王桂興 張曉彥 孫朝徽 趙雅賢 都 威 侯吉倫 王玉芬
牙鲆連續(xù)四代減數(shù)分裂雌核發(fā)育家系的遺傳特征分析*
王桂興 張曉彥 孫朝徽 趙雅賢 都 威 侯吉倫①王玉芬①
(中國水產(chǎn)科學(xué)研究院北戴河中心實(shí)驗(yàn)站 秦皇島 066100)
為了研究純合度和遺傳相似度在牙鲆()連續(xù)四代減數(shù)分裂雌核發(fā)育家系中的變化規(guī)律,本研究利用分布在不同連鎖群上的24個(gè)高重組率微衛(wèi)星標(biāo)記對(duì)牙鲆連續(xù)減數(shù)分裂雌核發(fā)育二代(G2)、三代(G3)、四代(G4)家系及普通家系對(duì)照組進(jìn)行了遺傳分析。結(jié)果顯示,24個(gè)微衛(wèi)星位點(diǎn)在對(duì)照組、G2、G3、G4家系中,分別檢測到96、42、32和32個(gè)等位基因,平均等位基因數(shù)分別為4.00、1.98、1.33和1.33;期望雜合度分別為0.6416、0.3472、0.1694和0.1492;純合度分別為0.3503、0.6528、0.8306和0.8508;遺傳相似系數(shù)分別為0.5822、0.9238、0.9890和0.9988。24個(gè)位點(diǎn)中已有17個(gè)純合,但尚有7個(gè)保持雜合狀態(tài)。同時(shí),將上述結(jié)果和已發(fā)表的減數(shù)分裂雌核發(fā)育一代(G1)家系的數(shù)據(jù)進(jìn)行分析,結(jié)果表明,誘導(dǎo)連續(xù)減數(shù)分裂雌核發(fā)育不僅能提高個(gè)體的純合度,同時(shí)也可提高子代個(gè)體間的遺傳相似度;純合度和遺傳相似度在G1、G2和G3家系中能夠得到逐步提高,代際之間差異顯著(<0.05);但在G4家系中趨于穩(wěn)定,與G3家系差異不顯著。G4家系的遺傳相似性(0.9988)已高于連續(xù)20代全同胞交配所獲得的理論值(0.9860),連續(xù)誘導(dǎo)減數(shù)分裂雌核發(fā)育是快速建立魚類近交系的良好方法。
牙鲆;微衛(wèi)星;雌核發(fā)育克隆系;遺傳多樣性;雜合位點(diǎn)
牙鲆()隸屬于硬骨魚綱(Osteichthyes)、鰈形目(Pleuronectiformes)、鰈亞目(Pleuronectoidei)、牙鲆科(Paralichthyidae)、牙鲆屬(),廣泛分布于中國沿海地區(qū)、俄羅斯遠(yuǎn)東海域、日本及朝鮮半島,為冷溫性大型經(jīng)濟(jì)魚類,也是中國重要的海產(chǎn)經(jīng)濟(jì)魚類。牙鲆雌性個(gè)體生長速度快于雄性,在人工養(yǎng)殖條件下,445日齡時(shí),雌牙鲆的平均體重是雄牙鲆的1.8倍;773日齡時(shí),差異達(dá)2.9倍(Yamamoto, 1999)。在生產(chǎn)中,養(yǎng)殖全雌牙鲆將獲得更高的經(jīng)濟(jì)效益。鑒于此,中國水產(chǎn)科學(xué)研究院北戴河中心實(shí)驗(yàn)站的科研人員利用人工誘導(dǎo)減數(shù)分裂雌核發(fā)育技術(shù),培育出全雌牙鲆新品種“北鲆1號(hào)”和單交種“北鲆2號(hào)”(劉海金等, 2017),并在生產(chǎn)上進(jìn)行了推廣應(yīng)用,取得了良好的經(jīng)濟(jì)效益。
人工誘導(dǎo)減數(shù)分裂雌核發(fā)育具有操作簡便,誘導(dǎo)效率高等特點(diǎn),可快速提高純合度和固定母本性狀,在魚類性別控制及遺傳分析等方面都具有重要價(jià)值,已在上百種魚類中得到應(yīng)用(Komen, 2007)。牙鲆人工誘導(dǎo)雌核發(fā)育研究始于1986年,田畑和男等(1986)通過冷休克和靜水壓染色體加倍技術(shù),建立了牙鲆減數(shù)分裂和有絲分裂雌核發(fā)育的誘導(dǎo)方法,并用同工酶證明了純合子的成立。Yamamoto(1999)在誘導(dǎo)牙鲆有絲分裂的基礎(chǔ)上,再次誘導(dǎo)減數(shù)分裂雌核發(fā)育,建立了克隆系,并用DNA指紋圖譜技術(shù)進(jìn)行了驗(yàn)證。徐成等(2002)運(yùn)用同工酶、王偉等(2005)通過微衛(wèi)星標(biāo)記均證明減數(shù)分裂雌核發(fā)育牙鲆存在雜合基因型,不能直接用于培育克隆。但連續(xù)誘導(dǎo)減數(shù)分裂雌核發(fā)育能夠顯著提高魚類的純合度和相似度,在大黃魚()連續(xù)兩代雌核群體 (葉小軍等, 2010)、團(tuán)頭魴()連續(xù)三代減數(shù)雌核發(fā)育群體(唐首杰等, 2014)和翹嘴鲌()連續(xù)兩代減數(shù)分裂雌核發(fā)育群體(李倩等, 2015)中得到驗(yàn)證。
本研究室開展了大量的牙鲆雌核發(fā)育誘導(dǎo)研究,優(yōu)化了減數(shù)分裂雌核發(fā)育的誘導(dǎo)參數(shù)(劉海金等, 2010a),并用微衛(wèi)星標(biāo)記進(jìn)行了遺傳分析(劉海金等, 2010b; 朱曉琛等, 2006)。自2007年,開展了連續(xù)多代減數(shù)分裂雌核發(fā)育家系的制備,分別于2009和 2014年建立了連續(xù)減數(shù)分裂雌核發(fā)育二代和三代家系,并利用高重組率微衛(wèi)星標(biāo)記開展了遺傳特征分析(王桂興等, 2012; 侯吉倫等, 2014)。研究表明,連續(xù)減數(shù)分裂雌核發(fā)育誘導(dǎo)不僅提高了個(gè)體的純合度,同時(shí)提高了子代個(gè)體間的遺傳相似度。
本研究在上述基礎(chǔ)上,利用2014年所制備的性成熟三代個(gè)體進(jìn)行誘導(dǎo),獲得了牙鲆連續(xù)減數(shù)分裂雌核發(fā)育四代家系,并用覆蓋牙鲆連鎖群的24個(gè)微衛(wèi)星標(biāo)記進(jìn)行了純合度、遺傳相似度等遺傳特征的分析,進(jìn)一步探討等位基因在連續(xù)多代減數(shù)分裂雌核發(fā)育過程中的遺傳變化規(guī)律,以期為牙鲆的純系建立及品種改良提供基礎(chǔ)數(shù)據(jù)。
本研究在中國水產(chǎn)科學(xué)研究院北戴河中心實(shí)驗(yàn)站開展。2007年,以真鯛()精子作為異源精子,經(jīng)紫外線照射滅活,與1尾野生雌性牙鲆所產(chǎn)卵子受精,并在激活后3 min,施以0℃、45 min的冷休克處理進(jìn)行減數(shù)分裂雌核發(fā)育誘導(dǎo),獲得第一代減數(shù)分裂雌核發(fā)育家系(G1)。2009年,利用G1內(nèi)發(fā)育成熟的1尾個(gè)體再度誘導(dǎo)減數(shù)分裂雌核發(fā)育,獲得連續(xù)第二代減數(shù)分裂雌核發(fā)育家系(G2)。2014年,以G2家系內(nèi)性成熟的1尾個(gè)體進(jìn)行減數(shù)分裂雌核發(fā)育誘導(dǎo),獲得了連續(xù)三代減數(shù)分裂雌核發(fā)育家系(G3)。2018年,對(duì)G3家系內(nèi)成熟的1尾雌性個(gè)體再次誘導(dǎo)雌核發(fā)育,獲得連續(xù)四代減數(shù)分裂雌核發(fā)育家系(G4)。
采集作為母本的G3家系親魚無眼側(cè)的胸鰭和G4家系的15日齡仔魚全魚40尾,置于100%乙醇中固定,–20℃保存。以2尾野生雌雄魚普通受精的后代作為對(duì)照組(Control,C)?;蚪MDNA采用海洋動(dòng)物組織基因組DNA提取試劑盒(天根,DP324-02)提取。另外,本實(shí)驗(yàn)室尚保存著G2和G3家系的DNA樣品(各 30尾),在本研究中用相同標(biāo)記再次進(jìn)行了檢測和數(shù)據(jù)分析。
微衛(wèi)星引物全部選自牙鲆第二代遺傳連鎖圖譜(Casta?o-Sánchez, 2010),根據(jù)本課題組(劉永新等, 2013; Liu, 2013)的實(shí)驗(yàn)結(jié)果,選取24個(gè)高重組率標(biāo)記,所選位點(diǎn)覆蓋牙鲆24個(gè)連鎖群。引物由生工生物工程(上海)股份有限公司合成。引物序列、退火溫度和GenBank登錄號(hào)見表1。
利用FAM和HEX分2批對(duì)24對(duì)引物的正向引物5¢端進(jìn)行熒光標(biāo)記,標(biāo)記為FAM,被激發(fā)后呈藍(lán)色;標(biāo)記為HEX,被激發(fā)后呈綠色。PCR反應(yīng)體系為15 μl,包括10×buffer 1.5 μl,Mg2+(25 mmol/μl) 1.5 μl,dNTPs (10 mmol/μl)各0.25 μl,上下游引物(10 pmol/μl)各0.15 μl,DNA聚合酶(5 U/μl) 0.2 μl,模板DNA(30~50 ng) 1 μl,ddH2O 9.5 μl。PCR反應(yīng)程序:94℃預(yù)變性3 min;94℃ 25 s,50℃~54℃ 25 s,72℃ 60 s,35個(gè)循環(huán);最后72℃延伸10 min。PCR擴(kuò)增在PE9700型PCR儀上進(jìn)行。取1 μl PCR產(chǎn)物與10 μl的Hidi Formamid和GeneScanTM-500 LIZ Size Standard混合液(Hidi Formamid∶GeneScanTM-500 LIZ Size Standard=80∶1)充分混合,95℃變性5 min,結(jié)束后迅速轉(zhuǎn)移至冰上冷卻。處理后的產(chǎn)物通過ABI 3700測序儀進(jìn)行毛細(xì)管電泳,并利用GeneMarker V2.2.0軟件進(jìn)行基因分型。
等位基因數(shù)(Number of alleles,a)、期望雜合度(Expected heterozygosity,e)、純合度(Homozygosity,H)、遺傳相似系數(shù)(Genetic similarity index,GSI)等遺傳參數(shù)均由popgene (ver.3.2)計(jì)算獲得,并利用SPSS19.0對(duì)各家系的遺傳參數(shù)進(jìn)行了test,檢驗(yàn)其均值差異的顯著性(<0.05)。重組率和近交系數(shù)(Nagy, 1982)由以下公式計(jì)算:
表1 24對(duì)微衛(wèi)星標(biāo)記位點(diǎn)引物序列、核心序列、退火溫度和GenBank登錄號(hào)
Tab.1 Primer sequences, core sequences, annealing temperatures, and accession number in GenBank of 24 microsatellite loci in the P. olivaceus
重組率=雜合子數(shù)/個(gè)體總數(shù)
式中,為第世代的近交系數(shù);為第代雌核發(fā)育家系;為微衛(wèi)星位點(diǎn)的重組率。
表2中統(tǒng)計(jì)了24個(gè)微衛(wèi)星位點(diǎn)在G2、G3、G4以及對(duì)照組(C)中的等位基因數(shù)、期望雜合度和純合度。結(jié)果顯示,G2、G3和G4的總等位基因數(shù)分別為42、32和32;平均等位基因數(shù)分別為1.98、1.33和1.33;期望雜合度分別為0.3472、0.1694和0.1492;純合度分別為0.6528、0.8306和0.8508。表3中整合了G1的數(shù)據(jù),結(jié)果顯示,G1、G2、G3和G4的等位基因數(shù)和期望雜合度顯著低于對(duì)照組(N=4.0,e=0.6497) (<0.05),而純合度則顯著高于對(duì)照組(H=0.3503) (<0.05);前三代連續(xù)雌核發(fā)育系G1、G2和G3在遺傳參數(shù)上有顯著的變化,到第四代G4家系在遺傳上趨于穩(wěn)定。如純合度,從G1(0.4929)到G2(0.6528),再到G3(0.8306)逐步提高,且代際間差異顯著(<0.05),但G3與G4(0.8508)差異不顯著。另外,雜合位點(diǎn)數(shù)隨著雌核發(fā)育代數(shù)的增加而逐漸減少,但從G3到G4家系時(shí)趨于穩(wěn)定,不再明顯減少。
表2 連續(xù)雌核發(fā)育系G2、G3、G4和對(duì)照組C的遺傳信息
Tab.2 Number of alleles, heterozygosity and homozygosity of G2, G3, G4 and control
表3 雌核發(fā)育系G1、G2、G3、G4和對(duì)照組C的遺傳參數(shù)的均值比較
Tab.3 T-testof genetic parameters among G2, G3, G4 and control
*引用王桂興等(2012)的數(shù)據(jù);同列數(shù)據(jù)上標(biāo)不同表示組間存在顯著差異(<0.05),下同
* Data from Wang(2012); values in each column with different superscripts are significantly different (<0.05), the same as below
結(jié)合已發(fā)表的G1數(shù)據(jù),對(duì)連續(xù)雌核發(fā)育二倍體及對(duì)照組(C)家系內(nèi)個(gè)體間的遺傳相似度進(jìn)行均值比較(表4)。結(jié)果表明,G1、G2、G3和G4的遺傳相似度分別為0.8917、0.9238、0.9890和0.9988,均顯著高于對(duì)照組(0.5822),G3和G4的遺傳相似度已超過近交系的理論值(0.986)。在連續(xù)減數(shù)分裂雌核發(fā)育過程中,遺傳相似度的變化規(guī)律與純合度類似,G1到G2,再到G3均有顯著提高(<0.05),G3到G4增幅不顯著。
表5結(jié)果顯示,G4家系中,24位點(diǎn)中有17個(gè)已完全純合,近交系數(shù)達(dá)1.0000,但仍有7個(gè)位點(diǎn)保持雜合狀態(tài),近交系數(shù)僅為0.0963~0.3439。近交系數(shù)是衡量微衛(wèi)星位點(diǎn)純合速率的一個(gè)指標(biāo),并且微衛(wèi)星位點(diǎn)的純合速率與重組率緊密相關(guān)。在7個(gè)雜合位點(diǎn)中,、和3個(gè)位點(diǎn)僅檢測到1個(gè)純合個(gè)體,近交系數(shù)為0.0963,重組率高達(dá)0.9750。、和3個(gè)位點(diǎn)純合個(gè)體數(shù)為2個(gè),近交系數(shù)為0.1855,重組率為0.9500。檢測到的純合個(gè)體數(shù)為4,近交系數(shù)較高,為0.3439,重組率為0.9000。
表4 G1、G2、G3、G4和對(duì)照組家系內(nèi)的個(gè)體間遺傳相似度
Tab.4 Genetic similarity indices among G1, G2, G3, G4 and control
本研究首次報(bào)道了牙鲆連續(xù)四代減數(shù)分裂雌核發(fā)育家系的建立,并通過24個(gè)高重組率微衛(wèi)星標(biāo)記進(jìn)行了遺傳特征研究。連續(xù)誘導(dǎo)減數(shù)分裂雌核發(fā)育能夠快速提高牙鲆的純合度和相似度,與Nagy等(1982)的研究結(jié)果相比,牙鲆減數(shù)分裂雌核發(fā)育一代相當(dāng)于9~ 10個(gè)世代的全同胞交配,二代相當(dāng)于11~12個(gè)世代的全同胞交配(王桂興等, 2012)。而G4家系較前三代雌核發(fā)育家系具有更高的純合度和相似度,其遺傳相似度(0.9988)已高于連續(xù)20代全同胞交配所獲得的理論值(0.9860)。另外,在大黃魚(葉小軍等,2010)連續(xù)兩代減數(shù)雌核發(fā)育群體內(nèi)個(gè)體間平均相似系數(shù)達(dá)0.8672,團(tuán)頭魴(唐首杰等, 2014)連續(xù)三代減數(shù)分裂雌核發(fā)育群體內(nèi)個(gè)體間的平均遺傳相似度為0.9845,翹嘴鲌(李倩等, 2015)連續(xù)兩代減數(shù)分裂雌核發(fā)育群體個(gè)體間的平均遺傳相似度為1.0000。上述研究結(jié)果表明,連續(xù)誘導(dǎo)減數(shù)分裂雌核發(fā)育,能快速地提高遺傳相似系數(shù),是快速建立魚類近交系的良好方法。
本研究與大黃魚(葉小軍等,2010)、團(tuán)頭魴(唐首杰等, 2014)等連續(xù)雌核發(fā)育研究均顯示,連續(xù)誘導(dǎo)減數(shù)分裂雌核發(fā)育過程中,不同位點(diǎn)的純合速率不同,在脊尾白蝦()近交系中也存在類似現(xiàn)象(王日芳等, 2017)。另外,結(jié)合已經(jīng)發(fā)表的牙鲆雌核發(fā)育一代、二代及三代結(jié)果,發(fā)現(xiàn)標(biāo)記的純合速率與其重組率顯著相關(guān),低重組率的位點(diǎn)純合較快,而部分高重組率微衛(wèi)星標(biāo)記的純合度不隨減數(shù)分裂雌核發(fā)育代數(shù)的增加而提高(王桂興等, 2012; 侯吉倫等, 2014)。例如,位點(diǎn)在雌核發(fā)育一代的重組率為0.9333,二代為0.9667,三代為1.0000,四代為0.9750;位點(diǎn)在一代的重組率為0.9667,二代為0.9333,四代為0.9750。對(duì)于上述2個(gè)位點(diǎn),每一代出現(xiàn)的純合個(gè)體數(shù)在0~2之間,代際之間的重組率差異不明顯。而微衛(wèi)星位點(diǎn)重組率的高低取決于其在染色體上的位置。在水產(chǎn)動(dòng)物上,根據(jù)重組率的差異,在眾多物種上開展了標(biāo)記?著絲粒作圖,以推定連鎖群上標(biāo)記和著絲粒的相對(duì)距離(Ji, 2009; Li, 2008)。在牙鲆上,韓慧宗等(2013)開展了微衛(wèi)星標(biāo)記?著絲粒作圖,并根據(jù)重組率的不同,將標(biāo)記劃分為遠(yuǎn)著絲粒區(qū)域、連鎖群中部和著絲粒區(qū)域 3種類型,遠(yuǎn)著絲粒區(qū)域標(biāo)記的重組率高于0.677。本研究中,7個(gè)雜合位點(diǎn)的重組率均高于0.9000,位于遠(yuǎn)著絲粒區(qū)域。研究結(jié)果表明,在鑒定連續(xù)雌核發(fā)育二倍體時(shí),選擇遠(yuǎn)著絲粒區(qū)域的標(biāo)記(高重組率)才能夠準(zhǔn)確反映其純合度、雜合度等遺傳參數(shù)。
表5 G4家系中24個(gè)微衛(wèi)星位點(diǎn)上純合個(gè)體數(shù)量、比率、重組率和近交系數(shù)
Tab.5 Number of homozygote, recombination frequency, breeding coefficients in gynogens of P. olivaceus for 24 detected microsatellite loci in G4
要使這些高重組率的位點(diǎn)純合,必須在減數(shù)分裂雌核發(fā)育的基礎(chǔ)上再次誘導(dǎo)有絲分裂雌核發(fā)育來實(shí)現(xiàn)。在牙鲆上,本團(tuán)隊(duì)通過篩選減數(shù)分裂雌核發(fā)育二倍體作為雙單倍體誘導(dǎo)的親本,提高了誘導(dǎo)效率,實(shí)現(xiàn)了雙單倍體的批量制備(Zhang, 2018)。利用雌雄雙單倍體或純合克隆系之間的雜交,可制備雜合克隆(劉海金等, 2017)。雜合克隆的雜種優(yōu)勢(shì)明顯,在育種上具有寶貴的價(jià)值。但在魚類上,利用有絲分裂雌核發(fā)育或雄核發(fā)育誘導(dǎo)雙單倍體效率極低,基于雙單倍體的純合克隆系制備則難度更高,目前只有少數(shù)幾種魚類成功制備了純合克隆系(Komen, 2007)。但從雙單倍體到純合克隆,再到雜合克隆,仍有漫長的選育過程,期間充滿著諸多的不確定性。與有絲分裂雌核發(fā)育相比,減數(shù)分裂雌核發(fā)育擁有較高的誘導(dǎo)效率和后代成活率,且連續(xù)三代和四代減數(shù)分裂雌核發(fā)育具有較高的純合度和遺傳相似度,但這些家系之間雜交的雜種優(yōu)勢(shì)如何,目前尚未開展研究。如果連續(xù)多代減數(shù)分裂雌核發(fā)育家系間雜交的雜種優(yōu)勢(shì)和雜合克隆系相近,則這些連續(xù)多代減數(shù)分裂雌核發(fā)育家系可作為純合克隆系的有益補(bǔ)充,豐富克隆育種的材料,加快高產(chǎn)抗逆優(yōu)質(zhì)新品種的選育。
綜上所述,通過連續(xù)四代減數(shù)分裂雌核發(fā)育所獲得的牙鲆家系,具有高度的純合度和遺傳相似度,可用于基因重組熱點(diǎn)、雜種優(yōu)勢(shì)以及新品種選育等研究。
Casta?o-Sánchez C, Fuji K, Ozaki A,. A second generation genetic linkage map of Japanese flounder (). BMC Genomics, 2010, 11: 554
Han HZ, Jiang L, Liu Y,. Identifying genetic characteristics of different diploids in Japanese flounder based on M-C mapping. Journal of Fisheries of China, 2013, 37(3): 321– 329 [韓慧宗, 蔣麗, 劉奕, 等. 基于M-C作圖鑒定牙鲆不同二倍體的遺傳特征. 水產(chǎn)學(xué)報(bào), 2013, 37(3): 321–329]
Hou JL, Li C, Wang GX,. Analysis of genetic structure of three third-generation of successive meiogynogenetic families in Japanese flounder,. Engineering Science, 2014, 16(9): 26–32 [侯吉倫, 李超, 王桂興, 等. 牙鲆連續(xù)三代減數(shù)分裂雌核發(fā)育家系的遺傳特征分析. 中國工程科學(xué), 2014, 16(9): 26–32]
Ji XS, Chen SL, Liao XL,. Microsatellite-centromere mapping inusing gynogenetic diploid families produced by the use of homologous and non- homologous sperm. Journal of Fish Biology, 2009, 75(2): 422–434
Komen H, Thorgaard GH. Androgenesis, gynogenesis and the production of clones in fishes: A review. Aquaculture, 2007, 269(1): 150–173
Li Q, Gu ZM, Jia YY,. Analysis of genetic characteristics of two successive generation meiosis gynogenetic population inBleeker. Journal of Shanghai Ocean University, 2015, 24(1): 1–11 [李倩, 顧志敏, 賈永義, 等. 翹嘴鲌連續(xù)兩代減數(shù)分裂雌核發(fā)育群體的遺傳特征分析. 上海海洋大學(xué)學(xué)報(bào), 2015, 24(1): 1–11]
Li YY, Cai MY, Wang ZY,. Microsatellite-centromere mapping in large yellow croaker () using gynogenetic diploid families. Marine Biotechnology, 2008, 10(1): 83–90
Liu HJ, Hou JL, Chang YM,. Induced meiogynogenesis in Japanese flounder () by sperm of red sea bream(). Journal of Fisheries of China, 2010a, 34(4): 508–514 [劉海金, 侯吉倫, 常玉梅, 等. 真鯛精子誘導(dǎo)牙鲆減數(shù)分裂雌核發(fā)育. 水產(chǎn)學(xué)報(bào), 2010a, 34(4): 508–514]
Liu HJ, Hou JL, Liu Y. Gynogenesis in Japanese flounder: A review. Journal of Fishery Sciences of China, 2017, 24(4): 902–912 [劉海金, 侯吉倫, 劉奕. 牙鲆雌核發(fā)育研究進(jìn)展. 中國水產(chǎn)科學(xué), 2017, 24(4): 902–912]
Liu HJ, Liu YX, Wang YF,. Genetic difference between meiotic gynogenesis and mitotic gynogenesis in the Japanese flounder. Journal of Fisheries of China, 2010b, 34(6): 718– 724 [劉海金, 劉永新, 王玉芬, 等. 牙鲆減數(shù)分裂與有絲分裂雌核發(fā)育的遺傳差異. 水產(chǎn)學(xué)報(bào), 2010b, 34(6): 718– 724]
Liu YX, Han HZ, Wang QL,. Choice of microsatellite markers for identifying homozygosity of mitotic gynogeneticdiploids in Japanese flounder. Journal of Fish Biology, 2013, 82(2): 588–599
Liu YX, Zhu YM, Liu YJ,. Analysis of genetic diversity in Bohai natural population of. Journal of Fisheries of China, 2013, 37(11): 1609–1617 [劉永新, 朱以美, 劉英杰, 等. 牙鲆渤海自然群體的遺傳多樣性分析. 水產(chǎn)學(xué)報(bào), 2013, 37(11): 1609–1617]
Nagy A, Csányi V. Changes of genetic parameters in successive gynogenetic generations and some calculations for carp gynogenesis. Theoretical and Applied Genetics, 1982, 63(2): 105–110
Tabata K, Gorie S, Nakamura K. Induction of gynogenetic diploid in hirame. Bulletin of the Japanese Society of Scientific Fisheries, 1986, 52(11): 1901–1904 [田畑和男, 五利江重昭, 中村一彥. 紫外線によるヒラメの雌性発生2倍體の誘起條件. 日本水産學(xué)會(huì)誌, 1986, 52(11): 1901–1904]
Tang SJ, Li SF, Cai WQ. Analysis of genetic homozygosity and diversity of three successive generations of meio-gynogeneticpopulation inusing microsatellite markers. Freshwater Fisheries, 2014, 44(2): 3–8 [唐首杰, 李思發(fā), 蔡完其. 團(tuán)頭魴連續(xù)三代減數(shù)雌核發(fā)育群體遺傳變異的微衛(wèi)星分析. 淡水漁業(yè), 2014, 44(2): 3–8]
Wang GX, Liu HJ, Zhang XY,. Analysis of homozygosity and genetic similarity between two successive generations in a meiogynogenetic Japanese flounder family. Journal of Fishery Sciences of China, 2012, 19(3): 381–389 [王桂興, 劉海金, 張曉彥, 等. 牙鲆連續(xù)兩代減數(shù)分裂雌核發(fā)育家系的遺傳特征. 中國水產(chǎn)科學(xué), 2012, 19(3): 381–389]
Wang RF, Li J, Li JT,. Genetic analysis of 33 microsatellite loci in 3 families ofinbred line. Progress in Fishery Sciences, 2017, 38(4): 78–86 [王日芳, 李健, 李吉濤, 等. 脊尾白蝦()近交系3個(gè)家系33個(gè)微衛(wèi)星座位的遺傳分析. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(4): 78–86]
Wang W, You F, Gao TX,. Microsatellite markers analysis on artificial meiogynogenetic stock of. Chinese High Technology Letters, 2005, 15(7): 107–110 [王偉, 尤鋒, 高天翔, 等. 人工誘導(dǎo)牙鲆異質(zhì)雌核發(fā)育群體的微衛(wèi)星標(biāo)記分析. 高技術(shù)通訊, 2005, 15(7): 107–110]
Xu C, Wang KL, Xu YL,. Recombination and expression of paternal gene of isozymes in gynogenetic olive flounder. Oceanologia et Limnologia Sinica, 2002, 33(1): 62–67 [徐成, 王可玲, 徐永立, 等. 雌核發(fā)育牙鲆同工酶基因的重組及父方基因的表達(dá). 海洋與湖沼, 2002, 33(1): 62–67]
Yamamoto E. Studies on sex-manipulation and production of cloned populations in hirame,(Temminck etSchlegel). Aquaculture, 1999, 173(1–4): 235– 246
Ye XJ, Wang ZY, Liu XD,. Analysis of genetic homozygosity and diversity of two successive generation meio-gynogenetic population inusing microsatellite markers. Acta Hydrobiologica Sinica, 2010, 34(1): 144–151 [葉小軍, 王志勇, 劉賢德, 等. 大黃魚連續(xù)兩代雌核發(fā)育群體的微衛(wèi)星標(biāo)記分析. 水生生物學(xué)報(bào), 2010, 34(1): 144–151]
Zhang XY, Wang GX, Sun ZH,. Mass production of doubled haploids in Japanese flounder,. Journal of the World Aquaculture Society, 2018, 49(2): 420–428
Zhu XC, Liu HJ, Sun XW,. Assessment of homozygosity in gynogenetic diploid using microsatellite markers in Japanese flounder (). Zoological Research, 2006, 27(1): 63–67 [朱曉琛, 劉海金, 孫效文, 等. 微衛(wèi)星評(píng)價(jià)牙鲆雌核發(fā)育二倍體純合性. 動(dòng)物學(xué)研究, 2006, 27(1): 63–67]
Genetic Analysis of Four Generations of a Successive Meiogynogenetic Population in the Japanese Flounder,
WANG Guixing, ZHANG Xiaoyan, SUN Zhaohui, ZHAO Yaxian, DU Wei, HOU Jilun①, WANG Yufen①
(Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100)
Artificially induced gynogenesis is a form of chromosome manipulation for sex control, accelerating both the elimination of recessive deleterious genes and the rapid establishment of inbred lines that could benefit the breeding progress in fish species. Artificially induced gynogenesis can be divided by mechanism into meiogynogenesis and mitogynogenesis. In this study, the fourth generation of a successive meiogynogenetic population (G4) in Japanese flounder () was established by induction of meiogynogenesis, in which the eggs of third-generation females (G3) were activated by ultraviolet-irradiated red sea bream () sperm, followed by a cold-shock treatment at 0℃, starting 3 min after activation and lasting 45 min. We evaluated the genetic structure of the control, G2, G3, and G4 populations with 24 microsatellite markers and a high recombination rate that covered all linkage groups of the flounder. The efficiency of successive meiogynogenesis in terms of producing a highly inbred line was quantified by calculating the homozygosity and genetic similarity. The results showed that 96, 42, 32, and 32 alleles were detected in the control, G2, G3, and G4 populations, respectively; the average numbers of alleles were 4.00, 1.98, 1.33, and 1.33, respectively; and the average expected heterozygosities were 0.6416, 0.3472, 0.1694, and 0.1492, respectively. The average homozygosities among the 24 analyzed loci were 0.3503, 0.6528, 0.8306, and 0.8508, respectively. In the G4 population, 17 loci were homozygous, while 7 remained heterozygous. With respect to genetic similarity, the average similarity indexes between offsprings within populations were 0.5822, 0.9238, 0.9890, and 0.9988, respectively. Among G1, G2, and G3 populations, the homozygosity and genetic similarity index increased significantly (0.05) with generations. However, the differences in homozygosity and genetic similarity index between G3 and G4 were not significant. Our results indicate that artificially induced successive meiogynogenesis can effectively increase the homozygosity of individuals, as well as the genetic similarity of offspring within a population. Successive meiogynogenesis has a higher induction rate than mitogynogenesis, and therefore is a useful alternative method for establishing clonal lines in fish.
; SSR; Gynogenesis clonal line; Genetic diversity; Heterozygous locus
S917
A
2095-9869(2019)06-0048-08
10.19663/j.issn2095-9869.20180907001
http://www.yykxjz.cn/
王桂興, 張曉彥, 孫朝徽, 趙雅賢, 都威, 侯吉倫, 王玉芬. 牙鲆連續(xù)四代減數(shù)分裂雌核發(fā)育家系的遺傳特征分析. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(6): 48–55
Wang GX, Zhang XY, Sun ZH, Zhao YX, Du W, Hou JL, Wang YF. Genetic analysis of four generations of a successive meiogynogenetic population in the Japanese flounder,. Progress in Fishery Sciences, 2019, 40(6): 48–55
* 河北省自然科學(xué)基金優(yōu)秀青年科學(xué)基金(C2018107006)和現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-47)共同資助[This work was supported by Natural Science Foundation of Hebei Province(C2018107006), and China Agriculture Research System (CARS-47)]. 王桂興,E-mail: 13903343053@163.com
侯吉倫,副研究員,E-mail: jilunhou@126.com;王玉芬,副研究員,E-mail: wangyf-8000@163.com
2018-09-07,
2018-10-13
HOU Jilun, E-mail: jilunhou@126.com; WANG Yufen, E-mail: wangyf-8000@163.com
(編輯 馬璀艷)