• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations?

    2014-04-25 01:26:48SHAOShiJing邵士靖GUOPan郭盼ZHAOLiang趙亮andWANGChunLei王春雷
    Nuclear Science and Techniques 2014年2期
    關鍵詞:趙亮春雷

    SHAO Shi-Jing(邵士靖),GUO Pan(郭盼),ZHAO Liang(趙亮),and WANG Chun-Lei(王春雷)

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations?

    SHAO Shi-Jing(邵士靖),1,2GUO Pan(郭盼),1,2ZHAO Liang(趙亮),1,2and WANG Chun-Lei(王春雷)1,?

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    The molecular behaviors of interfacial water molecules at the solid/liquid interface are of a fundamental signif i cance in a diverse set of technical and scientif i c contexts,thus have drawn extensive attentions.On certain surfaces,the water monolayer may exhibit an ordered feature,which may result in the novel wetting phenomenon.In this article,based on the molecular dynamics simulations,we make a detailed structure analysis of the ordered water monolayer on ionic model surface with graphene-like hexagonal lattices under various charges and unit cell sizes.We carefully analyze the water density prof i les and potential of mean force,which are the origin of the special hexagonal ordered water structures near the solid surface.The number of hydrogen bonds of the ordered water monolayer near the solid surface is carefully investigated.

    Ordered water monolayer,Hydrogen bond,Molecular dynamics simulations

    I.INTRODUCTION

    The complex behaviors of interfacial water[1–9],which are of great importance in research f i elds of protein stability and folding[10],molecular self-assembly[11],manipulating biomolecules[12],rearrangement of immunodef i ciency virus[13]etc.,have drawn extensive attentions[5–7,14], since the molecular structure and dynamics of the interfacial water molecules are usually different from the bulk properties[15].Interfacial water molecules play an important role in biophysical process.For example,water effectively catalyzes chiral interconversion of thalidomide[16],and dewetting transition promotes the amyloid f i brils formation[17]. Owing to the interaction between the interfacial water and the hydrophilic solid substrate,the diffusion of interfacial water[18]is slower,and the lifetime of hydrogen bonds[19]is longer,than that of the bulk water,as having been conf i rmed by experiments[20–22].Recently,ordered structure of the interfacial water conf i ned[23]at one or two dimensions has been studied extensively by both experimental and theoretical methods.In 2009,we reported a liquid water droplet on a water monolayer,termed as“ordered water monolayer does not completely wet water”on a model surface at room temperature[24].Later,similar phenomena were observed by several experiments on sapphire c-plane electrolyte surface[25]and on self-assemble monolayer(SAM)surfaces with the?COOH terminal[26,27].In addition,theoretical simulations found similar phenomenon on hydroxylated metal oxide surfaces of Al2O3and SiO2[4],Talc[28]and Pt(100)metal surfaces[29].We also explored the effect of morphology[30]and the critical length of the charge dipolesof the solid surface[31]on the structures of interfacial water and the surface wetting behaviors.

    In this article,based on molecular dynamics simulations, we investigate the structure and hydrogen bonds to show detail information of the ordered water monolayer on ionic model surface having graphene-like hexagonal lattices with various charges and unit cell sizes.The article is organized as follows.The ordered structure of water monolayer near the surface is described in Sec.III.A.In Sec.III.B,the water density and the potential of mean force(PMF)[28]are studied.InSec.III.C,thenumberofhydrogenbondsiscalculated to show the stable formation of hydrogen bonds network in the ordered water monolayer.Finally,a short conclusion is presented in the last section.

    II.SIMULATION DETAILS

    We conf i gured a hexagonal solid lattice with 1664 solid atoms and the neighbor bond lengthlwas described in Fig.1, the same as our previous studies[24,32].The initial systems for the molecular dynamics simulations contained a water layer of about 4.0nm thick on the ionic model surface, where positive and negative charges were located diagonally in neighboring hexagon,and it was found that the charge had great inf l uence on the f l ux of water molecules in nanotube[12,32].All the simulations were performed atT= 300K(NVT ensemble),with Gromacs 4.5.4[34]by using a time step of 1.0fs.The Lennard-Jones parameters of the solid atoms wereεss=0.105kcal/mol andσss=33.343?A,and SPC/E water model[35]was used.The particle-mesh Ewald method[13]with a real space cutoff of 1nm was adopted for the long-range electrostatic interactions and a 10?A cutoff was used for the van der Waals interactions.The periodic boundary conditions were applied in three directions.The simulation time for every system was 4ns and the last 2ns data was collected for analysis.

    Two series of simulations were performed to investigate the ordered water monolayer formation on a hexagonal polarity solid surface.In the f i rst series of simulations, the chargeqof the solid atoms increased from 0.6e to 1.0e with 0.1e interval and there were 5252 water molecules in the simulation boxes with the volume of 6.395nm×6.816nm×20.110nm.The value of the neighboring bond length of solid atoms was kept as the constant ofl=0.142nm.In the second series of simulations,the bond lengthlwas set at 0.120nm,0.130nm,0.142nm, 0.150nm and 0.160nm,withq=0.8e,and the water layer thickness was kept at about 4.0nm,with the water molecules of 3525,4314,5252,5721 and 6564,in the simulation boxes of 5.404nm×5.760nm×20.110nm,5.854 nm×6.240 nm×20.110 nm,6.395nm×6.816nm×20.110nm, 6.755nm×7.20nm×20.110nmand7.205nm×7.680 nm×20.110 nm,respectively.

    III.RESULTS AND DISCUSSIONS

    A.Structure analysis of the water monolayer

    To study the structure of water molecules in the water monolayer on the solid surface,two angle parametersθand?are introduced as illustrated in Fig.2(c)and 2(d),whereθis def i ned as the angle between a water molecule dipole and z axis,and?is the angle formed between the projection onto x-y plane of a water dipole and a crystallographic direction[30].Here,the def i nition of the water monolayer is the water molecules in the f i rst layer next to the solid surface with an average thickness of 0.4nm,the same as our previous work[24],which is also consistent with the existence of an experimentally observable monolayer[36].The second layer is def i ned as the water molecules with an average thickness of 0.4nm above the water monolayer.

    As shown in Fig.2(e),two peaks of angleθconf i rm the two states,namely,state 1 and state 2 as depicted in Figs.2(a) and 2(b).The left peaks atθ≈60°represent state 1 with oxygen atoms attracted by the positive charged atoms,while the right peaks atθ≈120°represent state 2 with?OH bonds pointing towards the negative charged atoms.Fig.2(f)is the normalized probability distributions of angle?with three peaks at?≈0°,120°and 240°,which demonstrate that the water molecules in the monolayer can form a 2D hexagonal conf i guration(Fig.2(d)),the same as our previous work[24]. Asqincreases from 0.6e to 1.0e,all the peaks in Figs.2(e) and 2(f)become higher and the water molecules in the monolayer become ordered due to the larger binding of the surface charged atoms.However,the peaks are quite different as the bond lengthlincreases.Atl=0.142nm andq=0.8e,the peaks are the highest(Figs.2(g)and 2(h)),hence the most ordered water molecules in the water monolayer.As theldeparts from 0.142nm,the ordered hexagonal water monolayer gradually disappears.These results show that the ordered water structure greatly depends on the surface charge and suitable cell size.

    B.Water density distribution prof i les and PMF curves

    Figures.3(a)and 3(b)show the water density as a function ofzat differentqandl.The referencez=0 corresponds to the solid surface.Two peaks can be seen for all curves locating atz=0.3nm and 0.6nm.Due to the strong binding of charges on the surface,we can observe a quite high density peak near the solid surface forming the monolayer.The density increases with the charge,reaching the largest atq= 0.9eand1.0e.Withincreasingcellsize,thedensityincreases fi rst untill=0.142nm,where it begins to decrease,indicating the formation and break-down of the ordered structure, respectively.

    Thedensityrelatestopotentialofmeanforce(PMF),F(z), by the expression[28],

    Fig.2.(Color online)(a)State 1 with water molecule adsorbed by positive binding charge and three negative neighbor charges marked with A,A’,B.(b)State 2 with water molecule adsorbed by negative binding charge and three positive neighbor charges marked with C,D,D’.(c) Schematic of angleθdef i ned as the angle between a water molecule dipole and z axis.(d)Schematic of angle?def i ned as the angle formed between the projection onto x-y plane of a water dipole and a crystallographic.(e)Probability distribution ofθin the monolayervs.q.(f) Probability prof i le for angle?in the monolayervs.q.(g)Probability prof i les ofθin the monolayervs.l.(h)Probability distribution of?in the monolayervs.l.

    where,kBis the Boltzmann constant andρw=33nm?3is the number density of bulk water.F(z)is the potential of mean force for bringing a water molecule from the bulk to a distancezfrom the solid surface.Figs.3(c)and 3(d)show the PMF curves and for every curve there are two valleys atz= 0.3nm and 0.6nm.The two valleys account for the adsorption of the solid surface.The minimum PMF atz=0.3nm is about?0.9kcal/mol atq≥0.8e andl=0.142nm.The PMF reveals the adsorption interaction of the solid surfaces at the valleys.The adsorption increases with the charge,displaying a wide range of binding strength to attract the water molecules and form the ordered monolayer.This is different from the bulk water.Suitable cell size is quite important for adsorption interaction of the solid surface and formation ofthe monolayer.The PMF results indicate that the distribution of water molecules and formation of the ordered water monolayer are affected by the charge and cell size.

    Fig.3.(Color online)(a)Density prof i le of water molecules away from the surfacevs.q,divided by the number density of bulk water,ρw= 33nm?3.(b)The density prof i levs.l,ρz/ρw.(c)Potential of mean forceF(z)vs.q.(d)F(z)vs.l.

    Fig.4.(Color online)Average number of hydrogen bonds of a water molecule to other water molecules in the same layer(◆),to water molecules in the second layer(?),and their sum(■)as function ofq(a)andl(b).

    C.Hydrogen bonds in the water monolayer

    The ordered water monolayer affects the formation of hydrogen bonds of the water molecules in the interface.We calculated the average hydrogen bonds of a water molecule to its neighboring water molecules in the same monolayer(“in the monolayer”H bonds),and to water molecules in the second layer(“to the second layer”H bonds),as shown in Fig.4. The criteria characterizing existence of hydrogen bond between two water molecules is the geometric def i nition that their O?O distance is less than 3.5?A and simultaneously the angle H?O···O is less than 30°[37].

    In Fig.4(a),the number of hydrogen bonds within the monolayer increases and the number of the hydrogen bonds between the monolayer and the second layer decreases as the increase of charge.Their sum remains at~2.9 whenq≥0.8e,which approaches 3,the maximum number of hydrogen bonds that any water molecule can form in the monolayer[24].The interaction energy between the monolayer and the charged surface is stronger when the charge increases as we calculate in Sec.III(B).The water molecules bound inthe monolayer make it easy to form hydrogen bond with the water molecule in the same layer.There is competition for formation of hydrogen bonds between the“in the monolayer”H bonds and“to the second layer”H bonds.The increase of former leads to the decrease of latter for weaker interaction between the water molecules in the monolayer and water molecules in the second layer.In Fig.4(b),whenl= 0.142nm andq=0.8e,the average number of hydrogen bonds among the water molecules in the monolayer is larger than the others,and the number of hydrogen bonds between the monolayer and the second layer is the smallest.The total number of hydrogen bonds per water molecule in the monolayer is also about 3.Thus,the large charge and the suitable unit cell size(l=0.142nm)make the water molecules in the monolayer prefer to form hydrogen bonds within the water monolayer,rather than form hydrogen bonds between the monolayer and water molecules in the second layer.Clearly, the unit cell size is also the key to the formation of hydrogen bonds of the water molecules near the solid surface.

    IV.CONCLUSION

    In summary,we study the structure,properties of free energy and hydrogen bonds of ordered water monolayer on ionic model surface with graphene-like hexagonal lattices with different charges and unit cell sizes by molecular dynamics simulations.The results indicate that both the charge and unit cell size have a great effect on the water molecular behaviors in the monolayer,such as water molecular conf i gurations and the hydrogen bond network.The charged surface displaying strong adhesive interaction is described by the water density prof i les and potential of mean force.We have also carefully investigated the number of hydrogen bonds of the ordered water monolayer near the solid surface.It is expected that the f i nding in this paper may help to deeply understand the ordered water monolayer on the surface.

    ACKNOWLEDGEMENTS

    We thank Prof.FANG Hai-Ping and Dr.XIU Peng for the helpful discussions and suggestions.

    [1]Stirnemann G,Rossky P J,Hynes J T,et al.Faraday Discuss, 2010,146:263–281.

    [2]Stirnemann G,Castrill′on S R V,Hynes J T,et al.Phys Chem Chem Phys,2011,13:19911–19917.

    [3]Malani A and Ayappa K G.J Chem Phys,2012,136:194701.

    [4]Phan A,Ho T A,Cole D R,et al.J Phys Chem C,2012,116: 15962–15973.

    [5]Ostroverkhov V,Waychunas G A,Shen Y R.Phys Rev Lett, 2005,94:46102.

    [6]Zheng J M,Chin W C,Khijniak E,et al.Adv Colloid Interfac, 2006,127:19–27.

    [7]Sovago M,Campen R K,Wurpel G W H,et al.Phys Rev Lett, 2008,100:173901.

    [8]Zanotti J M,Bellissent-Funel M C,Chen S H.Europhys Lett, 2005,71:91–97.

    [9]Goertz M P,Houston J,Zhu X Y.Langmuir,2007,23:5491–5497.

    [10]Hummer G,Garde S,Garc?a A E,et al.Chem Phys,2000,258: 349–370.

    [11]Vauthey S,Santoso S,Gong H,et al.P Natl Acad Sci USA, 2002,99:5355–5360.

    [12]Xiu P,Zhou B,Qi W P,et al.J Am Chem Soc,2009,131: 2840–2845.

    [13]York D M,Darden T A,Pedersen L G,et al.Biochemistry-US, 1993,32:1443–1453.

    [14]Gragson D E,McCarty B M,Richmond G L.J Am Chem Soc, 1997,119:6144–6152.

    [15]Bandyopadhyay S,Tarek M,Klein M L.Curr Opin Colloid Int, 1998,3:242–246.

    [16]Tian C,Xiu P,Meng Y,et al.Chem-Eur J,2012,18:14305–14313.

    [17]Yang Z,Shi B,Lu H,et al.J Phys Chem B,2011,115:11137–11144.

    [18]Chen S H,Gallo P,Bellissent-Funel M C.Can J Phys,1995,73:703–709.

    [19]Li J,Liu T,Li X,et al.J Phys Chem B,2005,109:13639–13648.

    [20]Riter R E,Willard D M,Levinger N E.J Phys Chem B,1998,102:2705–2714.

    [21]Pal S K,Peon J,Bagchi B,et al.J Phys Chem B,2002,106: 12376–12395.

    [22]Pal S K,Peon J,Zewail A H.P Natl Acad Sci USA,2002,99: 1763–1768.

    [23]Pal S,Balasubramanian S,Bagchi B.J Phys Chem B,2003,107:5194–5202.

    [24]Wang C,Lu H,Wang Z,et al.Phys Rev Lett,2009,103: 137801.

    [25]L¨utzenkirchen J,Zimmermann R,Preoˇcanin T,et al.Adv Colloid Interfac,2010,157:61–74.

    [26]James M,Darwish T A,Ciampi S,et al.Soft Matter,2011,7: 5309–5318.

    [27]James M,Ciampi S,Darwish T A,et al.Langmuir,2011,27: 10753–10762.

    [28]Rotenberg B,Patel A J,Chandler D.J Am Chem Soc,2011,133:20521–20527.

    [29]Limmer D T,Willard A P,Madden P,et al.P Natl Acad Sci USA,2013,110:4200–4205.

    [30]Wang C,Zhou B,Xiu P,et al.J Phys Chem C,2011,115: 3018–3024.

    [31]Wang C,Zhou B,Tu Y,et al.Sci Rep,2012,2:358.

    [32]Ren X P,Zhou B,Li L T,et al.Chin Phys B,2013,22:016801.

    [33]Xu W,Tu Y,Wang C,et al.Nucl Sci Tech,2011,22:307–310.

    [34]Hess B,Kutzner C,van der Spoel D,et al.J Chem Theory Comput,2008,4:435–447.

    [35]Berendsen H J C,Grigera J R,Straatsma T P.J Phys Chem, 1987,91:6269–6271.

    [36]Miranda P B,Xu L,Shen Y R,et al.Phys Rev Lett,1998,81: 5876–5879.

    [37]Luzar A and Chandler D.J Chem Phys,1993,98:8160–8173.

    10.13538/j.1001-8042/nst.25.020502

    (Received January 8,2014;accepted in revised form February 24,2014;published online March 20,2014)

    ?Supported by the National Science Foundation of China(Nos.11290164 and 11204341),the Knowledge Innovation Program of SINAP,the Knowledge Innovation Program of the Chinese Academy of Sciences,Shanghai Supercomputer Center of China and Supercomputing Center of Chinese Academy of Science

    ?Corresponding author,wangchunlei@sinap.ac.cn

    猜你喜歡
    趙亮春雷
    春雷響
    幼兒100(2024年11期)2024-03-27 08:32:56
    惜物
    做人與處世(2022年2期)2022-05-26 22:34:53
    花事
    虎子的周日
    十幾歲(2021年5期)2021-11-22 23:37:22
    A well-balanced positivity preserving two-dimensional shallow flow model with wetting and drying fronts over irregular topography *
    Interannual variation of nutrients along a transect across the Kuroshio and shelf area in the East China Sea over 40 years*
    Simulating the responses of a low-trophic ecosystem in the East China Sea to decadal changes in nutrient load from the Changjiang (Yangtze) River*
    豐 碑
    春雷
    春雷乍響活驚蟄
    精品国产一区二区久久| 午夜免费鲁丝| xxxhd国产人妻xxx| 又黄又粗又硬又大视频| 动漫黄色视频在线观看| 在线观看人妻少妇| 亚洲av美国av| videosex国产| 人成视频在线观看免费观看| 免费观看a级毛片全部| 国产成人一区二区三区免费视频网站| 男女高潮啪啪啪动态图| 国产成人免费观看mmmm| 国产精品 欧美亚洲| 国产国语露脸激情在线看| 一区二区av电影网| 一级毛片电影观看| 成人影院久久| 青青草视频在线视频观看| 亚洲成人手机| 国产精品久久久久成人av| 97人妻天天添夜夜摸| 纯流量卡能插随身wifi吗| 亚洲精品在线观看二区| 久久久精品免费免费高清| 人人妻人人爽人人添夜夜欢视频| 国产在线观看jvid| 国产91精品成人一区二区三区 | 色播在线永久视频| 久久精品国产综合久久久| 男女免费视频国产| 成人精品一区二区免费| 人人妻人人澡人人看| 涩涩av久久男人的天堂| 久久国产亚洲av麻豆专区| 两个人看的免费小视频| 美国免费a级毛片| 老汉色∧v一级毛片| 亚洲精品在线美女| 女人高潮潮喷娇喘18禁视频| 午夜精品国产一区二区电影| 国产精品99久久99久久久不卡| 看免费av毛片| 曰老女人黄片| 欧美日韩精品网址| 亚洲专区字幕在线| 超碰97精品在线观看| 丁香六月天网| 中文字幕人妻丝袜一区二区| 免费女性裸体啪啪无遮挡网站| 国产精品 国内视频| 如日韩欧美国产精品一区二区三区| 国产精品美女特级片免费视频播放器 | 黄片小视频在线播放| 天堂动漫精品| av网站免费在线观看视频| 国产精品一区二区在线观看99| 国产福利在线免费观看视频| 69精品国产乱码久久久| 国产精品久久电影中文字幕 | 建设人人有责人人尽责人人享有的| 狠狠精品人妻久久久久久综合| 国产精品久久久久久精品古装| 国产xxxxx性猛交| 精品乱码久久久久久99久播| 高清黄色对白视频在线免费看| 国产熟女午夜一区二区三区| 伦理电影免费视频| 日韩免费高清中文字幕av| 日韩中文字幕欧美一区二区| 日韩精品免费视频一区二区三区| 亚洲av电影在线进入| 免费看十八禁软件| 午夜激情久久久久久久| 搡老熟女国产l中国老女人| 国产精品免费视频内射| 老熟女久久久| 国产不卡av网站在线观看| 久久国产精品大桥未久av| 久久久久国内视频| 日本vs欧美在线观看视频| 国产aⅴ精品一区二区三区波| 国产成+人综合+亚洲专区| 精品一区二区三区视频在线观看免费 | 亚洲专区国产一区二区| 亚洲美女黄片视频| 国产免费现黄频在线看| 午夜精品久久久久久毛片777| 欧美日韩亚洲国产一区二区在线观看 | 麻豆成人av在线观看| 午夜免费成人在线视频| 欧美日本中文国产一区发布| 亚洲av电影在线进入| 国产精品成人在线| 高清av免费在线| netflix在线观看网站| 一区二区三区激情视频| 午夜福利欧美成人| 成在线人永久免费视频| 亚洲一区二区三区欧美精品| 日韩中文字幕视频在线看片| 女人爽到高潮嗷嗷叫在线视频| 亚洲熟女毛片儿| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁网站网址无遮挡| 一边摸一边抽搐一进一小说 | 亚洲国产欧美一区二区综合| 亚洲色图 男人天堂 中文字幕| 日韩中文字幕视频在线看片| 国产在视频线精品| 999久久久国产精品视频| 国产精品国产av在线观看| 99国产综合亚洲精品| 一区二区三区精品91| 操美女的视频在线观看| 色综合婷婷激情| 精品国产亚洲在线| 男女床上黄色一级片免费看| 久久精品91无色码中文字幕| 午夜成年电影在线免费观看| 黄色丝袜av网址大全| 在线十欧美十亚洲十日本专区| 午夜视频精品福利| 他把我摸到了高潮在线观看 | 亚洲精华国产精华精| 操出白浆在线播放| 多毛熟女@视频| 超碰成人久久| 丝袜喷水一区| 99精国产麻豆久久婷婷| 国产激情久久老熟女| www.精华液| 美国免费a级毛片| 久久久久久人人人人人| 一进一出好大好爽视频| 五月开心婷婷网| 宅男免费午夜| a级片在线免费高清观看视频| 美女高潮到喷水免费观看| 精品久久久久久久毛片微露脸| 国产免费现黄频在线看| 亚洲一码二码三码区别大吗| 国产区一区二久久| 国产视频一区二区在线看| 亚洲精品美女久久久久99蜜臀| 无人区码免费观看不卡 | 男女之事视频高清在线观看| 久久久久久久久免费视频了| 99国产极品粉嫩在线观看| 99国产精品一区二区蜜桃av | 日本黄色视频三级网站网址 | 国产一区二区在线观看av| 精品久久久精品久久久| 久久久精品免费免费高清| 波多野结衣一区麻豆| 色播在线永久视频| 久久精品熟女亚洲av麻豆精品| 电影成人av| 50天的宝宝边吃奶边哭怎么回事| 午夜福利视频在线观看免费| 国产色视频综合| 大片免费播放器 马上看| 99re在线观看精品视频| 又大又爽又粗| 亚洲国产欧美网| 国产又爽黄色视频| 后天国语完整版免费观看| 精品卡一卡二卡四卡免费| 国产精品久久久av美女十八| 日本av免费视频播放| 午夜日韩欧美国产| 精品人妻在线不人妻| 香蕉国产在线看| 亚洲国产欧美网| avwww免费| 男人操女人黄网站| 亚洲一区中文字幕在线| 国产成人精品在线电影| 91大片在线观看| 亚洲专区中文字幕在线| 免费女性裸体啪啪无遮挡网站| 正在播放国产对白刺激| 亚洲国产毛片av蜜桃av| 99热国产这里只有精品6| 亚洲自偷自拍图片 自拍| 日韩欧美一区二区三区在线观看 | 久久精品国产99精品国产亚洲性色 | 欧美午夜高清在线| 国产单亲对白刺激| 每晚都被弄得嗷嗷叫到高潮| 纵有疾风起免费观看全集完整版| 在线观看免费高清a一片| 日本欧美视频一区| 在线观看免费午夜福利视频| 午夜激情av网站| 亚洲久久久国产精品| 亚洲国产av新网站| 成人特级黄色片久久久久久久 | 淫妇啪啪啪对白视频| 国产亚洲精品第一综合不卡| 这个男人来自地球电影免费观看| 一本久久精品| 精品人妻熟女毛片av久久网站| 成年女人毛片免费观看观看9 | 成人av一区二区三区在线看| 高清黄色对白视频在线免费看| 50天的宝宝边吃奶边哭怎么回事| 国产真人三级小视频在线观看| 18在线观看网站| 亚洲色图综合在线观看| 国产一区有黄有色的免费视频| 中文欧美无线码| 久久精品亚洲精品国产色婷小说| 亚洲精品美女久久久久99蜜臀| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区mp4| 女性生殖器流出的白浆| av天堂久久9| 嫩草影视91久久| 交换朋友夫妻互换小说| 真人做人爱边吃奶动态| 国产91精品成人一区二区三区 | 热99久久久久精品小说推荐| 成年女人毛片免费观看观看9 | 一个人免费看片子| 黄色片一级片一级黄色片| 国产精品99久久99久久久不卡| 欧美日韩中文字幕国产精品一区二区三区 | 在线 av 中文字幕| 99国产综合亚洲精品| 丰满迷人的少妇在线观看| 午夜福利视频在线观看免费| 黄色片一级片一级黄色片| 久热爱精品视频在线9| 国产免费现黄频在线看| 精品第一国产精品| 久热这里只有精品99| 国产成人av教育| 变态另类成人亚洲欧美熟女 | 一级a爱视频在线免费观看| 国产精品.久久久| 欧美中文综合在线视频| 91成人精品电影| 国产av又大| 欧美性长视频在线观看| 成年人免费黄色播放视频| 大片电影免费在线观看免费| 日本五十路高清| a在线观看视频网站| 又黄又粗又硬又大视频| 日韩视频一区二区在线观看| 精品国产乱子伦一区二区三区| 精品一品国产午夜福利视频| 中文字幕色久视频| 亚洲av成人不卡在线观看播放网| 男人操女人黄网站| 亚洲成人免费电影在线观看| 国产成人精品在线电影| 国精品久久久久久国模美| 国产av一区二区精品久久| 桃花免费在线播放| 大型黄色视频在线免费观看| 免费观看a级毛片全部| 水蜜桃什么品种好| 18禁美女被吸乳视频| 国产av国产精品国产| 国产高清激情床上av| 国产麻豆69| 亚洲中文字幕日韩| 亚洲人成77777在线视频| 精品第一国产精品| 一进一出好大好爽视频| 法律面前人人平等表现在哪些方面| 自线自在国产av| 久久精品亚洲av国产电影网| 女同久久另类99精品国产91| 亚洲一码二码三码区别大吗| 超碰成人久久| 少妇裸体淫交视频免费看高清 | 欧美日韩一级在线毛片| 丰满饥渴人妻一区二区三| 国产成人精品无人区| 日日夜夜操网爽| 欧美变态另类bdsm刘玥| 成年女人毛片免费观看观看9 | 精品亚洲乱码少妇综合久久| 欧美精品一区二区免费开放| 亚洲欧美精品综合一区二区三区| 国产免费福利视频在线观看| 脱女人内裤的视频| 少妇被粗大的猛进出69影院| av又黄又爽大尺度在线免费看| 黄网站色视频无遮挡免费观看| 91av网站免费观看| 搡老熟女国产l中国老女人| 欧美日本中文国产一区发布| 天堂8中文在线网| h视频一区二区三区| 亚洲成国产人片在线观看| 91字幕亚洲| 久久午夜亚洲精品久久| 日韩一区二区三区影片| 丝袜人妻中文字幕| 黑人巨大精品欧美一区二区mp4| 亚洲欧美一区二区三区黑人| 超碰成人久久| 久久人妻福利社区极品人妻图片| 欧美乱码精品一区二区三区| 精品国产一区二区三区久久久樱花| 亚洲精品av麻豆狂野| 欧美黄色片欧美黄色片| 黑人欧美特级aaaaaa片| 高清视频免费观看一区二区| 亚洲情色 制服丝袜| 欧美变态另类bdsm刘玥| 久久久久精品国产欧美久久久| 国产精品麻豆人妻色哟哟久久| 一进一出抽搐动态| 飞空精品影院首页| 成人黄色视频免费在线看| 在线观看66精品国产| 18禁美女被吸乳视频| 欧美乱码精品一区二区三区| 久久中文字幕人妻熟女| 亚洲午夜理论影院| 国产av精品麻豆| 中文字幕av电影在线播放| 亚洲,欧美精品.| 国产片内射在线| 男女无遮挡免费网站观看| 国产单亲对白刺激| 免费少妇av软件| 操美女的视频在线观看| videos熟女内射| 18禁黄网站禁片午夜丰满| 999久久久精品免费观看国产| 国产黄色免费在线视频| 亚洲欧美日韩另类电影网站| 久久天躁狠狠躁夜夜2o2o| 色婷婷久久久亚洲欧美| 大型av网站在线播放| 国产在视频线精品| 18禁美女被吸乳视频| 夜夜骑夜夜射夜夜干| 黄色视频,在线免费观看| 久久 成人 亚洲| 精品少妇黑人巨大在线播放| 天堂8中文在线网| 免费在线观看完整版高清| 国产高清国产精品国产三级| 少妇被粗大的猛进出69影院| 欧美大码av| 久久久精品免费免费高清| 午夜久久久在线观看| 啦啦啦免费观看视频1| 久久精品国产99精品国产亚洲性色 | 午夜福利免费观看在线| 在线观看免费高清a一片| 亚洲精品国产精品久久久不卡| xxxhd国产人妻xxx| 国产亚洲欧美在线一区二区| 亚洲av成人一区二区三| 成人免费观看视频高清| 亚洲av片天天在线观看| 大陆偷拍与自拍| 中文字幕高清在线视频| 欧美日韩亚洲综合一区二区三区_| 咕卡用的链子| 精品免费久久久久久久清纯 | 天天影视国产精品| 老司机福利观看| 国产一区有黄有色的免费视频| 亚洲成国产人片在线观看| tube8黄色片| 狂野欧美激情性xxxx| 亚洲成人免费av在线播放| 国产成人免费观看mmmm| 国产又爽黄色视频| svipshipincom国产片| 两个人免费观看高清视频| 国产精品久久电影中文字幕 | 国产精品九九99| 久久国产亚洲av麻豆专区| 视频区欧美日本亚洲| 黄色毛片三级朝国网站| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 国产 在线| 国产成人av教育| 亚洲精品在线观看二区| 成年女人毛片免费观看观看9 | 久久久久精品人妻al黑| 精品少妇内射三级| 免费观看av网站的网址| 免费日韩欧美在线观看| 久久精品91无色码中文字幕| 精品国产超薄肉色丝袜足j| 久久性视频一级片| 18禁观看日本| 成人国产av品久久久| 夜夜夜夜夜久久久久| 一个人免费看片子| www.精华液| 国产欧美日韩一区二区三| 久久热在线av| 日韩三级视频一区二区三区| 99九九在线精品视频| 肉色欧美久久久久久久蜜桃| 精品福利观看| 国产色视频综合| 午夜视频精品福利| 免费不卡黄色视频| 国产日韩欧美在线精品| 在线播放国产精品三级| 老汉色av国产亚洲站长工具| 男男h啪啪无遮挡| 精品国产一区二区三区久久久樱花| 亚洲自偷自拍图片 自拍| 69av精品久久久久久 | 黄色片一级片一级黄色片| 精品人妻1区二区| 日韩中文字幕视频在线看片| 国产免费av片在线观看野外av| www.熟女人妻精品国产| 国产一区二区三区综合在线观看| 精品高清国产在线一区| 亚洲av第一区精品v没综合| 欧美日韩av久久| 欧美亚洲 丝袜 人妻 在线| 另类精品久久| 国产成人av教育| 午夜福利视频在线观看免费| 国产精品欧美亚洲77777| 黄片小视频在线播放| av国产精品久久久久影院| 亚洲人成77777在线视频| 波多野结衣一区麻豆| 欧美 日韩 精品 国产| 18禁黄网站禁片午夜丰满| 国产野战对白在线观看| 欧美日韩亚洲国产一区二区在线观看 | 免费在线观看日本一区| 99精国产麻豆久久婷婷| 欧美日韩精品网址| 久久精品亚洲av国产电影网| 国产深夜福利视频在线观看| 午夜激情久久久久久久| 一本一本久久a久久精品综合妖精| 亚洲精品久久午夜乱码| 国产男女超爽视频在线观看| www日本在线高清视频| 一边摸一边抽搐一进一小说 | 欧美激情极品国产一区二区三区| 日韩免费高清中文字幕av| 啪啪无遮挡十八禁网站| 黑人巨大精品欧美一区二区mp4| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区蜜桃| 午夜激情久久久久久久| 欧美黑人欧美精品刺激| 咕卡用的链子| 色精品久久人妻99蜜桃| 亚洲国产成人一精品久久久| 国产97色在线日韩免费| 欧美变态另类bdsm刘玥| 黄色毛片三级朝国网站| 男女免费视频国产| 激情视频va一区二区三区| 人人妻人人澡人人看| 搡老岳熟女国产| 一级毛片电影观看| 国产在线免费精品| 女性被躁到高潮视频| 又大又爽又粗| 亚洲av成人不卡在线观看播放网| 亚洲avbb在线观看| 国产欧美日韩精品亚洲av| 91九色精品人成在线观看| 夜夜爽天天搞| 亚洲三区欧美一区| 三级毛片av免费| 美女午夜性视频免费| 亚洲欧洲精品一区二区精品久久久| 在线天堂中文资源库| 一本大道久久a久久精品| av超薄肉色丝袜交足视频| 丝袜在线中文字幕| 可以免费在线观看a视频的电影网站| 久久毛片免费看一区二区三区| 窝窝影院91人妻| 一夜夜www| 亚洲五月色婷婷综合| 国产精品美女特级片免费视频播放器 | 99热国产这里只有精品6| 在线观看一区二区三区激情| 久久人人爽av亚洲精品天堂| 免费高清在线观看日韩| 亚洲专区国产一区二区| 无人区码免费观看不卡 | 精品国内亚洲2022精品成人 | 成人手机av| av天堂在线播放| √禁漫天堂资源中文www| 在线天堂中文资源库| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩成人在线一区二区| 日本五十路高清| 久久久精品94久久精品| 成人亚洲精品一区在线观看| 国产精品一区二区精品视频观看| 免费在线观看黄色视频的| 精品一区二区三卡| 淫妇啪啪啪对白视频| 久久人妻福利社区极品人妻图片| 亚洲熟女毛片儿| 色婷婷av一区二区三区视频| 欧美午夜高清在线| 久久精品国产综合久久久| 亚洲精品自拍成人| 精品亚洲乱码少妇综合久久| 中文字幕最新亚洲高清| 精品国产一区二区三区久久久樱花| 侵犯人妻中文字幕一二三四区| 无人区码免费观看不卡 | 亚洲精品av麻豆狂野| 国产成人精品久久二区二区91| 老汉色∧v一级毛片| 精品久久蜜臀av无| 捣出白浆h1v1| 亚洲午夜精品一区,二区,三区| 久久久国产成人免费| 日本欧美视频一区| av国产精品久久久久影院| 亚洲一码二码三码区别大吗| 中文字幕制服av| 国产精品免费大片| 欧美日韩中文字幕国产精品一区二区三区 | h视频一区二区三区| 黄色毛片三级朝国网站| av超薄肉色丝袜交足视频| 成人国产一区最新在线观看| 丰满人妻熟妇乱又伦精品不卡| 90打野战视频偷拍视频| 麻豆成人av在线观看| 国产一区二区在线观看av| 久久天堂一区二区三区四区| 搡老熟女国产l中国老女人| 十八禁人妻一区二区| 91成人精品电影| 人人澡人人妻人| 亚洲欧美一区二区三区黑人| 成人av一区二区三区在线看| 国产成人啪精品午夜网站| 国产免费现黄频在线看| 女同久久另类99精品国产91| 最新在线观看一区二区三区| 99re6热这里在线精品视频| 高清欧美精品videossex| 亚洲熟女精品中文字幕| 精品视频人人做人人爽| 成人精品一区二区免费| 久久精品成人免费网站| 精品亚洲成国产av| 9色porny在线观看| 免费观看av网站的网址| 12—13女人毛片做爰片一| 国产精品免费大片| 精品久久久久久久毛片微露脸| 日韩一区二区三区影片| 国产单亲对白刺激| 日韩三级视频一区二区三区| 九色亚洲精品在线播放| 操美女的视频在线观看| 中文字幕人妻丝袜一区二区| 亚洲午夜精品一区,二区,三区| 午夜老司机福利片| 黄片小视频在线播放| 亚洲va日本ⅴa欧美va伊人久久| av福利片在线| 他把我摸到了高潮在线观看 | 日韩大码丰满熟妇| 亚洲国产毛片av蜜桃av| 日日摸夜夜添夜夜添小说| 欧美精品人与动牲交sv欧美| 精品亚洲乱码少妇综合久久| 黄片播放在线免费| 亚洲国产精品一区二区三区在线| 男人舔女人的私密视频| 黄色丝袜av网址大全| 中文字幕另类日韩欧美亚洲嫩草| 欧美 日韩 精品 国产| 丰满人妻熟妇乱又伦精品不卡| 国内毛片毛片毛片毛片毛片| 12—13女人毛片做爰片一| 免费av中文字幕在线| 国内毛片毛片毛片毛片毛片| 女人被躁到高潮嗷嗷叫费观| 色尼玛亚洲综合影院| 欧美激情高清一区二区三区| 婷婷成人精品国产| 国产男女内射视频| 午夜福利在线免费观看网站| 妹子高潮喷水视频| 夫妻午夜视频| 中文字幕人妻丝袜制服| 老司机靠b影院| 国产片内射在线| 一夜夜www| 韩国精品一区二区三区| 国产在线精品亚洲第一网站| 精品福利永久在线观看| 国产野战对白在线观看| 国产av国产精品国产| 国产成人影院久久av| 丁香欧美五月| 免费一级毛片在线播放高清视频 |