• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation and Simulation Verification of Thermal Insulation Property of Fiber Fabric Materials in Space Environment

    2019-12-16 08:22:20LUOCaiYunYANGLiPingTAOYeZHONGQiuLIHuiDong
    無機材料學報 2019年11期
    關鍵詞:絕熱材料織物纖維

    LUO Cai-Yun, YANG Li-Ping, TAO Ye, ZHONG Qiu, LI Hui-Dong

    Evaluation and Simulation Verification of Thermal Insulation Property of Fiber Fabric Materials in Space Environment

    LUO Cai-Yun, YANG Li-Ping, TAO Ye, ZHONG Qiu, LI Hui-Dong

    (Analysis and Testing Center for Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China)

    Equivalent experimental conditions to those in space were used to characterize the effective thermal conductivity of the fiber fabric insulation used in the multilayer insulation system of the material preparation furnace loaded on Tiangong-2 Space Station. By evaluating the material following variations in the on-orbit temperature and on-track pressure, the microscopic heat transfer mechanism was studied. The furnace internal temperature field under different working conditions was also simulated according to the characterization results, and the data reliability was verified. The results showed that the effective thermal conductivity of the fiber fabric increases non-linearly with rising temperature; moreover, with lower pressures, the growth trends are gentler. With a pressure drop, the results present the trend of a decaying exponential function with a critical pressure value. Radiation and gas phase heat conduction are the main factors affecting the heat transfer of the fiber fabric under the microgravity environment. Simulation results of the temperature field demonstrate that the temperature field distribution trend matches well with that of the measured results. The maximum calculation error of the furnace center is 1.3% of the measured temperature. This method can be used to evaluate the thermal insulation performance of the multilayer fiber material close to the practical working conditions more reasonably, and also to improve the accuracy of thermal simulation prediction models.

    space microgravity environment; fiber fabric insulation material; effective thermal conductivity; steady-state heat flow meter method; temperature field simulation

    In microgravity environments, the adverse factors such as floatation, convection, precipitation, and static pressure changes which affect the growth and quality of materials are inhibited at the ground level. Therefore, the space environment has ideal conditions for growing high-performance crystals and ceramics[1-5]. The space material furnace discussed herein is a comprehensive experimental device for material preparation that is operated under conditions of microgravity. The multilayer insulation system of the furnace adopts a composite structure comprising a metal reflective layer and glass fiber insulation layer that can maintain its integrity when subjected to the characteristic conditions of a high vacuum, large temperature gradient, and strong radiation. To meet the requirements for preparing high-quality materials, it is necessary to simulate the temperature field distribution, temperature field stability, and influence of the sample itself on the temperature field under different working conditions, and thus optimize the thermal environment inside the furnace and match the practical working conditions of space as much as possible. In this process, the thermal conductivity of the fiber insulation material next to the heating factor of the test furnace is the key calculation parameter, and its accuracy directly affects the consistency of the temperature field simulations, which in turn affects the scientific validity of the simulation calculations for the whole insulation system.

    Numerous studies have already been conducted on the thermal insulation properties of fiber materials in aerospace multilayer insulation systems, including test meth-ods as well as analysis of the heat transfer property with the microstructure modeling theory[6-9]. However, due to the structural complexity of the fiber materials, various internal heat transfer methods coexist. Consequently, the factors affecting the thermal insulation performance of the materials are also complex and diverse[10-11], especially in aerospace applications where the thermal conductivity of fiber materials changes with pressure. More-over, the different volume densities in different assembly modes can cause differences in the thermal insulation performance[12]. Therefore, in the application of space engineering simulations, the use of theoretical data or thermal conductivity values under general conditions often leads to a large deviation of the calculated data from the actual situation, thus making it difficult to obtain an accurate simulation model.

    For more accurate simulation of the thermal performance of the material preparation furnace loaded on Tiangong-2 Space Station under various working conditions, this study examined different pressures and temperatures similar to those of space trajectories under equivalent experimental conditions and used the steady-state heat flow method to measure the effective thermal conductivity of the multilayer fiber fabric in the furnace insulation system. The measurement results were analyzed from the perspective of the microscopic heat transfer mechanism. Subsequently, simulations of the furnace temperature field were conducted, and the results were compared with the measured temperature. It was found that the simulated data fitted the measured data well.

    1 Materials and methods

    1.1 Test material

    The test material was high silica glass fiber cloth. The scanning electron microscopy (SEM) image of the morphological structure of the fiber fabric is shown in Fig. 1. The material had a plain weave with an areal density of 240 g/m2and a single layer thickness of ~0.26 mm. Fig. 2 illustrates the usage of the fiber cloth in the furnace. The fiber cloth was stacked in multiple layers and filled into a cylindrical shape next to the innermost layer of the furnace lining. The inner diameter of the filling space was 50 mm, outer diameter, 74 mm, and overall bulk density of the fiber fabric after filling, ~0.9 g/cm3. In order to match the volume density of the actual working conditions as much as possible, the test sample was pressurized to a thickness of 20 mm for 84 layers, with an approximate volume density of 0.93 g/cm3.

    Fig. 1 SEM image showing the surface morphology of the fiber fabric

    Fig. 2 Application of fiber fabric in the space material furnace

    1.2 Test principle and test device

    Considering the anisotropy of the thermal conductivity of fiber fabrics, the one-dimensional steady-state heat flow meter test method based on Fourier’s law[13]was employed to measure the effective thermal conductivity of the fabric in the thickness direction.

    One-dimensional stable heat passes through an infinite plate sample from the top to bottom (Fig. 3). After reaching thermal equilibrium, the thermal conductivity along the thickness direction of the sample can be calculated as Eq. (1):

    The test device employed in this study (Fig. 4) was a typical heat flow test device designed in accordance with GB/T10295-2008[14]. To meet the needs of space environment measurements, some improvements to the structure were made relative to a general-purpose device. Specifically, a sample vacuum chamber was added, in which the pressure could be controlled from 10 Pa to atmospheric pressure. Additionally, the heating plate underwent partition heating instead of the conventional integral heating. A silicon carbide heat-uniform plate was also added between the heating plate and the sample. Information on the heat flux was collected by a thin film heat flow meter (thickness<1 mm). These improvements ensured that the sample was always in the one-dimen-sional stable temperature field during testing, and the measurement uncertainty of the entire device was ±5%[15].

    Fig. 3 Principle of steady-state heat flow meter test

    Fig. 4 Vacuum heat flow meter with the high-temperature thermal conductivity instrument

    1.3 Equivalent environmental test conditions

    According to the realistic pressures and temperatures experienced by the furnace on different trajectories in space, the thermal conductivity was measured at temperatures from 373 K to 873 K in 100 K increments, and under pressures that gradually decreased from atmospheric pressure to 0.02 kPa. First, the thermal conductivity of each temperature point was tested under atmospheric pressure.Subsequently, the sample chamber was vacuumized to the next target pressure, following which the testing steps for thermal conductivity were repeated at each temperature point, until the entire target pressure interval was tested.

    2 Results and discussion

    2.1 Effective thermal conductivity changes with temperature

    Fig. 5 shows that with increasing temperature, the effective thermal conductivity of the fiber cloth increased non-linearly, and the growth rate increased. The increase for the former varied from 34% to 83% with different pressures. At different temperatures, the decrease in ther-mal conductivity with pressure concentrated be-tw-een 74% and 79%. At lower pressures, the effective thermal conductivity was smaller, and the trend with increasing temperature was also slower. The effective ther-mal conductivity was maximum at atmospheric pressure and minimum at 0.02 kPa, with increase rates of 47% and 83%, respectively, with increasing temperature. Thus, the thermal conductivity of the fiber fabric was more sen-sitive to the change in the vacuum than the temperature.

    Fig. 5 Effective thermal conductivity changes with different tem-peratures

    2.2 Effective thermal conductivity changes with pressure

    Fig. 6 shows that the thermal conductivity decreased with decreasing pressure from the atmospheric pressure

    to 50 kPa.However, the decrease was not obvious: in the 10–50 kPa interval, the thermal conductivity showed a significant decrease of 12%–17% with decreasing pressure. As the pressure was further reduced from 10 kPa, the thermal conductivity began to decrease sharply, and by 0.02 kPa, the drop was 68%–77%. Thus, in practical applications, the pressure needs to be <10 kPa to realize more effective insulation effects of the fabrics. Furthermore for >473 K, with decreasing temperature, the thermal conductivity decreased at a higher rate than that for <473 K, because of the more obvious radiation effects on the effective thermal conductivity in the high-temperature section.

    2.3 Microscopic heat transfer mechanism analysis

    Multilayer fiber insulation materials have complex internal heat transfer mechanisms, which mainly involves conduction, radiation and convection. The convection heat transfer contribution is small enough to be negligible when the density of the fiber fabric is greater than 20 kg/m3[16-17]. At room temperature ((25±5) ℃) and atmospheric pressure, the heat transfer of the fiber fabric mainly involves solid-phase and gas-phase heat conduction. Solid-phase heat conduction occurs through contact of the fiber filaments, and gas-phase heat conduction occursthe free movement of gas molecules in the fiber space as well as through collisions with each other.

    Fig. 6 Effective thermal conductivity changes with different pressures

    As the temperature increased in this study, the thermal conductivity of the quartz fiber and the internal gas phase began to increase. The SEM image (Fig. 7) of the fiber filament shows that the fiber has a microscale diameter, and the contact area between the filaments is small. Moreover, the fiber consists of 97% fused quartz, which has a low thermal conductivity. Thus, the effect of solid heat conduction was much smaller than that of the gas. As the temperature increased further, the radiation began to increase in proportion to the fourth power of the temperature. It then propagated through the interstitial spaces of the fibers and through the fibers themselves, which radiated again after absorption. The radiation effect was more obvious at higher temperatures. Therefore, the total effective thermal conductivity in Fig. 5 showed a trend of rapid increase with increasing temperature.

    When the pressure decreases, the density of gas mole-cules in fiber voids is reduced and intermolecular colli-sions become slower, the free path of molecular motion also starts to lengthen, which reduces the gas-phase heat conduction. Therefore, with lower pressures, the coupling effective thermal conductivity becomes smaller; consequently, the growth rate is lower with increasing temperatures. In conclusion, the results of this study showed that the changes in the temperature and pressure not only affected the thermal conductivity of each heat transfer factor, but also changed their proportion during heat transfer.

    Fig. 6 shows a critical pressure of 10 kPa, which relates to the temperature, pressure, and Knudsen number (ratio of the free path of gas molecules to the characteristic size of fiber void)[18-19]. When the pressure was lower than the critical point, the thermal conductivity of the residual gas rapidly reduced to a negligible value, and the effective thermal conductivity of the fiber fabric also decreased dramatically until only solid heat conduction and radiation remained. Subsequently, the total effective thermal conductivity approached a constant minimum value.

    Fig. 7 SEM image showing the fiber filament morphology

    3 Simulation verification of matching tests

    3.1 Modeling calculations

    To further verify the reliability of the characterization, FLUENT simulation software was used to calculate the temperature field in the furnace under two typical working conditions of atmospheric pressure and 3 kPa, and the results were compared with the ground-matched experimental data.

    The calculation model for the furnace side profile is shown in Fig. 8, in which S1–S4 and K1–K14 represent the temperature measurement points at 18 different positions in the furnace. The internal heat transfer calculations considered the material heat conduction, radiation heat transfer, and interface thermal resistance between different materials and air flow, while the external calculations considered the influence of the external surface radiation and natural convection.

    The heat conduction equation and the boundary and initial conditions were as Eq. (2)-(5):

    External surface heat flux: (3)

    The key calculation parameters are shown in Table 1. The thermal conductivity of the fiber cloth under the two working conditions was taken from the measured data in Table 1, and the external surface temperature was taken as the actual ambient temperature. For comparison, other calculation parameters were kept the same.

    3.2 Simulation calculation results

    Fig. 9 show the calculated values and measured values of each temperature measurement point after heating for 6 h at a constant power of 97 W at 101 kPa and 3 kPa on the ground.

    As shown in Fig. 9, under atmospheric pressure, the difference between the calculated and measured temperature at K11, K12, and K13 was 10–20 K, and the others were controlled within 10 K. The maximum calculation error of the entire temperature field was 4.3% of the measured value, and that of the central position of the furnace was only 1.1%. At 3 kPa on the ground, the calculation deviation was within 50 K, and for the four temperature measurement points S1, S2, S3, and S4 in the furnace center, the deviation was controlled within 12 K. The maximum error of the entire temperature field was 9.7% of the experimental value, and that of the center position was only 1.3%. In summary, the simulation results for the temperature field distribution obtained using the above characterization results matched well with the measured data. In addition, at points closer to the central position of the furnace, the calculated values were close to the experimental values.

    Table 1 Key parameters for the simulation calculations

    Fig. 9 Comparison of the calculated data for the temperature field with the test data

    (a) 101 kPa-ground; (b) 3 kPa-ground

    The above deviations can be mainly attributed to the fact that the narrow hot channel formed by the thermocouple and the heating wire trace in practical applications cannot be fully considered. Therefore, errors caused by simplifying the calculation model are inevitable. Errors may occur during fiber cloth assembly, due to the temperature measurement point position, or variation in the heat shield radiance with temperature. Therefore, the measured and calculated values cannot be completely and accurately matched.

    4 Conclusion

    This study investigated the variation in the effective thermal conductivity of fiber fabric insulation material in the material preparation furnace loaded on Tiangong-2 Space Station with changing in-orbit temperature and pre-ssure conditions, using the heat flow meter test me-thod and environmental test conditions equivalent to those in space. The obtained results were utilized for calculating the temperature field in the furnace with a model. The following conclusions were drawn:

    1) The effective thermal conductivity of the fiber fabric increased non-linearly with the temperature. The lower the pressure, the lower the rate of increase. With a pressure reduction, the thermal conductivity exhibited a single exponential decay function. When the pressure was less than 10 kPa, the effective thermal conductivity reduced sharply until a constant minimum was reached. The effective thermal conductivity of the fiber fabric was more sensitive to pressure changes than to temperature changes.

    2) The maximum error in the calculated values was 4.3% and 9.7% of the measured temperature under atmo-spheric pressure conditions and at 3 kPa, respectively. The main reasons for the difference between the two values were unavoidable factors such as the use of a simplified model. Nevertheless, the entire temperature field distribution matched well with the experimental data, and positions closer to the center of the furnace showed better matches.

    3) The equivalent environmental characterization method was thus shown to be capable of reflecting the thermal performance of fiber fabric materials more clo-sely under different working conditions, which theoretically could enable improvements in the performance of multilayer insulation systems and provide more accurate thermal simulation models. Furthermore, this method can be referenced for developing other thermal designs used in aerospace engineering.

    [1] CHEN YAN, BAO YEFENG, LI XIAOYA,Space growth of bismuth telluride based thermoelectric semiconductive crystals., 2016, 36(4): 413–419.

    [2] FENG SHAOBO, LUO XINGHONG. Dendrite growth of SRR99 nickel-base single crystal superalloy under microgravity condition formed by long drop tube., 2012, 36(3): 341–346.

    [3] ZOU XIA, LI GUORONG, TAN YUANQIANG,Discrete element method modeling of the influence of gravity during functional ceramics material compaction process., 2010, 25(10): 1071–1075.

    [4] ZHOU YANFEI, TANG LIANAN, AI FEI,. Crystal growth of bismuth silicon oxide(BSO) in space.2003, 18(1): 211–214.

    [5] PEREZ-GRANDE I, RIVAS D, DE PABLO V. A global thermal analysis of multizone resistance furnaces with specular and diffuse samples., 2002, 246(1): 37–54.

    [6] WANG G H, ZHANG F, SUN X K,Optimized design of multilayer thermal insulations for hypersonic vehicles., 2016, 697: 449–452.

    [7] JI T, ZHANG R, SUNDEN B,Investigation on thermal performance of high temperature multilayer insulations for hypersonic vehicles under aerodynamic heating condition., 2014, 70(1): 957–965.

    [8] KAMRAN DARYABEIGI. Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles. NASA/TM-1999-208972, 1999: 1–30.

    [9] MACHADO, ARAUJO H. Modeling heat transfer with micro- scale natural convection in fibrous insulation., 2014, 36(4): 847–857.

    [10] KWON J S, JANG C H, JUNG H,Effective thermal conductivity of various filling materials for vacuum insulation panels., 2009, 52(23/24): 5525–5532.

    [11] HUANG C, ZHANG Y. Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method., 2014, 27(4): 791–796.

    [12] GRINCHUK P S. Contact heat conductivity under conditions of high-temperature heat transfer in fibrous heat-insulating materials., 2014, 87(2): 481–488.

    [13] XI TONG-GENG. Thermophysical of Inorganic Materials. Shanghai: Shanghai Scientific & Technical Publishers. 1981: 123–156.

    [14] Thermal insulation-determination of steady-state thermal resistance and related properties-heat flow meter apparatus. GB/T 10295- 2008.

    [15] XIN CHUNSUO, HE XIAOWA. Research of improving surface temperature uniformity of low thermal conductance materials., 2013, 33(06): 31–35.

    [16] CUNNINGTON G R, MILLER S D, DARYABEIGI K. Heat transfer in high-temperature multilayer insulation., 2006, 631(631): 43.

    [17] SPINNLERM, WINTER E R F, VISKANTA R. Studies on high- temperature multilayer thermal insulations., 2004, 47(6): 1305–1312.

    [18] HUAI XIULAN, WANG WEIWEI, LI ZHIGANG. Analysis of the effective thermal conductivity of fractal porous media., 2007, 27(17/18): 2815–2821.

    [19] KAN ANKANG, ZHANG TINGTING, LOU HAIJUN. Fractal study of effective thermal conductivity of fiber glass materials., 2013, 33(7): 654–660.

    空間環(huán)境下纖維織物絕熱材料隔熱性能評價與仿真驗證

    雒彩云, 楊莉萍, 陶冶, 鐘秋, 李會東

    (中國科學院 上海硅酸鹽研究所,無機材料分析測試中心, 上海 201899)

    本文以天宮二號空間材料爐多層隔熱系統(tǒng)中纖維織物絕熱材料為研究對象, 采用空間環(huán)境等效試驗條件表征研究了織物有效導熱系數(shù)隨在軌溫度和壓強的變化, 結合微觀傳熱機理對結果進行了分析, 根據(jù)表征結果對不同工況下爐內溫度場進行了模擬。結果表明: 纖維織物有效導熱系數(shù)隨溫度升高非線性增大, 壓強越低, 增長越平緩; 隨壓強降低以指數(shù)函數(shù)趨勢衰減且存在臨界壓強; 輻射與氣相導熱是影響空間環(huán)境下纖維織物傳熱性能的主要因素; 爐內溫場計算值與匹配實驗實測溫度整體趨勢吻合良好, 爐中心溫度最大計算誤差為實測溫度的 1.3%。該方法更合理地評價了多層纖維材料在使用工況下的絕熱性能, 從而有助于建立準確度更高的熱仿真模型。

    空間微重力環(huán)境; 纖維織物絕熱材料; 有效導熱系數(shù); 穩(wěn)態(tài)熱流計法; 溫場仿真

    O482

    A

    date:2019-03-14;

    Modified date: 2019-05-15

    China’s Manned Space Station Project (TGJZ800-2-RW024); National Natural Science Foundation of China (51606209); Shanghai Technical Platform for Testing and Characterization on Inorganic Materials (14DZ2292900)

    LUO Cai-Yun(1983–), female, engineer. E-mail:lcyun1010@163.com

    Corresponding author:YANG Li-Ping, professor. E-mail: lpyang@mail.sic.ac.cn

    1000-324X(2019)11-1238-07

    10.15541/jim20190110

    猜你喜歡
    絕熱材料織物纖維
    保溫及絕熱材料
    建筑與預算(2024年3期)2024-04-29 07:00:14
    ◆ 保溫及絕熱材料
    建筑與預算(2023年2期)2023-03-10 13:13:26
    無Sn-Pd活化法制備PANI/Cu導電織物
    熱電池常用絕熱材料的發(fā)展與展望
    云南化工(2021年10期)2021-12-21 07:33:22
    《紡織品織物折痕回復角的測定》正式發(fā)布
    解鎖先進功能纖維
    纖維的無限可能
    竹纖維織物抗菌研究進展
    腹部纖維型纖維肉瘤CT表現(xiàn)2例
    織物柔軟劑的香氣發(fā)展趨勢
    18美女黄网站色大片免费观看| 天堂动漫精品| 亚洲,欧美精品.| 九九久久精品国产亚洲av麻豆 | 国产高清视频在线观看网站| 国产成人影院久久av| 国产精品亚洲av一区麻豆| 天堂av国产一区二区熟女人妻| h日本视频在线播放| 日韩欧美精品v在线| 午夜福利免费观看在线| 狂野欧美白嫩少妇大欣赏| 亚洲欧洲精品一区二区精品久久久| 亚洲国产精品合色在线| 91av网一区二区| 听说在线观看完整版免费高清| 香蕉丝袜av| 欧美日韩乱码在线| 在线观看午夜福利视频| 国产美女午夜福利| 成人亚洲精品av一区二区| 国产高清三级在线| 天堂网av新在线| 国产伦一二天堂av在线观看| 精品国产超薄肉色丝袜足j| 日韩欧美国产一区二区入口| 亚洲片人在线观看| 国产亚洲欧美在线一区二区| 欧美xxxx黑人xx丫x性爽| 老司机午夜十八禁免费视频| 国产综合懂色| 搡老熟女国产l中国老女人| 在线a可以看的网站| 此物有八面人人有两片| 国产私拍福利视频在线观看| 国产黄色小视频在线观看| 日本一二三区视频观看| 欧美丝袜亚洲另类 | 在线观看一区二区三区| 一a级毛片在线观看| 香蕉av资源在线| www日本黄色视频网| 综合色av麻豆| 好男人在线观看高清免费视频| 日本在线视频免费播放| 国产精品电影一区二区三区| 高潮久久久久久久久久久不卡| 99热精品在线国产| 一进一出抽搐gif免费好疼| 99热只有精品国产| 青草久久国产| 天堂影院成人在线观看| 国产亚洲av高清不卡| 九九久久精品国产亚洲av麻豆 | 午夜日韩欧美国产| 天天躁狠狠躁夜夜躁狠狠躁| 最近视频中文字幕2019在线8| 免费在线观看成人毛片| 一本综合久久免费| 男人舔女人下体高潮全视频| 一本久久中文字幕| 免费一级毛片在线播放高清视频| 亚洲精品一区av在线观看| 国产一区二区三区在线臀色熟女| 成年女人毛片免费观看观看9| 久久精品亚洲精品国产色婷小说| 日本 av在线| 亚洲aⅴ乱码一区二区在线播放| 精品午夜福利视频在线观看一区| 三级男女做爰猛烈吃奶摸视频| 热99在线观看视频| 久久午夜亚洲精品久久| 波多野结衣巨乳人妻| 好男人电影高清在线观看| 国产成人福利小说| 国产69精品久久久久777片 | 欧美日韩一级在线毛片| 亚洲av中文字字幕乱码综合| 欧美日本亚洲视频在线播放| 免费观看人在逋| 最新在线观看一区二区三区| 网址你懂的国产日韩在线| 日本 av在线| 亚洲精华国产精华精| 久久久久精品国产欧美久久久| 一二三四在线观看免费中文在| 日韩欧美一区二区三区在线观看| 好男人在线观看高清免费视频| 免费观看精品视频网站| 国产野战对白在线观看| 男女视频在线观看网站免费| 看免费av毛片| 久久国产乱子伦精品免费另类| 黄频高清免费视频| 国产aⅴ精品一区二区三区波| 在线观看免费视频日本深夜| 在线免费观看的www视频| 欧美乱妇无乱码| 国内精品久久久久精免费| 国产高清视频在线播放一区| 成在线人永久免费视频| 国产激情久久老熟女| 免费av不卡在线播放| 1024香蕉在线观看| 一进一出抽搐动态| 日韩精品中文字幕看吧| 97超视频在线观看视频| 国内精品久久久久久久电影| 手机成人av网站| 草草在线视频免费看| 色精品久久人妻99蜜桃| 免费一级毛片在线播放高清视频| 啦啦啦免费观看视频1| 日本撒尿小便嘘嘘汇集6| 亚洲专区字幕在线| 免费电影在线观看免费观看| 亚洲欧美激情综合另类| 亚洲专区国产一区二区| 在线免费观看的www视频| 欧美色视频一区免费| 成人精品一区二区免费| 日本 av在线| 桃红色精品国产亚洲av| 亚洲国产欧美网| 国产精品久久久av美女十八| 国产精品 国内视频| 国产成人啪精品午夜网站| 亚洲av五月六月丁香网| 亚洲18禁久久av| 欧美日韩福利视频一区二区| 成人高潮视频无遮挡免费网站| 国产精品香港三级国产av潘金莲| 午夜精品在线福利| 中文字幕高清在线视频| 男人舔女人下体高潮全视频| 一本一本综合久久| 无限看片的www在线观看| 久久精品夜夜夜夜夜久久蜜豆| 麻豆av在线久日| 国产 一区 欧美 日韩| 两个人的视频大全免费| 亚洲欧美一区二区三区黑人| 亚洲人成网站高清观看| 欧美av亚洲av综合av国产av| 国产成人一区二区三区免费视频网站| 国产亚洲精品av在线| 五月伊人婷婷丁香| 好男人在线观看高清免费视频| 亚洲av片天天在线观看| 99久久精品热视频| 国产成人av教育| 亚洲自偷自拍图片 自拍| av欧美777| 一本久久中文字幕| 小蜜桃在线观看免费完整版高清| 99久久精品热视频| 久久这里只有精品19| 不卡av一区二区三区| 久久99热这里只有精品18| 午夜精品在线福利| 欧美日韩国产亚洲二区| 日韩欧美三级三区| 黄色片一级片一级黄色片| 又黄又粗又硬又大视频| 亚洲激情在线av| 欧美色视频一区免费| 亚洲av片天天在线观看| 黄色女人牲交| 在线观看免费午夜福利视频| 精品熟女少妇八av免费久了| 毛片女人毛片| 大型黄色视频在线免费观看| 美女午夜性视频免费| 男女床上黄色一级片免费看| 午夜福利视频1000在线观看| 成人18禁在线播放| 女同久久另类99精品国产91| 1024香蕉在线观看| 色精品久久人妻99蜜桃| 日本一本二区三区精品| 麻豆久久精品国产亚洲av| 久久香蕉国产精品| 日韩有码中文字幕| 亚洲中文日韩欧美视频| 人人妻人人澡欧美一区二区| 久久久精品欧美日韩精品| 日本黄色片子视频| 又黄又爽又免费观看的视频| 国产精品av视频在线免费观看| 色播亚洲综合网| 精品久久久久久久久久久久久| 一区二区三区激情视频| 精品乱码久久久久久99久播| 一本一本综合久久| 精品久久久久久久人妻蜜臀av| av中文乱码字幕在线| 两个人视频免费观看高清| 国产久久久一区二区三区| 精品国产超薄肉色丝袜足j| 国产精品日韩av在线免费观看| 99久久精品国产亚洲精品| 搞女人的毛片| 国产主播在线观看一区二区| 高清毛片免费观看视频网站| 免费一级毛片在线播放高清视频| 日韩欧美国产一区二区入口| 久久中文字幕人妻熟女| 精品日产1卡2卡| 国产精品1区2区在线观看.| 久久久久久久久久黄片| 精品熟女少妇八av免费久了| 在线观看舔阴道视频| 美女免费视频网站| 老鸭窝网址在线观看| 久久午夜综合久久蜜桃| 日本免费一区二区三区高清不卡| 九色成人免费人妻av| 热99re8久久精品国产| 亚洲va日本ⅴa欧美va伊人久久| 最新中文字幕久久久久 | 又爽又黄无遮挡网站| 亚洲av五月六月丁香网| avwww免费| 亚洲精品美女久久av网站| 一本久久中文字幕| 亚洲第一欧美日韩一区二区三区| 熟妇人妻久久中文字幕3abv| 久久久久亚洲av毛片大全| 久久香蕉国产精品| 97超级碰碰碰精品色视频在线观看| 国内精品一区二区在线观看| 免费av毛片视频| 99在线视频只有这里精品首页| 少妇的逼水好多| 2021天堂中文幕一二区在线观| 一个人观看的视频www高清免费观看 | 我要搜黄色片| 亚洲男人的天堂狠狠| 日本黄大片高清| a级毛片a级免费在线| 老司机午夜福利在线观看视频| 亚洲欧美精品综合一区二区三区| 国产av不卡久久| 欧美黄色淫秽网站| 精品福利观看| АⅤ资源中文在线天堂| 欧美色欧美亚洲另类二区| 国产毛片a区久久久久| 18禁黄网站禁片免费观看直播| 免费搜索国产男女视频| 国内精品久久久久精免费| 男女午夜视频在线观看| 亚洲国产欧美一区二区综合| 中文字幕最新亚洲高清| 亚洲专区中文字幕在线| 国产精品av久久久久免费| 国产精品久久电影中文字幕| 不卡一级毛片| av在线天堂中文字幕| 黄色丝袜av网址大全| 国产爱豆传媒在线观看| 在线观看美女被高潮喷水网站 | 日韩欧美一区二区三区在线观看| 成人av在线播放网站| 天天一区二区日本电影三级| 在线免费观看的www视频| 国产日本99.免费观看| 亚洲色图av天堂| 国产一区二区在线av高清观看| 免费看日本二区| 午夜福利在线观看免费完整高清在 | 91麻豆av在线| 一级黄色大片毛片| 九色成人免费人妻av| 中出人妻视频一区二区| 全区人妻精品视频| 露出奶头的视频| 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 在线观看免费视频日本深夜| 亚洲av电影在线进入| 午夜福利成人在线免费观看| 1000部很黄的大片| 亚洲欧美一区二区三区黑人| 久久人妻av系列| 男人舔女人的私密视频| 亚洲aⅴ乱码一区二区在线播放| 免费在线观看日本一区| 精华霜和精华液先用哪个| 国产精华一区二区三区| 亚洲一区二区三区不卡视频| 久久天堂一区二区三区四区| 在线免费观看不下载黄p国产 | 成年女人永久免费观看视频| 亚洲一区高清亚洲精品| 动漫黄色视频在线观看| 国产伦人伦偷精品视频| 亚洲av成人精品一区久久| 2021天堂中文幕一二区在线观| 这个男人来自地球电影免费观看| 中文字幕av在线有码专区| avwww免费| 一进一出抽搐动态| 三级男女做爰猛烈吃奶摸视频| 亚洲狠狠婷婷综合久久图片| 中文字幕最新亚洲高清| 亚洲乱码一区二区免费版| 欧美xxxx黑人xx丫x性爽| netflix在线观看网站| 国产91精品成人一区二区三区| 狂野欧美白嫩少妇大欣赏| 亚洲精品一卡2卡三卡4卡5卡| 欧美一区二区国产精品久久精品| 日本在线视频免费播放| 国产精品影院久久| 这个男人来自地球电影免费观看| 9191精品国产免费久久| 国产精品久久久久久精品电影| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线播放欧美日韩| 免费观看人在逋| 淫妇啪啪啪对白视频| 啦啦啦免费观看视频1| 欧美日韩一级在线毛片| 国产黄片美女视频| 久久久国产精品麻豆| 国产人伦9x9x在线观看| 女人高潮潮喷娇喘18禁视频| 禁无遮挡网站| 亚洲国产精品合色在线| 国产黄a三级三级三级人| 欧洲精品卡2卡3卡4卡5卡区| 又粗又爽又猛毛片免费看| 日本 欧美在线| 中文资源天堂在线| 宅男免费午夜| 狂野欧美激情性xxxx| 国产高清视频在线播放一区| 夜夜爽天天搞| 99久久99久久久精品蜜桃| 久久精品国产清高在天天线| 成年免费大片在线观看| 国产午夜福利久久久久久| 亚洲国产精品成人综合色| 亚洲中文日韩欧美视频| 免费电影在线观看免费观看| 首页视频小说图片口味搜索| 1000部很黄的大片| 中亚洲国语对白在线视频| 久久久久免费精品人妻一区二区| 十八禁网站免费在线| 色av中文字幕| 神马国产精品三级电影在线观看| 国产精华一区二区三区| 欧美精品啪啪一区二区三区| 国产一区二区激情短视频| 高清在线国产一区| 成人三级黄色视频| 国产精品美女特级片免费视频播放器 | 男女做爰动态图高潮gif福利片| 午夜激情福利司机影院| 一区二区三区激情视频| 18禁美女被吸乳视频| 亚洲av中文字字幕乱码综合| 久久久成人免费电影| 美女 人体艺术 gogo| www日本在线高清视频| 精品国产美女av久久久久小说| 三级毛片av免费| 757午夜福利合集在线观看| 亚洲av电影在线进入| 夜夜躁狠狠躁天天躁| 国产精品香港三级国产av潘金莲| 日本撒尿小便嘘嘘汇集6| 黄色 视频免费看| 在线观看午夜福利视频| 无限看片的www在线观看| 国产精品日韩av在线免费观看| 国产精品一区二区免费欧美| 亚洲国产看品久久| 又爽又黄无遮挡网站| 此物有八面人人有两片| 成年人黄色毛片网站| 欧美日韩精品网址| 国产一区二区三区在线臀色熟女| 免费观看精品视频网站| 日韩欧美三级三区| www.熟女人妻精品国产| 美女午夜性视频免费| 成年免费大片在线观看| 日韩人妻高清精品专区| 高清毛片免费观看视频网站| 成年版毛片免费区| 制服丝袜大香蕉在线| 精品久久久久久久人妻蜜臀av| 十八禁网站免费在线| 制服人妻中文乱码| 久久99热这里只有精品18| 人妻久久中文字幕网| 无遮挡黄片免费观看| aaaaa片日本免费| 身体一侧抽搐| 麻豆av在线久日| 婷婷亚洲欧美| 日日干狠狠操夜夜爽| 搡老熟女国产l中国老女人| 欧美性猛交黑人性爽| 国产激情偷乱视频一区二区| 国产av不卡久久| 日韩欧美国产在线观看| 精品国产三级普通话版| 成年女人毛片免费观看观看9| 精品人妻1区二区| tocl精华| 欧美激情久久久久久爽电影| 久久久精品欧美日韩精品| 国产亚洲精品综合一区在线观看| 久久久久久国产a免费观看| xxx96com| 国产欧美日韩一区二区三| 日本三级黄在线观看| 欧美在线黄色| 国产麻豆成人av免费视频| 国产精品综合久久久久久久免费| 精品欧美国产一区二区三| 午夜福利在线观看免费完整高清在 | 国产精品永久免费网站| 一a级毛片在线观看| 精品久久蜜臀av无| 村上凉子中文字幕在线| 国产麻豆成人av免费视频| 国产高清视频在线播放一区| 少妇丰满av| 三级国产精品欧美在线观看 | 一本综合久久免费| 一二三四社区在线视频社区8| 久久久久精品国产欧美久久久| 亚洲国产看品久久| 狂野欧美激情性xxxx| 国产高清视频在线播放一区| 国产精品av久久久久免费| 男女那种视频在线观看| 色噜噜av男人的天堂激情| 后天国语完整版免费观看| 一个人看视频在线观看www免费 | 好男人在线观看高清免费视频| 亚洲中文字幕一区二区三区有码在线看 | 国产激情欧美一区二区| www.999成人在线观看| 久久久久久久久免费视频了| 丰满人妻一区二区三区视频av | 可以在线观看的亚洲视频| 亚洲成人久久性| 成人av在线播放网站| 日本免费一区二区三区高清不卡| 男插女下体视频免费在线播放| 亚洲中文字幕日韩| 亚洲五月婷婷丁香| 日本黄大片高清| 亚洲人成电影免费在线| 国产高潮美女av| 亚洲人与动物交配视频| 亚洲精品在线观看二区| 国产69精品久久久久777片 | 熟女少妇亚洲综合色aaa.| 国产又色又爽无遮挡免费看| 精品99又大又爽又粗少妇毛片 | xxxwww97欧美| 精品电影一区二区在线| 操出白浆在线播放| 此物有八面人人有两片| 国产亚洲欧美98| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| 丁香欧美五月| 亚洲av电影不卡..在线观看| 中文字幕人成人乱码亚洲影| 美女扒开内裤让男人捅视频| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久久久久| 一进一出好大好爽视频| 国产高清三级在线| 国产精品一及| 欧美国产日韩亚洲一区| 国产一区在线观看成人免费| 国产成人精品无人区| 激情在线观看视频在线高清| or卡值多少钱| 亚洲无线观看免费| 色综合站精品国产| 精品久久久久久久人妻蜜臀av| 午夜福利欧美成人| 桃色一区二区三区在线观看| 久久久国产欧美日韩av| 国产亚洲av嫩草精品影院| 黄色日韩在线| 久久天躁狠狠躁夜夜2o2o| 欧美日本视频| 国产乱人视频| 母亲3免费完整高清在线观看| 99久久精品一区二区三区| 国产亚洲欧美在线一区二区| 国产久久久一区二区三区| 91av网一区二区| 老司机福利观看| 一进一出抽搐gif免费好疼| 亚洲黑人精品在线| 免费看光身美女| 综合色av麻豆| e午夜精品久久久久久久| 日韩欧美 国产精品| av视频在线观看入口| 91九色精品人成在线观看| 51午夜福利影视在线观看| 99热精品在线国产| 婷婷六月久久综合丁香| 午夜福利成人在线免费观看| 久久久国产欧美日韩av| 熟女少妇亚洲综合色aaa.| www.自偷自拍.com| 久9热在线精品视频| 国内少妇人妻偷人精品xxx网站 | 一二三四在线观看免费中文在| 免费观看人在逋| 久久精品国产综合久久久| 偷拍熟女少妇极品色| 丁香六月欧美| 99精品欧美一区二区三区四区| 99久久成人亚洲精品观看| 国产免费av片在线观看野外av| 真实男女啪啪啪动态图| 国产真人三级小视频在线观看| 日本黄色片子视频| 中文字幕人成人乱码亚洲影| 首页视频小说图片口味搜索| 国产一区在线观看成人免费| 性欧美人与动物交配| 日韩人妻高清精品专区| e午夜精品久久久久久久| 亚洲真实伦在线观看| 色av中文字幕| 日本 av在线| 国产高清三级在线| 久久久久久久久久黄片| 高清在线国产一区| 亚洲熟妇中文字幕五十中出| 久久热在线av| 女生性感内裤真人,穿戴方法视频| 亚洲在线自拍视频| 国产精品久久久人人做人人爽| 久久久国产成人精品二区| av中文乱码字幕在线| 91麻豆av在线| 村上凉子中文字幕在线| 欧美中文日本在线观看视频| 热99在线观看视频| 亚洲国产精品久久男人天堂| 国产成年人精品一区二区| 国产综合懂色| 天堂√8在线中文| 高潮久久久久久久久久久不卡| 无遮挡黄片免费观看| 国产成人啪精品午夜网站| 国产伦精品一区二区三区视频9 | 国产精华一区二区三区| 欧美+亚洲+日韩+国产| av女优亚洲男人天堂 | 性色avwww在线观看| 国产精品98久久久久久宅男小说| 亚洲国产精品成人综合色| 日韩中文字幕欧美一区二区| 国产精华一区二区三区| 伊人久久大香线蕉亚洲五| 99精品久久久久人妻精品| 亚洲成人精品中文字幕电影| 亚洲人成伊人成综合网2020| 免费在线观看影片大全网站| 成人av在线播放网站| 黄色 视频免费看| 夜夜夜夜夜久久久久| 全区人妻精品视频| 久久性视频一级片| 亚洲国产高清在线一区二区三| 青草久久国产| 精品不卡国产一区二区三区| 99riav亚洲国产免费| 一个人看的www免费观看视频| 黄片大片在线免费观看| 亚洲熟女毛片儿| 久久这里只有精品19| 日本与韩国留学比较| 亚洲成人久久性| 在线观看日韩欧美| 亚洲国产精品999在线| 欧美中文日本在线观看视频| 午夜免费观看网址| 国产成人av激情在线播放| 亚洲无线在线观看| 国产亚洲精品综合一区在线观看| 美女高潮喷水抽搐中文字幕| 亚洲av中文字字幕乱码综合| 成在线人永久免费视频| 国语自产精品视频在线第100页| 老鸭窝网址在线观看| 国产一区二区三区视频了| 操出白浆在线播放| 男人舔女人的私密视频| 女警被强在线播放| 人人妻,人人澡人人爽秒播| 亚洲国产精品久久男人天堂| 国产欧美日韩一区二区三| 中文字幕高清在线视频| 久久精品综合一区二区三区| 亚洲av五月六月丁香网| 99riav亚洲国产免费|