• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      波浪作用下雙層網(wǎng)底鲆鰈網(wǎng)箱水動(dòng)力特性的數(shù)值模擬*

      2019-12-06 01:24:54關(guān)長(zhǎng)濤公丕海
      漁業(yè)科學(xué)進(jìn)展 2019年6期
      關(guān)鍵詞:下層網(wǎng)箱單層

      崔 勇 關(guān)長(zhǎng)濤 黃 濱 李 嬌 公丕海

      波浪作用下雙層網(wǎng)底鲆鰈網(wǎng)箱水動(dòng)力特性的數(shù)值模擬*

      崔 勇 關(guān)長(zhǎng)濤①黃 濱 李 嬌 公丕海

      (中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部海洋漁業(yè)可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室 青島市海水魚類種子工程與生物技術(shù)重點(diǎn)實(shí)驗(yàn)室 青島 266071)

      根據(jù)有限單元法建立了波浪作用下雙層網(wǎng)底網(wǎng)箱的受力運(yùn)動(dòng)模型,通過數(shù)值計(jì)算求解雙層網(wǎng)底的位移與傾角。先將上層網(wǎng)底與下層網(wǎng)底的計(jì)算值進(jìn)行比較,然后,將雙層網(wǎng)底網(wǎng)箱中下層網(wǎng)底與單層網(wǎng)底網(wǎng)箱開展對(duì)比分析。計(jì)算結(jié)果顯示,在波浪周期內(nèi),雙層網(wǎng)底網(wǎng)箱的2層網(wǎng)底能保持相對(duì)平行的狀態(tài)。2層網(wǎng)底的位移與最大傾角隨著波高與周期的增大而增 加,并且2層網(wǎng)底的傾斜方向一致。在相同波浪條件作用下,下層網(wǎng)底的水平位移大于上層網(wǎng)底,二者垂直位移差異較小,下層網(wǎng)底最大傾角值大于上層網(wǎng)底。研究發(fā)現(xiàn),當(dāng)波高為15 cm、周期為1.4 s時(shí),雙層網(wǎng)底網(wǎng)箱的2層網(wǎng)底的傾角相差最大,但并未發(fā)生接觸碰撞,網(wǎng)底可以保持相對(duì)穩(wěn)定。此外,雙層網(wǎng)底網(wǎng)箱的下層網(wǎng)底的最大位移值小于單層網(wǎng)底網(wǎng)箱,最大傾角值大于單層網(wǎng)底網(wǎng)箱。研究表明,當(dāng)波浪一定時(shí),雙層網(wǎng)底網(wǎng)箱的最大錨繩力均大于單層網(wǎng)底網(wǎng)箱。

      雙層網(wǎng)底;水動(dòng)力;有限元方法;鲆鰈網(wǎng)箱

      鲆鰈類養(yǎng)殖網(wǎng)箱通常底部具有平臺(tái)結(jié)構(gòu),主要用于牙鲆()、大菱鲆()等底棲性魚類的養(yǎng)殖。目前,用于養(yǎng)殖鲆鰈魚類的網(wǎng)箱多為方形平底結(jié)構(gòu),其水面框架由金屬管材制成,底部配有張緊繩索的框架支撐底部網(wǎng)衣(崔勇等, 2012)。鲆鰈類養(yǎng)殖網(wǎng)箱與HDPE重力式網(wǎng)箱相比,主要區(qū)別為網(wǎng)衣深度不同和網(wǎng)箱底部具有平臺(tái)結(jié)構(gòu)。鲆鰈網(wǎng)箱的網(wǎng)底面積直接決定單體網(wǎng)箱的養(yǎng)殖產(chǎn)量,因此,為增加單體網(wǎng)箱的產(chǎn)量,網(wǎng)箱通常設(shè)有雙層或多層網(wǎng)底結(jié)構(gòu),可增加網(wǎng)箱的養(yǎng)殖面積,提高養(yǎng)殖空間利用率。多層結(jié)構(gòu)的網(wǎng)底在波浪作用下會(huì)發(fā)生傾斜與轉(zhuǎn)動(dòng),為確保鲆鰈類養(yǎng)殖網(wǎng)箱多層網(wǎng)底結(jié)構(gòu)的安全性,需對(duì)其水動(dòng)力特性開展研究。

      近年來,國(guó)內(nèi)外學(xué)者在離岸網(wǎng)箱水動(dòng)力特性方面進(jìn)行了一系列的研究,其中包括物理模型實(shí)驗(yàn)(Lader, 2005; DeCew, 2010; 黃六一等, 2007),也有利用計(jì)算機(jī)技術(shù)開展數(shù)值模擬(Lee, 2008; Tsukrov, 2003; 黃小華等, 2011)等。此外,F(xiàn)redriksson等(2003、2007)對(duì)實(shí)際養(yǎng)殖海區(qū)水流作用下養(yǎng)殖網(wǎng)箱的錨泊系統(tǒng)受力進(jìn)行了海上實(shí)測(cè)。目前,此類研究中針對(duì)鲆鰈網(wǎng)箱水動(dòng)力特性研究的報(bào)道還比較少。趙云鵬等(2012)通過集中質(zhì)量法對(duì)波浪作用下一種鲆鰈類方形網(wǎng)箱水動(dòng)力特性開展了數(shù)值模擬研究。Gui等(2014)對(duì)一種鲆鰈網(wǎng)箱在波浪作用下的水動(dòng)力特性進(jìn)行測(cè)試。崔勇等(2016)對(duì)一種雙層網(wǎng)底結(jié)構(gòu)鲆鰈網(wǎng)箱的耐流特性開展了研究,并與單層網(wǎng)底網(wǎng)箱進(jìn)行了比較分析。本文以一種雙層網(wǎng)底鲆鰈網(wǎng)箱為研究對(duì)象,基于有限元軟件提供的參數(shù)化建模技術(shù),對(duì)其在波浪作用下的水動(dòng)力特性進(jìn)行數(shù)值模擬,研究結(jié)果可為多層網(wǎng)底鲆鰈網(wǎng)箱設(shè)計(jì)優(yōu)化提供理論依據(jù)。

      1 材料與方法

      1.1 數(shù)值模擬方法

      本研究基于有限元方法對(duì)波浪作用下雙層網(wǎng)底鲆鰈網(wǎng)箱的水動(dòng)力特性進(jìn)行數(shù)值模擬。網(wǎng)箱結(jié)構(gòu)主要由框架、網(wǎng)衣和錨繩單元構(gòu)成,本研究采用的有限元模型將網(wǎng)箱結(jié)構(gòu)分成不同特性的單元來計(jì)算載荷。如果單元位于水中,其水動(dòng)力載荷自動(dòng)施加;如果單元位于水面以上,則只有重力載荷。因此,數(shù)值模型可針對(duì)結(jié)構(gòu)單元的位置對(duì)其水動(dòng)力進(jìn)行自動(dòng)調(diào)節(jié)。該數(shù)值模型通過物理水槽實(shí)驗(yàn)驗(yàn)證(Cui, 2013),可用于網(wǎng)衣與框架結(jié)構(gòu)的模擬。

      根據(jù)有限元?jiǎng)恿Ψ治龇椒?,網(wǎng)箱整體結(jié)構(gòu)在波流場(chǎng)中的運(yùn)動(dòng)可由公式(1)表示(李茜等, 2003; ANSYS Incorporated, 2009):

      1.2 算例

      計(jì)算用例采用與崔勇等(2016)的雙層網(wǎng)底鲆鰈網(wǎng)箱一致。其中,原型網(wǎng)箱主尺寸為5 m×5 m×4 m,網(wǎng)底面積為16 m2,上層網(wǎng)底距離水面為2 m,底面積為9 m2,即雙層網(wǎng)底網(wǎng)箱的總養(yǎng)殖面積為25 m2。上層網(wǎng)底四角通過聚乙烯繩索連接網(wǎng)箱上框架與底框架四角,在靜水條件下,上層網(wǎng)底可保持水平狀態(tài)(圖1)。為了與崔勇(2012)的單層網(wǎng)底鲆鰈網(wǎng)箱進(jìn)行比較,本研究計(jì)算用例采用重力相似準(zhǔn)側(cè),大尺度比為1∶20,模型網(wǎng)箱參數(shù)見表1。波浪工況見表2,設(shè)計(jì)水深為0.6 m。

      圖1 雙層網(wǎng)底鲆鰈網(wǎng)箱

      2 結(jié)果與討論

      2.1 網(wǎng)箱運(yùn)動(dòng)模擬結(jié)果

      在波浪作用下,雙層網(wǎng)底鲆鰈網(wǎng)箱在1個(gè)周期內(nèi)運(yùn)動(dòng)變形情況的數(shù)值模擬結(jié)果見圖2。圖2中波浪工況條件波高為9 cm,波周期為1.2 s。每張圖片的時(shí)間間隔為1/8波浪周期,圖2中顏色深淺表示網(wǎng)箱離散單元位移大小。從圖2可以看出,雙層網(wǎng)底鲆鰈網(wǎng)箱整體結(jié)構(gòu)隨著波浪傳播方向呈現(xiàn)周期性的運(yùn)動(dòng)趨勢(shì)。本研究的計(jì)算用例中,浮框和底框架單元本身具有一定的剛度,其單元的形狀變化較小,而網(wǎng)衣單元隨著時(shí)間的推移,在波浪力的作用下產(chǎn)生了明顯的變形。從圖2還可以看出,在波浪作用下,網(wǎng)箱的上層網(wǎng)底與下層網(wǎng)底框架基本保持平行狀態(tài),即2層網(wǎng)底的傾斜方向相同,傾斜角度也基本一致。此結(jié)果與單純水流作用下網(wǎng)箱2層網(wǎng)底的運(yùn)動(dòng)變形情況差別較大。當(dāng)水流作用時(shí),網(wǎng)箱上層網(wǎng)底與下層網(wǎng)底的傾斜方向恰好相反,導(dǎo)致在高流速時(shí)出現(xiàn)雙層網(wǎng)底發(fā)生相互碰撞的情況(崔勇等, 2016)。而當(dāng)網(wǎng)箱在單純波浪作用下,網(wǎng)箱的雙層網(wǎng)底始終保持一定的間距,并未發(fā)生相互接觸的情況。此外,從其他波浪工況作用下的計(jì)算機(jī)仿真結(jié)果顯示,當(dāng)波高和波周期取更大值時(shí),網(wǎng)箱的2層網(wǎng)底仍然可以保持相對(duì)平行的狀態(tài)。究其原因,可能與上層網(wǎng)底通過8根繩索分別與上框架與底框架連接有關(guān),2層網(wǎng)底框架與網(wǎng)箱整體結(jié)構(gòu)可以保持相對(duì)同步的運(yùn)動(dòng)狀態(tài)。

      表1 模型網(wǎng)箱參數(shù)

      Tab.1 Properties of the flounder fish cage used for tests

      表2 波浪工況

      Tab.2 Wave conditions

      圖2 波浪作用下網(wǎng)箱變形模擬結(jié)果

      2.2 網(wǎng)底位移與最大傾角

      不同波浪工況作用下,2層網(wǎng)底在水平與垂直方向最大位移的比較值見圖3和圖4。其中,位移計(jì)算結(jié)果采用網(wǎng)底中心點(diǎn)位置。從圖3可以看出,當(dāng)波浪工況相同時(shí),上層網(wǎng)底的水平位移均小于下層網(wǎng)底。2層網(wǎng)底的水平位移隨著波高與波周期的增加而增大,其中,當(dāng)波高一定時(shí),最大水平位移隨周期增加而增大的幅度較??;當(dāng)周期一定時(shí),最大位移隨波高增加而增大的幅度較大。從圖4可以看出,當(dāng)波浪工況一定時(shí),2層網(wǎng)底的最大垂直位移值比較接近,上層網(wǎng)底略小于下層網(wǎng)底,僅在波高與周期取較大值時(shí),上層網(wǎng)底的垂直位移明顯小于下層網(wǎng)底。由于 2層網(wǎng)底在垂向的位移基本一致,因此,上層網(wǎng)底與下層網(wǎng)底框架可以保持穩(wěn)定的間距。此外,2層網(wǎng)底的垂直位移隨波高與波周期的變化趨勢(shì)與圖3所示的水平位移變化趨勢(shì)基本相同。

      上層網(wǎng)底與下層網(wǎng)底最大傾角隨波浪變化模擬值的比較見圖5。從圖5可以看出,在同一波浪工況作用下,上層網(wǎng)底的最大傾角均小于下層網(wǎng)底,并且2層網(wǎng)底取最大傾角時(shí)的傾斜方向一致,均為逆時(shí)針方向。2層網(wǎng)底的最大傾角均隨波高與周期的增加而增大,波高的改變對(duì)網(wǎng)底傾斜角度的影響更加顯著。從數(shù)值上看,上層網(wǎng)底的最大傾角范圍為7°~14°,而下層網(wǎng)底的最大傾角約為14°~36°。從模擬結(jié)果看,同時(shí)參考圖2所示的計(jì)算機(jī)仿真虛擬呈現(xiàn),2層網(wǎng)底最大傾角的差值并不是很大,二者的傾斜方向相同,并且在垂直方向位移也基本相同,因此,2層網(wǎng)底并不會(huì)發(fā)生接觸碰撞而影響鲆鰈魚類的安全生長(zhǎng)。這與雙層網(wǎng)底網(wǎng)箱在單純水流作用下,2層網(wǎng)底由于傾斜方向相反而發(fā)生碰撞的情況差別明顯。

      圖3 上層網(wǎng)底與下層網(wǎng)底水平位移

      圖4 上層網(wǎng)底與下層網(wǎng)底垂直位移

      圖5 上層網(wǎng)底與下層網(wǎng)底最大傾角

      本計(jì)算用例中,雙層網(wǎng)底網(wǎng)箱與崔勇(2012)所述單層網(wǎng)底網(wǎng)箱的網(wǎng)底最大位移值的比較見圖6和圖7。其中,雙層網(wǎng)底網(wǎng)箱的水平與垂直位移均為下層網(wǎng)底。由圖6和圖7可以看出,在相同波浪條件下,雙層網(wǎng)底網(wǎng)箱在水平與垂直方向的最大位移均小于單層網(wǎng)底網(wǎng)箱,這可能與雙層網(wǎng)底網(wǎng)箱的上層網(wǎng)底結(jié)構(gòu)有關(guān)。由于上層網(wǎng)底的四角通過繩索分別與下層網(wǎng)底四角相連接,2層網(wǎng)底在波浪作用下的同步運(yùn)動(dòng)從而形成一個(gè)整體,致使雙層網(wǎng)底網(wǎng)箱在2個(gè)方向的最大位移均小于單層網(wǎng)底網(wǎng)箱。

      圖6 雙層網(wǎng)底網(wǎng)箱與單層網(wǎng)底網(wǎng)箱水平位移

      圖7 雙層網(wǎng)底網(wǎng)箱與單層網(wǎng)底網(wǎng)箱垂直位移

      雙層網(wǎng)底網(wǎng)箱與單層網(wǎng)底網(wǎng)箱在波浪作用下最大傾角變化的比較見圖8。從圖8可以看出,當(dāng)波浪工況相同時(shí),雙層網(wǎng)底網(wǎng)箱下層網(wǎng)底的最大傾角均大于單層網(wǎng)底網(wǎng)箱,這可能與雙層網(wǎng)底網(wǎng)箱中上層網(wǎng)底的同步效應(yīng)有關(guān)。從前面計(jì)算機(jī)模擬結(jié)果可以看出,雙層網(wǎng)底網(wǎng)箱的上層網(wǎng)底與下層網(wǎng)底在波浪作用下,可以保持相對(duì)平行的狀態(tài),2層網(wǎng)底通過繩索相連接,作為整體結(jié)構(gòu)慣性較大,因而加劇了網(wǎng)底的傾斜。此結(jié)果與單純水流作用下,雙層網(wǎng)底網(wǎng)箱與單層網(wǎng)底網(wǎng)箱比較恰恰相反。當(dāng)水流作用時(shí),雙層網(wǎng)底網(wǎng)箱的 2層網(wǎng)底傾斜方向相反,由于互相抵消作用而導(dǎo)致雙層網(wǎng)底網(wǎng)箱的傾角小于單層網(wǎng)底網(wǎng)箱。

      圖8 雙層網(wǎng)底網(wǎng)箱與單層網(wǎng)底網(wǎng)箱最大傾角

      2.3 錨繩力

      雙層網(wǎng)底網(wǎng)箱與單層網(wǎng)底網(wǎng)箱迎波面最大錨繩力的比較見圖9。從圖9可以看出,2種結(jié)構(gòu)網(wǎng)箱迎波面錨繩的最大張力隨著波高與波周期的增加而增大。其中,在波浪條件相同時(shí),雙層網(wǎng)底網(wǎng)箱最大錨繩力均大于單層網(wǎng)底網(wǎng)箱。當(dāng)波高為9 cm時(shí),雙層網(wǎng)底網(wǎng)箱錨繩力略大于單層網(wǎng)底網(wǎng)箱;當(dāng)波高增加時(shí),雙層網(wǎng)底網(wǎng)箱錨繩力明顯大于單層網(wǎng)底網(wǎng)箱。這可能與波高較大時(shí),雙層網(wǎng)底網(wǎng)箱作同步運(yùn)動(dòng)時(shí)慣性較大所致。此結(jié)果與2種網(wǎng)箱在單純水流作用時(shí)的比較結(jié)果也有所不同。崔勇等(2016)研究表明,單層網(wǎng)底網(wǎng)箱與雙層網(wǎng)底網(wǎng)箱在水流作用下,無論迎流面還是背流面最大錨繩力均差異不大,究其原因可能與水流作用下雙層網(wǎng)底網(wǎng)箱的2層網(wǎng)底的傾斜方向相反有關(guān)。

      圖9 雙層網(wǎng)底網(wǎng)箱與單層網(wǎng)底網(wǎng)箱最大錨繩力比較

      3 結(jié)論

      本文利用有限元方法對(duì)一種雙層網(wǎng)底鲆鰈網(wǎng)箱在波浪作用下的水動(dòng)力特性進(jìn)行了數(shù)值模擬研究,對(duì)上層網(wǎng)底與下層網(wǎng)底的位移與最大傾角進(jìn)行比較分析,同時(shí),將雙層網(wǎng)底網(wǎng)箱與單層網(wǎng)底網(wǎng)箱進(jìn)行橫向?qū)Ρ取纳鲜霰容^中可以看出,在幾種不同波浪工況作用下,雙層網(wǎng)底網(wǎng)箱的上、下2層網(wǎng)底最大傾角差距不大,并且二者的傾斜方向始終一致。2層網(wǎng)底在垂直方向的位移也比較接近,在波浪作用下可以保持相對(duì)平行的狀態(tài),從而保證網(wǎng)底結(jié)構(gòu)的穩(wěn)定。在與單層網(wǎng)底網(wǎng)箱比較時(shí)可以看出,雙層網(wǎng)底網(wǎng)箱中的下層網(wǎng)底最大傾角要大于單層網(wǎng)底網(wǎng)箱,約為單層網(wǎng)底網(wǎng)箱最大傾角的2倍。雙層網(wǎng)底網(wǎng)箱與單層網(wǎng)底網(wǎng)箱位移比較時(shí),雙層網(wǎng)底網(wǎng)箱中下層網(wǎng)底的位移要小于單層網(wǎng)底網(wǎng)箱,這可能與雙層網(wǎng)底網(wǎng)箱中上層網(wǎng)底的連接方式有關(guān)。此外,對(duì)于波流聯(lián)合作用下雙層網(wǎng)底網(wǎng)箱水動(dòng)力特性的研究,有待于今后進(jìn)一步開展。

      Incorporated. ANSYS user’s manual. Canonsburg. USA: ANSYS, Incorporated, 2009, 270–275

      Cui Y. Guan CT, Wan R,. Numerical simulation of a ?at?sh cage system in waves and currents. Aquacultural Engineering, 2013, 56: 26–33

      Cui Y, Guan CT, Huang B,. Dynamic analysis of the long-line culture facility under waves. Progress in Fishery Sciences, 2014, 35(4): 125–131 [崔勇, 關(guān)長(zhǎng)濤, 黃濱, 等. 波浪作用下筏式養(yǎng)殖結(jié)構(gòu)的動(dòng)力分析. 漁業(yè)科學(xué)進(jìn)展, 2014, 35(4): 125–131]

      Cui Y, Guan CT, Li J,. Numerical simulation of the anti-current characteristics of double-bottom cages for flounder fish. Fishery Modernization, 2016, 43(6): 39–44 [崔勇, 關(guān)長(zhǎng)濤, 李嬌, 等. 雙層網(wǎng)底鲆鰈網(wǎng)箱耐流特性的數(shù)值模擬. 漁業(yè)現(xiàn)代化, 2016, 43(6): 39–44]

      Cui Y. Study on hydrodynamic characteristics of square flatfish cage. Doctoral Dissertation of Ocean University of China, 2012 [崔勇. 方形金屬框架鲆鰈類網(wǎng)箱水動(dòng)力學(xué)特性研究. 中國(guó)海洋大學(xué)博士研究生學(xué)位論文, 2012]

      DeCew J, Tsukrov I, Risso A,. Modeling of dynamic behavior of a single-point moored submersible fish cage under currents. Aquacultural Engineering, 2010, 43(2): 38–45

      Fredriksson DW, DeCew JC, Tsukrov I,. Development of large fish farm numerical modeling techniques with in-situ mooring tension comparisons. Aquacultural Engineering, 2007, 36(2): 137–148

      Fredriksson DW, Swift MR, Irish JD,. Fish cage and mooring system dynamics using physical and numerical models with field measurements. Aquacultural Engineering, 2003, 27(2): 117–146

      Gui FK, Zhao YP, Xu TJ,. Numerical simulation of dynamic response of a net cage for flatfish in waves. China Ocean Engineering, 2014, 28(1): 43–56

      Huang LY, Liang ZL, Song WH,. Experimental study on effect of reducing current velocity by square net cage structure. Journal of Fishery Sciences of China, 2007, 14(5): 860–863 [黃六一, 梁振林, 宋偉華, 等. 方形箱網(wǎng)結(jié)構(gòu)減流效果試驗(yàn). 中國(guó)水產(chǎn)科學(xué), 2007, 14(5): 860–863]

      Huang XH, Guo GX, Hu Y,. Numerical simulation of forces and motion deformation of deep-water net cages in waves and currents. Journal of Fishery Sciences of China, 2011, 18(2): 443?450 [黃小華, 郭根喜, 胡昱, 等. 波流作用下深水網(wǎng)箱受力及運(yùn)動(dòng)變形的數(shù)值模擬. 中國(guó)水產(chǎn)科學(xué), 2011, 18(2): 443?450]

      Lader PF, Enerhaug B.Experimental investigation of forces and geometry of a net cage in uniform flow. IEEE Journal of Oceanic Engineering, 2005, 30(1): 79–84

      Lee CW, Kim YB, Lee GH,. Dynamic simulation of a fish cage system subjected to currents and wave. Ocean Engineering, 2008, 35(14–15): 1521–1532

      Li Q, Yang SG. The finite element dynamic analysis for self-elevating platform by ANSYS/multi-physics program. China Offshore Platform, 2003, 18(4): 41–46 [李茜, 楊樹耕. 采用ANSYS程序的自升式平臺(tái)結(jié)構(gòu)有限元?jiǎng)恿Ψ治? 中國(guó)海洋平臺(tái), 2003, 18(4): 41–46]

      Tsukrov I, Eroshkin O, Fredriksson DW,. Finite element modeling of net panels using a consistent net element. Ocean Engineering, 2003, 30(2): 251–270

      Zhao YP, Chen XF, Xu TJ,. Numerical investigation of hydrodynamic properties of gravity cage for flat-fish culture during exposure to wave action. Journal of Fishery Sciences of China, 2012, 19(5): 889–899 [趙云鵬, 陳小芳, 許條建, 等. 波浪作用下一種鲆鰈類方形網(wǎng)箱水動(dòng)力特性數(shù)值模擬研究. 中國(guó)水產(chǎn)科學(xué), 2012, 19(5): 889–899]

      Numerical Simulation of the Hydrodynamic Characteristics of Double-Bottom Cage for Flounder Fish Under Waves

      CUI Yong, GUAN Changtao①, HUANG Bin, LI Jiao, GONG Pihai

      (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071)

      Thedouble-bottom cages for flounder fish tend to move and deform under waves. Therefore, it is necessary to carry out hydrodynamic analysis for the stabilization of flounder fish cages. Herein, a numerical model of deformation of double-bottom cages under waves was established based on the finite element method, and then maximum displacement and the pitch of the double-bottom were calculated. First, results of the upper bottom were compared with that of the lower bottom. Afterwards, the results of the lower bottom of double-bottom cage were compared with that of the single-bottom cage. The simulation results showed that the two bottoms of double-bottom cages were able to stay relatively parallel during wave periods. The maximum displacement and pitch of the two bottoms increased along with not only wave height but also wave period. In addition, the inclined direction of the two bottoms was the same. Under the same wave conditions, the horizontal of displacement and the maximum pitch of lower bottom were larger than those of the upper bottom, but their vertical displacements were not much different. It was found that the difference in pitch between upper and lower bottoms was the largest when the wave height was 15 cm and the wave period was 1.4 s. However, the upper and lower bottoms of the cage did not collide with each other, and the two bottoms of the cage could remain relatively stable. Moreover, under the same wave conditions, the displacement of the lower bottom of the double-bottom cage was less than that of the single-bottom cage, but the pitch of the lower bottom of the double-bottom cage was larger than that of the single-bottom cage. Additionally, the maximum mooring-line force of double-bottom cages for flounder fish was larger than that of single-bottom cages. Furthermore, the study on the hydrodynamic characteristics of double-bottom cages for flounder fish under the combined action of wave and flow should be carried out in the future.

      Double-bottom; Hydrodynamic characteristics; Finite element method; Cages for flounder fish

      S953.4

      A

      2095-9869(2019)06-0018-07

      10.19663/j.issn2095-9869.20180820001

      http://www.yykxjz.cn/

      崔勇, 關(guān)長(zhǎng)濤, 黃濱, 李嬌, 公丕海. 波浪作用下雙層網(wǎng)底鲆鰈網(wǎng)箱水動(dòng)力特性的數(shù)值模擬. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(6): 18–24

      Cui Y, Guan CT, Huang B, Li J, Gong PH. Numerical simulation of the hydrodynamic characteristics of double-bottom cage for flounder fish under waves. Progress in Fishery Sciences, 2019, 40(6): 18–24

      * 現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-47-22)、“一帶一路”國(guó)家水產(chǎn)養(yǎng)殖科技創(chuàng)新合作項(xiàng)目2018–2020和深遠(yuǎn)海智能化網(wǎng)箱整裝裝備產(chǎn)業(yè)鏈協(xié)同創(chuàng)新示范項(xiàng)目共同資助 [This work was supported by China Agriculture Research System (CARS-47-22), “The Belt and Road” National Aquaculture Science and Technology Innovation Cooperation Project 2018–2020, and Deep Sea Intelligent Fish Cage Equipment Industry Chain Collaborative Innovation Demonstration Project]. 崔 勇,E-mail: cuiyong@ysfri.ac.cn

      關(guān)長(zhǎng)濤,研究員,E-mail: guanct@ysfri.ac.cn

      2018-08-20,

      2018-11-09

      GUAN Changtao, E-mail: guanct@ysfri.ac.cn

      (編輯 陳 嚴(yán))

      猜你喜歡
      下層網(wǎng)箱單層
      二維四角TiC單層片上的析氫反應(yīng)研究
      分子催化(2022年1期)2022-11-02 07:10:16
      基于PLC控制的立式單層包帶機(jī)的應(yīng)用
      電子制作(2019年15期)2019-08-27 01:12:04
      單層小波分解下圖像行列壓縮感知選擇算法
      一類多個(gè)下層的雙層規(guī)劃問題
      積雪
      新型單層布置汽輪發(fā)電機(jī)的研制
      10kV配網(wǎng)箱變局放檢測(cè)案例分析
      電子制作(2017年24期)2017-02-02 07:14:45
      陜西橫山羅圪臺(tái)村元代壁畫墓發(fā)掘簡(jiǎn)報(bào)
      考古與文物(2016年5期)2016-12-21 06:28:48
      全國(guó)首例網(wǎng)箱豢養(yǎng)江豚繁育成功
      池塘小網(wǎng)箱養(yǎng)殖黃鱔
      台东市| 高雄市| 湖州市| 常山县| 胶州市| 洛南县| 永清县| 任丘市| 巩留县| 邵东县| 平阴县| 含山县| 弥勒县| 得荣县| 库车县| 静安区| 公安县| 大关县| 昭平县| 莱芜市| 新野县| 海宁市| 鄂尔多斯市| 肥西县| 陵川县| 蒙山县| 昔阳县| 台安县| 开原市| 班戈县| 西昌市| 乐业县| 德江县| 马边| 北安市| 高碑店市| 湘西| 榆树市| 新绛县| 吉木萨尔县| 远安县|