    Results concerning the radial flux of particles obtained in reference [24] were used in order to calculate the effect of parallel fluctuations; in our paper only the perpendicular fluctuations (to the mean magnetic field) are taken into account. Separation of magnetic field lines, which is important for the calculation of diffusion coefficients, has been studied in many papers; see reference [25] and citations within. Particle behavior is a complex problem related to the confinement and transport of the bulk ions and electrons in plasma and to the plasma-wall interaction. This is a very important issue for the development of fusion reactors.

    Our paper studied the problem of the diffusion of ions in a space-dependent magnetic field and a divergenceless electrostatic stochastic field. The shape of the diffusion coefficients of a particle moving in a magnetic field with shear combined with an electrostatic stochastic field has been studied in many papers (see e.g. [27]). Numerical studies (such as‘direct numerical simulations')are devoted to the transport of particles in such a combination of fields(see e.g.[28]).All these issues are presented in the very good book of Radu Balescu[29].Our theoretical results are in agreement with the experimental ones. In our paper the magnetic field is dependent on the radial coordinate and the electrostatic stochastic field influences the values of the diffusion coefficients. The movement of particles was analyzed also in a guiding center model with a stochastic anisotropic magnetic field [30]. The results concerning the diffusion coefficients are similar with those obtained in the present paper.The conclusion is that,at least from these two different physical models,practically we obtained the same diffusion coefficient behavior.In our paper we will use some results obtained in reference [8], and the paper is organized as follows. The magnetic field model and the approximate guiding center equations are established in section 2.In section 3,some details of the DCT approach are presented and the necessary Eulerian correlations are derived using a standard procedure of the DCT method.We have also defined here the parameters (specific to the ions) involved in the change of the diffusion coefficients, namely the ion shear Kubo number, the electrostatic ion Kubo number Kion,parallel shear ion Kubo number,the parallel thermal ion Kubo number Kionand the geometrical parameter αR, which is the measure of the product of the stochastic perpendicular correlation length and the gradient in the magnetic field strength. Here the specific parameters of the motion of ions are defined. Before the section 4 we introduce some comments on the issues related to Kubo numbers,trapping and the open trajectories. In section 4 we calculate the diffusion coefficients and averaged global velocities.We also calculate the trapping time for different values of the parameters. The conclusions are provided in section 5.

    2. The magnetic field model and the approximate guiding center equations

    In our paper we consider that particles are moving in an electrostatic stochastic electric field combined with a magnetic field that is unperturbed and has the form

    The guiding center trajectories are determined from the approximate equations

    where U is the parallel velocity, which we will approximate here with the thermal one,i.e.Vth.In order to make the system dimensionless we introduce the typical correlation lengths:λ⊥is the perpendicular correlation length and λ‖is the parallel correlation length along the main magnetic field. τcis the correlation time of the fluctuating electrostatic field and ε is a measure of the amplitude of the electrostatic field fluctuations.The correlation time τcis the maximum time interval over which the field (the electrostatic potential in our case) maintains a given structure and is about 10?5s, the perpendicular correlation length λ⊥is about 10?2m as was observed by several plasma turbulence diagnostics looking at the edge region of the tokamaks [31, 32] and λ‖is about 1-10 m.Using the results obtained in [8] and the dimensionless quantities x, y, z, τ and φ defined as

    we obtain the following dimensionless Langevin system of equations [8]:

    We write here the different Kubo numbers already defined in[8] entering the system of equations given in (4)-(6):

    is the electrostatic Kubo number

    is the shear Kubo number

    is the parallel shear Kubo number and

    is the parallel thermal Kubo number. The geometrical parameter αRis defined as the product of the stochastic perpendicular correlation length and the gradient in the magnetic field strength

    Considering that the thermal velocity used in the former expressions corresponds to ions,the following corresponding Kubo numbers for ions can be defined:

    3. Details of the DCT approach

    From the orders of magnitude of the different Kubo numbers given in[8]we can suppose that the term containingcan be neglected in the equation (6). We also suppose that

    where we can choose ( ) =z 0 0. An implicit dependence on time appears in the potential and the Langevin system of equations given in (4)-(6) becomes a 2D system

    For this system the DCT method can be applied in order to calculate the diffusion coefficient and other quantities of interest. For the stochastic dimensionless electrostatic potential φ (x , z, τ)we can choose the following spatiotemporal autocorrelation

    where

    and

    If we use solution (14), the function ( )τB becomes

    where definition (13) was used.

    The autocorrelation becomes

    The statistical properties of all the fluctuating quantities are calculated by taking appropriate derivatives of equations(16)and (17). We introduce the notations for the ‘directly fluctuating velocities' as

    From equation (19), we can deduce the Eulerian correlations between the directly fluctuating velocities Cij(i , j =x , y)and the mixed correlationsφCi( )=i x y, using the standard procedure given in [9-11]:

    where the following general relations were used:

    and also the antisymmetric tensor εij(ε12= ? ε21= 1,ε11=ε22= 0). Using these correlations we can develop the procedure of the DCT needed to calculate the components of the diffusion tensor components specific to our field. We introduce the following change of variable

    With this change of variable system (15) becomes (in the following we will drop the subscript ‘ion' from τion)

    where the following definitions are introduced:

    and

    The expression(29)and the definition given in(9)should not be confused. System (27) is studied using the DCT method.The total ensemble of the realizations of the stochastic system is a superposition of the subensembles S that are defined by the electrostatic potential φ and the ‘directly fluctuating velocities' videfined in (20) at time 0, i.e.

    The probability distribution function of these initial values is defined as

    The total Lagrangian correlation tensor components of the directly fluctuating velocities appearing in system (27) are

    where

    is the Lagrangian correlation tensor in a subensemble S. anddenotes the average in the subensemble. The last approximation in(33)is the essence of the DCT method.We have replaced the average velocity in a subensemble with the velocity obtained by using the solutions ( )τxSof the deterministic system given below in equations (37) and (38).

    The Eulerian average directly fluctuating velocitiesin the subensemble S are calculated as

    and the explicit expressions forare

    Next,we define,in a subensemble S,a deterministic trajectory by the following equations of motion:

    and

    Using the equations (34), (35), (36), (40), (41) and (42) the terms are calculated as

    and

    The solution of deterministic system (37), (38) depends not only on the parameters that define the subensemble S i.e.but also on the Kubo numbers defined in equations (7), (8), (10).

    The Lagrangian correlation tensor components are

    and contribute to the calculation of the running diffusion tensor components as

    4. DCT trajectories

    In this section we present some trajectories and hodographs resulting from system (37), (38), for a subensemble defined asand vy(0 , 0) ==1and for different values of Kionand

    In figures 1-3 we visualized trajectories and hodographs for the set of electrostatic Kubo numbers[0 .2, 0.5, 1, 5] for different values of the shear Kubo number=0.5(fgiure 1),=1(fgiure 2) and=5(fgiure 3). The shape is influenced by the electrostatic Kubo number only for a relatively high value of the level of turbulence as shown in the figures.For relatively small valuesof the level of turbulence,the shapes are almost the same except for the high value(see fgiures 1-3).

    All these quantities are calculated for different values of the electrostatic Kubo numberdefined above in expression (28) and of the shear Kubo number

    We have used in our calculations the electrostatic Kubo numbers

    For each value of the electrostatic Kubo number we have considered the evolution of the quantities for different values of the shear Kubo numbers

    Figure 4 presents the trajectories for a given subensemble,four fixed values for the electrostatic Kubo number Kion, a fixed value of the shear Kubo number=0.5and different values of the parameter: in the top left subplot= 10?3, in the top right subplot= 10?2, in the bottom left subplot= 10?1and in the bottom right subplot=1.The trajectories are closed for Kion= 5 and open in all the other cases,i.e.0.2,0.5,and 1 if<1.For=1the trajectories corresponding to Kion= 5 are also open, so trapping is not present in this case.

    4.1. Comments on Kubo numbers and trapping versus open trajectories

    In the subensemble defnied as S:andthe shapes of the trajectories represented in figures 1-4 are influenced by the parameters already mentioned before.

    Trapping (or the existence of closed trajectories) is present when particles are moving near the maxima or minima of the stochastic electrostatic potential, and is influenced by dimensionless quantities called Kubo numbers. In our paper there are several Kubo numbers defined in(7)-(10),(12)and(13) in the particular case of ions. The electrostatic Kubo number defined in(7)measures the stochastic character of the electrostatic field and represents the ratio between the distance Vthτccovered by a particle moving with the velocity Vthduring the correlation time τcand the perpendicular correlation length λ⊥,

    5. Diffusion coefficients

    In this section we present in figures 5-9 the behavior of the running poloidal and radial diffusion coefficients (Dyy, Dxx)and the averaged directly fluctuating velocities over the subensembles, i.e.In figures 5-9 the following labels are used for the radial running diffusion coefficients:=0.1(continuous red line),=1(continuous dotted red line),=2(dotted red line) and=5(continuous red x line) and the same labels in blue for the poloidal running diffusion coefficients.For Kion= 0.2 the smallest asymptotic value (≈0.6) of the radial diffusion coefficient Dxxis obtained for the greater value of the shear Kubo number, i.e.=5;the same behavior is obtained for the poloidal diffusion coefficient Dyybut the asymptotic value is different(≈0.75)(see figure 5).The averaged directly fluctuating velocitiesare represented also in figure 5;the poloidal one is positive for τ? ≥0 but the radial one is negative for=5and positive for the other values offor the entire time interval [ ]τ ∈ 0, 4.The asymptotic(i.e. for τ ≥ 4) values of the averaged velocities are all zero.Practically the same behavior is present for Kion= 0.5 but with other values for the asymptotic diffusion coefficients(see figure 6).For Kion= 1,the smallest asymptotic value(≈0.25)for the radial diffusion coefficient Dxxis obtained for the greater value of the shear Kubo number, i.e.=5;the same behavior is obtained for the poloidal diffusion coefficient Dyybut the asymptotic value is different (≈0.5) (see figure 7).

    The averaged directly fulctuating velocitiesalso represented in figure 7 are positives for τ? ≥0 except for the radial one, which is negative for=5in the interval τ ∈ [1 , 2] . The asymptotic values are all zero.

    For Kion= 5 the asymptotic radial diffusion coefficient values are diminished and they belong to the interval[0 .06, 0.075], but the small one is obtained for=0.1(see figure 8).For an increased value of the electrostatic Kubo number (Kion= 10) an inversion of the behavior of the diffusion coefficients is observed (see figure 9); a decreasing of the maximum of the radial diffusion coefficient is also observed. The dimensional expressions for the radial and poloidal diffusion coefficients are

    and

    respectively. If we considerandthe dimensional factor c is about

    The expressions of DXXand DYYcan be defined also as functions ofas

    and

    where we remember that the correlation time is abouts. As a consequence,

    and

    Using the above relations and the results shown in the corresponding figures, we can state some observations. As stated in [33] for example, the neoclassical values for the diffusion coefficients are smaller than unity; e.g. they are of the order of 0.5 m2s?1,whereas in experiments they are much larger,with anomalous values that are found to be of the order of 4 m2s?1.

    For Kion= 10 (see figure 9) the radial diffusion coefficient( )DXXmaxis in the range of the neoclassical values, i.e.for practically all values of. The same situation appears forfor practically all values of.For the asymptotic values of the radial diffusion coefficients the situation is the following:( )DXXasis in the range[0 .15, 0.35],and increases ifincreases to the range[0 .1, 5].(DXX)asis about 0.6 m2s?1practically for all.(DYY)asis in the range[0 .2, 1.2] and increases ifincreases to the range[ ]0.1, 5.

    For Kion= 5 (see figure 8), =0.1 and 1, the radial diffusion coefficient has the maxima values 1.4 m2s?1for=1and 0.014 foris in the range[ ]0.75, 2 and increases ifincreases to the range[ ]0.1, 5.In figures 10-12 the labels used are as follows:Kion= 0.2 (red diamond), Kion= 0.5 (red squared), Kion=1(red triangle),Kion= 5(blue circle)and Kion= 10(blue x).We have calculated the influence ofon the radial and poloidal asymptotic diffusion coefficients for different levels of the electrostatic turbulence (see figure 10). It is obvious that an increase of the shear Kubo number produces a decrease of the asymptotic values for the radial and poloidal diffusion coefficients except for the level of electrostatic turbulence given here bythe asymptotic values increase slowly as a function ofbut the final values are smaller than those corresponding to Kion< 5. In figure 11 the moments τmaxcorresponding to the maxima achievements are represented as a function offor different Kion. For the radial diffusion coefficients (top of figure 11)the shapes are very similar to a hyperbolic decrease as a function of. The following order is obvious

    The smallest value is( )τmax10and corresponds to Kion= 10.For the poloidal diffusion we represented in (bottom of figure 11) τmaxonly forThere are constant values for these moments; only their order of magnitude is different. We have also calculated the influence ofon the trapping time interval, i.e. onwhere τasis the moment corresponding to the beginning of the asymptotic regime and τmaxis the moment that corresponds to the maxima of the diffusion coefficients (see figure 12). We note that if trapping is present the diffusion coefficient shape begins with an increase(the ballistic regime)and continues with a subdiffusion regime up to a value corresponding to the beginning of the asymptotic regime.For the radial diffusion coefficient, we conclude that the trapping timeincreases for≤2for Kion∈{0 .2, 0.5, 1}and has relatively constant values for Kion∈{5 , 10}also for≤2. For≥2a relatively small region with a decrease of the time trapping is present for Kion= 5 followed by a decrease and an increase followed by a constant regime for Kion= 10. For Kion= 0.2 and 1 there exists a small increase, and for Kion= 0.5 a decrease is present. For the poloidal diffusion coefficient the shape of the trapping timerepresented in figure 12 only for a relatively large turbulence level is practically the same as for the corresponding radial situation.

    6. Conclusions

    In this paper,we have analyzed the diffusion of the ions using the Langevin equations corresponding to the guiding center and we applied the semi-analytical method of decorrelation trajectories (DCT). The latter can be considered as a generalization of the Corrsin approximation and takes into account the trapping effects (which necessarily exist in relatively strong turbulent plasmas).Using DCT,we have studied the transport of test particles (ions) by the electromagnetic drift that is produced by a stochastic electrostatic potential and by an inhomogeneous and sheared magnetic field. The DCT and the model used have given good qualitative results concerning the diffusion of ions. The radial and poloidal coefficients start with a linear part, indicating a ballistic regime,which is followed by a trapping regime.If trapping is present the diffusion coefficient has a shape that begins with an increase of the diffusion coefficient (the ballistic regime) and continues with a subdiffusion regime up to a value corresponding to the beginning of the asymptotic regime. We have calculated the influence ofon the radial and poloidal trapping time intervals for different values of Kion. After that the asymptotic value is reached (the trapping effects are visible in representations of trajectories). The diffusion coefficients increase with increasing levels of turbulence, i.e.with an increasing Kion. We have also represented the dependence of τmaxas a function ofand the trapping time interval as a function offor different levels of electrostatic turbulence. The maximum radial trapping time is reached for Kion= 0.5 for=2. The value=2 represents a critical value to which a corresponding critical value for the thermal ion velocity is obtained.For fixed values of the shear length and of the correlation time this critical value can be obtained. Forthe critical thermal velocity isThe results obtained in our model are in agreement with the experimental data: the neoclassical and anomalous values for the diffusion coefficients are obtained. Here the magnetic field model dependence on the radial coordinate and the electrostatic stochastic field influenced the values of the diffusion coefficients. Concerning the diffusion coefficients, similar results with those obtained in the present paper were found in [30].The conclusion is that from these two different physical models we obtained practically the same diffusion coefficient behavior. The magnetic shear, the inhomogeneity of the magnetic field and also the stochastic electrostatic field have the same influence on the ions'diffusion as has the stochastic magnetic drift.

    In conclusion, we state that

    (a) the diffusion present a pronounced trapping if Kion≥ 5;

    (b) the maxima of the diffusion coefficients decreases if Kion≥ 5;

    (c) the space dependence and the shear of the magnetic field modifies the diffusion coefficients.

    Important results concerning the behavior of the magnetic field were obtained(see e.g.[34]and[35])analyzing the Grad-Shafranov equation. From here, the possibility of constructing different magnetic fields appears. The diffusion of stochastic isotropic and anisotropic magnetic field lines in turbulence with a magnetic average poloidal magnetic field component was studied in[36]and an extension of this paper in such a magnetic field would be of interest.It will be necessary that collisions are taken into consideration in such a study,but this issue is left for future work. Here, only the influence of the aforementioned parameters on motion were taken into account.

    Acknowledgments

    I would like to thank Dr. Iulian Petrisor for fruitful discussions.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the EURATOM research and training program 2014-2018 under Grant Agreement No.633053.The views and opinions expressed herein do not necessarily reflect those of the European Commission.

    ORCID iDs

    精品99又大又爽又粗少妇毛片| 最近的中文字幕免费完整| 最近的中文字幕免费完整| 精品久久久噜噜| 老熟妇乱子伦视频在线观看| 欧美日韩在线观看h| 免费av毛片视频| 日日摸夜夜添夜夜爱| 美女高潮的动态| 麻豆一二三区av精品| 国产午夜福利久久久久久| 草草在线视频免费看| 露出奶头的视频| 久久久色成人| 亚洲天堂国产精品一区在线| 欧美日韩综合久久久久久| 日韩中字成人| 免费搜索国产男女视频| 日本在线视频免费播放| 国产老妇女一区| 日本 av在线| 亚洲性夜色夜夜综合| 简卡轻食公司| 亚洲人成网站在线观看播放| 日日啪夜夜撸| 深爱激情五月婷婷| 99久国产av精品| 色5月婷婷丁香| 人人妻,人人澡人人爽秒播| 色哟哟·www| 国产亚洲av嫩草精品影院| 欧美国产日韩亚洲一区| 亚洲国产精品合色在线| 色噜噜av男人的天堂激情| 男女之事视频高清在线观看| 色av中文字幕| 少妇高潮的动态图| 男女做爰动态图高潮gif福利片| 日韩欧美免费精品| 如何舔出高潮| 人人妻人人澡人人爽人人夜夜 | 综合色丁香网| 中出人妻视频一区二区| 久久鲁丝午夜福利片| 亚洲国产精品sss在线观看| 嫩草影院精品99| 午夜激情欧美在线| 日韩在线高清观看一区二区三区| 人人妻人人澡欧美一区二区| 最近中文字幕高清免费大全6| 最新在线观看一区二区三区| 亚洲最大成人中文| 热99在线观看视频| 亚洲欧美清纯卡通| 精品一区二区三区av网在线观看| 成人av一区二区三区在线看| 国产成人福利小说| 欧美3d第一页| 老熟妇乱子伦视频在线观看| 国产精品国产三级国产av玫瑰| 18禁黄网站禁片免费观看直播| 成人特级av手机在线观看| 可以在线观看的亚洲视频| 免费人成在线观看视频色| 日本黄大片高清| 波多野结衣高清作品| 日本欧美国产在线视频| 赤兔流量卡办理| 日韩av不卡免费在线播放| 国产一区二区激情短视频| 成人av在线播放网站| 免费人成在线观看视频色| ponron亚洲| 色哟哟·www| 精品无人区乱码1区二区| 国产69精品久久久久777片| 日韩,欧美,国产一区二区三区 | 99国产精品一区二区蜜桃av| 桃色一区二区三区在线观看| 麻豆一二三区av精品| 黄色日韩在线| 夜夜看夜夜爽夜夜摸| 亚洲一区二区三区色噜噜| 日韩欧美 国产精品| 又粗又爽又猛毛片免费看| 亚洲国产精品sss在线观看| 免费电影在线观看免费观看| 乱人视频在线观看| 亚洲最大成人手机在线| 国产日本99.免费观看| 国产亚洲精品av在线| 国产精品无大码| 一区二区三区四区激情视频 | 亚洲欧美日韩东京热| 欧美bdsm另类| 男人和女人高潮做爰伦理| 欧美最黄视频在线播放免费| 国产精品福利在线免费观看| 性插视频无遮挡在线免费观看| 99久久成人亚洲精品观看| 国产视频一区二区在线看| 久久久久久久久久黄片| 熟女人妻精品中文字幕| 日韩,欧美,国产一区二区三区 | 亚洲自拍偷在线| 国产黄色小视频在线观看| 晚上一个人看的免费电影| 亚洲色图av天堂| 久久这里只有精品中国| 久久午夜福利片| av在线老鸭窝| 男女啪啪激烈高潮av片| 亚洲av熟女| 欧美国产日韩亚洲一区| 在线观看av片永久免费下载| 成人午夜高清在线视频| av黄色大香蕉| 亚洲激情五月婷婷啪啪| 性插视频无遮挡在线免费观看| av在线老鸭窝| 村上凉子中文字幕在线| 在线观看午夜福利视频| 成人精品一区二区免费| 久久国产乱子免费精品| 国产精华一区二区三区| 中文字幕久久专区| 国产一区二区三区av在线 | 亚洲国产精品国产精品| 亚洲一区二区三区色噜噜| 九九热线精品视视频播放| 成年免费大片在线观看| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区久久| 欧美3d第一页| 寂寞人妻少妇视频99o| 热99在线观看视频| 久99久视频精品免费| 淫妇啪啪啪对白视频| 日韩一本色道免费dvd| 国产精品女同一区二区软件| 色尼玛亚洲综合影院| 国产精品亚洲一级av第二区| 久久精品影院6| 在线免费观看不下载黄p国产| 看片在线看免费视频| 此物有八面人人有两片| 亚洲欧美日韩卡通动漫| 免费观看精品视频网站| 欧美bdsm另类| 国产麻豆成人av免费视频| 欧美日韩国产亚洲二区| 精品久久久久久久久亚洲| 97热精品久久久久久| 成人一区二区视频在线观看| 亚洲自拍偷在线| 97热精品久久久久久| 成人欧美大片| 一区福利在线观看| 99久久精品国产国产毛片| 日日摸夜夜添夜夜添小说| 成人三级黄色视频| 免费观看的影片在线观看| 天堂av国产一区二区熟女人妻| 欧美日本亚洲视频在线播放| 久久久久国内视频| 久久久欧美国产精品| www日本黄色视频网| 插阴视频在线观看视频| 99久久精品一区二区三区| av国产免费在线观看| 一个人免费在线观看电影| 免费黄网站久久成人精品| 国产午夜福利久久久久久| av在线天堂中文字幕| 欧美高清性xxxxhd video| 搡老熟女国产l中国老女人| 男女做爰动态图高潮gif福利片| 国产片特级美女逼逼视频| 久久久久免费精品人妻一区二区| 日本精品一区二区三区蜜桃| 精品日产1卡2卡| 插逼视频在线观看| 一夜夜www| 国产 一区 欧美 日韩| 精品人妻偷拍中文字幕| 久久精品综合一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 在线天堂最新版资源| 亚洲精品国产成人久久av| 欧美高清性xxxxhd video| 亚洲成人久久性| 亚洲av第一区精品v没综合| 又黄又爽又刺激的免费视频.| 婷婷精品国产亚洲av在线| 一个人观看的视频www高清免费观看| 亚洲在线自拍视频| 亚洲精品一区av在线观看| 亚洲精品影视一区二区三区av| 欧美最黄视频在线播放免费| 久久久久久久久大av| 国产麻豆成人av免费视频| 精品福利观看| a级毛片免费高清观看在线播放| 国产91av在线免费观看| 97碰自拍视频| 最近手机中文字幕大全| 亚洲最大成人中文| 中国国产av一级| 日本在线视频免费播放| 91av网一区二区| 99久久精品国产国产毛片| 伦精品一区二区三区| 色吧在线观看| 女的被弄到高潮叫床怎么办| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久av不卡| 亚洲人成网站在线观看播放| 亚洲自偷自拍三级| 国内久久婷婷六月综合欲色啪| 欧美+亚洲+日韩+国产| 日本a在线网址| 大又大粗又爽又黄少妇毛片口| 3wmmmm亚洲av在线观看| 成年免费大片在线观看| 22中文网久久字幕| 国内精品宾馆在线| 国产黄片美女视频| 免费看美女性在线毛片视频| av专区在线播放| avwww免费| 一进一出抽搐动态| 精品一区二区三区人妻视频| 成人无遮挡网站| 久久亚洲国产成人精品v| 国产精品,欧美在线| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久久电影| 最近中文字幕高清免费大全6| 亚洲丝袜综合中文字幕| 亚洲av免费在线观看| 欧美中文日本在线观看视频| 色哟哟哟哟哟哟| 两个人视频免费观看高清| 亚洲av中文字字幕乱码综合| avwww免费| 免费在线观看成人毛片| 老熟妇仑乱视频hdxx| 欧美激情在线99| 久久久欧美国产精品| 国产精品免费一区二区三区在线| 老司机午夜福利在线观看视频| 麻豆久久精品国产亚洲av| 天天躁日日操中文字幕| 国产成人一区二区在线| 国产精品日韩av在线免费观看| 别揉我奶头 嗯啊视频| av天堂在线播放| 老司机影院成人| 国产精品一区二区三区四区免费观看 | 深爱激情五月婷婷| 成人精品一区二区免费| 国产成人福利小说| 亚洲欧美日韩高清在线视频| 国产在视频线在精品| 亚洲乱码一区二区免费版| 日韩欧美精品免费久久| 色综合色国产| 一夜夜www| 久久久久久久久中文| 亚州av有码| 如何舔出高潮| 久久欧美精品欧美久久欧美| 熟女人妻精品中文字幕| 1000部很黄的大片| 男人和女人高潮做爰伦理| 国产在线男女| 日本与韩国留学比较| 国产精品一区www在线观看| 欧美日本视频| 在线观看一区二区三区| 亚洲精品456在线播放app| 大型黄色视频在线免费观看| 好男人在线观看高清免费视频| 看十八女毛片水多多多| 99国产精品一区二区蜜桃av| 国产伦在线观看视频一区| АⅤ资源中文在线天堂| 级片在线观看| 成人国产麻豆网| 国产亚洲欧美98| 国产高潮美女av| 岛国在线免费视频观看| 人妻制服诱惑在线中文字幕| 少妇裸体淫交视频免费看高清| 精品久久久久久久人妻蜜臀av| 免费不卡的大黄色大毛片视频在线观看 | 国产免费一级a男人的天堂| 男女视频在线观看网站免费| 大香蕉久久网| 两个人视频免费观看高清| 久久久久免费精品人妻一区二区| 亚洲性夜色夜夜综合| av专区在线播放| 亚洲av免费在线观看| 国内久久婷婷六月综合欲色啪| 精华霜和精华液先用哪个| 中文字幕精品亚洲无线码一区| 国产亚洲精品久久久久久毛片| 卡戴珊不雅视频在线播放| 日韩成人伦理影院| 深爱激情五月婷婷| 亚洲,欧美,日韩| 中国国产av一级| 亚洲人成网站在线观看播放| 一级毛片电影观看 | 久99久视频精品免费| 日本-黄色视频高清免费观看| 一个人观看的视频www高清免费观看| 国产免费男女视频| 精品免费久久久久久久清纯| 欧美激情国产日韩精品一区| 超碰av人人做人人爽久久| 波多野结衣巨乳人妻| 久久精品影院6| 亚洲人成网站高清观看| 天堂动漫精品| 免费人成在线观看视频色| 国产成年人精品一区二区| 亚洲国产精品国产精品| 香蕉av资源在线| 国产精品久久电影中文字幕| avwww免费| 欧美成人免费av一区二区三区| 欧美日韩在线观看h| 日本撒尿小便嘘嘘汇集6| 国内少妇人妻偷人精品xxx网站| 亚洲av免费高清在线观看| 在线天堂最新版资源| 国模一区二区三区四区视频| 亚洲中文字幕日韩| 午夜精品在线福利| 91久久精品电影网| 国产真实乱freesex| 身体一侧抽搐| 亚洲国产色片| 久久久久久九九精品二区国产| 给我免费播放毛片高清在线观看| 夜夜看夜夜爽夜夜摸| 高清毛片免费观看视频网站| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| 成人特级黄色片久久久久久久| 18禁在线无遮挡免费观看视频 | 欧美高清性xxxxhd video| 精华霜和精华液先用哪个| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 精品午夜福利视频在线观看一区| 精品久久久久久久久亚洲| 国产精品久久久久久久久免| eeuss影院久久| 一级av片app| 亚洲国产精品sss在线观看| 欧美3d第一页| eeuss影院久久| 一卡2卡三卡四卡精品乱码亚洲| 日本色播在线视频| 人妻久久中文字幕网| 国产真实伦视频高清在线观看| 国产视频内射| 国产av在哪里看| 久久久久性生活片| 国产 一区精品| 国产v大片淫在线免费观看| 国产精品无大码| 久久精品国产99精品国产亚洲性色| 日本五十路高清| 国产黄色视频一区二区在线观看 | 你懂的网址亚洲精品在线观看 | 卡戴珊不雅视频在线播放| 99久久九九国产精品国产免费| 一区二区三区四区激情视频 | 99久久精品热视频| 中文在线观看免费www的网站| 一进一出好大好爽视频| av在线老鸭窝| 国产精品三级大全| 国产精品人妻久久久久久| 嫩草影院精品99| 91狼人影院| 一个人免费在线观看电影| 国产精品乱码一区二三区的特点| 亚洲aⅴ乱码一区二区在线播放| 国产白丝娇喘喷水9色精品| 18禁在线无遮挡免费观看视频 | 精品无人区乱码1区二区| 日产精品乱码卡一卡2卡三| 麻豆av噜噜一区二区三区| 久久久久久九九精品二区国产| 高清毛片免费观看视频网站| 伦精品一区二区三区| 国产一区二区在线观看日韩| 五月玫瑰六月丁香| 麻豆国产av国片精品| 免费av不卡在线播放| 成人午夜高清在线视频| 国产亚洲精品av在线| 国产精品日韩av在线免费观看| 国产在视频线在精品| 男女下面进入的视频免费午夜| 少妇人妻精品综合一区二区 | 日韩大尺度精品在线看网址| 色综合亚洲欧美另类图片| 国产亚洲欧美98| 人人妻,人人澡人人爽秒播| 国产片特级美女逼逼视频| 精品少妇黑人巨大在线播放 | 色5月婷婷丁香| 九九久久精品国产亚洲av麻豆| 欧美色视频一区免费| 亚洲经典国产精华液单| 成人漫画全彩无遮挡| 啦啦啦观看免费观看视频高清| 久久精品夜夜夜夜夜久久蜜豆| 少妇人妻精品综合一区二区 | 搞女人的毛片| 国产成人福利小说| 精品久久久久久久久久久久久| 国产 一区精品| 最近的中文字幕免费完整| 亚洲第一区二区三区不卡| 免费人成视频x8x8入口观看| av在线亚洲专区| 九色成人免费人妻av| 老女人水多毛片| 草草在线视频免费看| 啦啦啦啦在线视频资源| 老熟妇仑乱视频hdxx| 高清毛片免费观看视频网站| 少妇高潮的动态图| 一级毛片久久久久久久久女| 亚洲三级黄色毛片| 久久久久久久久大av| 国内久久婷婷六月综合欲色啪| 黄片wwwwww| 久久精品国产亚洲网站| 成人毛片a级毛片在线播放| 亚洲人与动物交配视频| 国产精品无大码| 别揉我奶头 嗯啊视频| 精品午夜福利在线看| 久久久久久久久中文| 日本爱情动作片www.在线观看 | 精品人妻熟女av久视频| 欧美日韩在线观看h| 日本在线视频免费播放| 九色成人免费人妻av| 91狼人影院| 性插视频无遮挡在线免费观看| 永久网站在线| 日本黄色片子视频| 国产伦精品一区二区三区视频9| 国产又黄又爽又无遮挡在线| 午夜福利视频1000在线观看| 亚洲中文字幕一区二区三区有码在线看| 最后的刺客免费高清国语| 人人妻人人澡人人爽人人夜夜 | 国内久久婷婷六月综合欲色啪| 国产成人精品久久久久久| 给我免费播放毛片高清在线观看| 麻豆久久精品国产亚洲av| 国产精品一区www在线观看| 中文亚洲av片在线观看爽| 午夜精品在线福利| 国产爱豆传媒在线观看| 人妻少妇偷人精品九色| 麻豆久久精品国产亚洲av| 国产成人影院久久av| 小说图片视频综合网站| 亚洲精品影视一区二区三区av| 在线观看免费视频日本深夜| 亚洲婷婷狠狠爱综合网| 国产视频一区二区在线看| 午夜免费激情av| 在线观看66精品国产| 亚洲欧美日韩卡通动漫| 看十八女毛片水多多多| 日韩欧美精品免费久久| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 亚洲色图av天堂| 久久午夜福利片| 欧美三级亚洲精品| 国产精品嫩草影院av在线观看| 我的老师免费观看完整版| 能在线免费观看的黄片| 亚洲成人久久性| 亚洲五月天丁香| 午夜日韩欧美国产| 最近视频中文字幕2019在线8| 在线国产一区二区在线| 亚洲性夜色夜夜综合| 99精品在免费线老司机午夜| 国产蜜桃级精品一区二区三区| 欧美3d第一页| 无遮挡黄片免费观看| 老司机福利观看| 久久精品久久久久久噜噜老黄 | 天美传媒精品一区二区| 欧美绝顶高潮抽搐喷水| 亚洲激情五月婷婷啪啪| 久久久久九九精品影院| 国产黄片美女视频| 男女视频在线观看网站免费| 三级经典国产精品| 久久久久九九精品影院| 日本黄大片高清| 欧美xxxx性猛交bbbb| 蜜臀久久99精品久久宅男| 国产视频内射| 男人舔奶头视频| 最近2019中文字幕mv第一页| 欧美一区二区精品小视频在线| 国产亚洲欧美98| 成人三级黄色视频| 亚洲不卡免费看| 男女做爰动态图高潮gif福利片| 亚洲久久久久久中文字幕| 久久这里只有精品中国| 男人狂女人下面高潮的视频| 亚洲精品成人久久久久久| 欧美中文日本在线观看视频| 2021天堂中文幕一二区在线观| 秋霞在线观看毛片| 久久人人精品亚洲av| 最近2019中文字幕mv第一页| 全区人妻精品视频| 最近在线观看免费完整版| 男女啪啪激烈高潮av片| 欧美3d第一页| 九九久久精品国产亚洲av麻豆| 亚洲三级黄色毛片| 成人漫画全彩无遮挡| 少妇的逼好多水| 亚洲在线观看片| 黄色视频,在线免费观看| 亚洲色图av天堂| 精品欧美国产一区二区三| 嫩草影视91久久| 免费看日本二区| 丰满的人妻完整版| 中文字幕久久专区| 免费看美女性在线毛片视频| 黄色日韩在线| 乱系列少妇在线播放| 国产精品无大码| av黄色大香蕉| 一级毛片电影观看 | 丝袜美腿在线中文| 永久网站在线| 麻豆精品久久久久久蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 亚洲在线观看片| 18禁在线播放成人免费| 久久久久国产网址| 六月丁香七月| 国产免费一级a男人的天堂| 美女高潮的动态| 久久久久久久久大av| 国产在线男女| 色播亚洲综合网| 国产高潮美女av| 免费看日本二区| 久久久久久久久久黄片| 国产精品不卡视频一区二区| 天天躁日日操中文字幕| 国产高潮美女av| 极品教师在线视频| 99久久中文字幕三级久久日本| 中文字幕av在线有码专区| 日本爱情动作片www.在线观看 | 高清毛片免费观看视频网站| 国内少妇人妻偷人精品xxx网站| 女人被狂操c到高潮| 91麻豆精品激情在线观看国产| 免费人成在线观看视频色| 超碰av人人做人人爽久久| 黄色日韩在线| 别揉我奶头~嗯~啊~动态视频| 亚洲自拍偷在线| 国产大屁股一区二区在线视频| 99久久中文字幕三级久久日本| 看黄色毛片网站| av卡一久久| 国产高清视频在线播放一区| 欧美3d第一页| 久久中文看片网| 亚洲人成网站在线观看播放| 欧美zozozo另类| 不卡一级毛片| 啦啦啦啦在线视频资源| 国产私拍福利视频在线观看| 97超碰精品成人国产| 99久久无色码亚洲精品果冻| 两个人的视频大全免费| 国产v大片淫在线免费观看| 亚洲av免费在线观看| 色5月婷婷丁香| 插阴视频在线观看视频| 日日啪夜夜撸| 日本在线视频免费播放| 国产一区二区激情短视频| 日韩,欧美,国产一区二区三区 | 日本 av在线| 日韩欧美国产在线观看|