(埃及)漢娜·達希 (捷克)簡·彼得斯 (波蘭)皮奧特·巴辛斯基 (斯洛伐克)米夏拉·梅
全球35%以上的能源以及近45%的資源應用于建筑行業(yè)中。如果人口持續(xù)增長,2030年全球將需要比現(xiàn)在多40%的能源[1]。為應對需求,我們需要為傳統(tǒng)的不可再生資源尋找替代方案[2]?,F(xiàn)在大部分能源都被用于傳統(tǒng)建筑材料如混凝土或鋼鐵的生產中。為滿足可持續(xù)性建筑材料的要求,可以使用天然纖維生物復合材料來代替資源密集型材料(如鋼、混凝土等)和其他合成纖維(如碳、玻璃等)。生物復合材料即天然纖維復合材料(NFRP),是由至少2種主要組分—纖維和基質(也稱為黏合劑)制成的,其中至少有一種是基于生物的組分[3]。天然纖維由于其可回收性和可重復使用性高,可以實現(xiàn)完整的生命周期,同時還具有現(xiàn)代性、幾何靈活性和可持續(xù)性,這些特性在為實現(xiàn)更高的建設目標而尋求新的制造工藝時顯得尤為突出。
生物復合材料展館是一個高3.6 m,跨度9.5 m的分段式殼體結構,通過真空輔助層壓工藝將121個經過了參數(shù)優(yōu)化的彎曲元件組合成型。每個元件的核心都以天然材料為基礎,由單板形式的長木纖維加固,并涂有抗紫外線樹脂以抵抗風化。
每個元件的核心都是通過壓鑄工藝制造而成的柔性板,其混合了生物塑料和天然纖維。天然纖維(例如稻草)這樣的農業(yè)生產廢料,在這里作為建筑材料獲得了第二次生命。
1 用長纖維三維單板在通用模具上加固生物復合材料Reinforcement of bio-composite by long fiber 3D veneer on universal mold
2 真空輔助層壓工藝強化貼面Vacuum-assisted veneer-reinforcement lamination process
3 流程管理Process management
4 項目管理Project management
與中密度纖維板(MDF)相比,柔性板的主要優(yōu)點之一是優(yōu)異的彈性,無須加熱或水處理就能形成最典型的雙曲面表皮。計算機數(shù)字控制機床(CNC)切割的纖維板,會被預切的三維層壓板—一種可以同時向2個方向彎曲的層壓板從兩側壓成薄片。層壓和成型的過程發(fā)生在真空壓力袋內的模具中。層壓技術不僅能將柔性平芯板轉變?yōu)閯傂匀S的彎曲元件,還能形成具有比新材料本身更高機械性能的復合板。
例如,在彎曲實驗中,樣品彈性模量超過5.5 GP,與MDF的彈性模量相同。同時,我們還開發(fā)了另一種類似木質復合板的變體,它把具有單向纖維的柔性木板作為板芯。這種變形實現(xiàn)了與第一種復合板相同的機械性能,由于組織方面的原因,最終在該展館中使用了這種材料。
隨后,所有的121個部件在現(xiàn)場用螺釘連接在一起,形成4個部分,并在交叉的木梁頂部拉動,實現(xiàn)連接。這種方法允許元件后續(xù)的分離和重新利用,以形成各種其他設計形式。
梁的基礎位于不同的水平高度,能使結構形式適應當?shù)鼐坝^的視覺和功能需求。在該結構內,元件彼此交織,形成一個類似于三維結構的分段式外殼,其中彎曲元件在空間的所有方向上都連接到公共節(jié)點上。
生物復合材料研究館展示了由天然材料制成的新型建筑材料在建筑和結構上的潛力。生物材料項目組專注于研究其在建筑中不同方面的可持續(xù)性。這一建成項目是10個月高強度工作的成果,也是在生物材料應用領域中長期工作的一部分以及對可持續(xù)性建筑未來發(fā)展的探索。
5 流程照片Process photo
6 連接性增強的生物復合材料Connected reinforced bio-composite elements
7 生物復合材料展館(2017—2018年)位于斯圖加特大學,高3.6 m、跨度9.5 m,占地約55 m2,內部容積約130 m3The BioMat Research Pavilion 2017—2018 covers an area of about 55 m2 and an internal volume of approximately 130 m3 with a span of 9.5 m and a height of 3.6 m
8 位于斯圖加特市中心大學校園的生物復合材料研究館(2017—2018年)The BioMat Research Pavilion 2017—2018 located at University Campus in Stuttgart city center
致謝:
這項工作由經驗豐富的建筑師和近40名建筑學專業(yè)的學生在兩學期合作完成,得到了斯圖加特大學(FKZ 22021516)、德國聯(lián)邦食品和農業(yè)部下的可再生資源機構、巴登—符騰堡州基金會、弗勞恩霍夫研究所的支持,以及馬蒂亞斯·斯坦奇和保利發(fā)有限責任公司研究項目中的經費支持。同時,這一項目還與多個當?shù)睾蛧H的研究所取得合作,包括荷蘭埃因霍芬理工大學(TU/E)建筑環(huán)境系帕特里克·特烏菲爾教授、斯圖加特大學建筑與結構設計研究所第二教研室土木與環(huán)境工程系的烏爾萊·庫爾曼教授,以及工程大地測量第六研究所航空航天工程和大地測量系的沃克·施維格教授。木梁由布格巴赫爾·霍爾茨有限責任公司制造和提供,樹脂由瀚森公司提供。
(編輯/遆羽靜)
項目名稱:基于生物復合材料的雙曲面分段式殼體展館
項目完成時間:2018年
面積:55 m2
地點:德國斯圖加特開普勒大街斯圖加特大學
設計團隊:建筑結構與結構設計學會生物材料與建筑材料循環(huán)研究小組
圖片來源:斯圖加特伊特克大學建筑結構與結構設計研究所生物基材料與建筑材料循環(huán)系
The building industry is responsible for more than 35% of global energy and almost 45% of global resource.If the population will continue the growing in 2030 the population will need 40% more of energy than today[1].To meet this demand it is necessary to find alternative solutions to traditional non-renewable resources[2].Traditional materials such as concrete or steel are responsible for most of the energy consumption.To meet the requirements for sustainable building materials the natural fiber bio-composites can be used instead of resourceintensive materials (steel,concrete etc.) or the other synthetic fibers (Carbon,Glass).Biocomposite materials,i.e.natural fibre reinforced polymeric composites (NFRP),are materials fabricated from at least two main components,a fibre and a matrix (also known as binder),where at least one of the two main components is biomass-based[3].Thanks to high recyclability and reusability natural fibers can achieve a closed life cycle hand in hand with modernity,geometric flexibility and sustainability,especially when new manufacturing processes are used to achieve higher architectural goals.
The 3.6 m height,9.5 m span research biocomposite pavilion is an interconnected segmented shell construction consisted of 121 parametrically optimized curved elements prepared by a vacuum-assisted veneer-reinforcement lamination process.Natural-based core of each element was reinforced by long wooden-fibres in the form of veneer,then coated with UV-resistant resin to resist against weathering conditions.
The core of the each element is a flexible board made from natural fibres mixed with bioplastic,manufactured by an extrusion process.The natural fibres,such as straw,are waste coming from agricultural production,which find its second life as material for architectural use.
One of the main advantages of this board in comparison to,for example,MDF,is exceptional elasticity which allows for forming even extremely double-curved surfaces,without heat or water treatment.The CNC cut fibreboard cores are later laminated from both sides with pre-cut 3D veneer sheets - a kind of veneer which can be bend in 2 directions at once.The processes of lamination and forming happen in a mold inside a vacuum press bag.Lamination not only allows to form a flexible flat core board into a stiff 3d bent element,but also allows to create a composite panel with mechanical properties higher than core material itself.
For example,during bending test specimens reached Elastic Modulus of over 5.5 GP which is equal to MDF.Simultaneously,another variation of a similar wooden composite plate was developed,in which a flexible wooden board with single direction fibres is used as a core.This variation achieved identical mechanical properties as the first one and finally,due to logistic reasons,was used in this pavilion.
All 121 components were later connected together on-site into 4 fragments,using screws,and pulled on top of the crossed wooden beams,where the final connections were realized.Such approach allows for elements to be separated later and reused to form various other designs and constellations.
Foundations of the beams are located at different height levels,allowing the structure form for visual and functional adaption to the local landscape.Within the structure,components interweave with each other,creating a segmented shell which resembles a 3D fabric in which the curved elements are connected to common nodes in all directions in space.
BioMat Research Pavilion demonstrates the architectural and structural potential of novel building materials made from natural material.BioMat department focuses on a mission of examining different sustainability aspects in architecture.This built work is the result of 10 months of intensive work,following many years of work in the field of applications of bio-based materials and diverse approaches towards futureoriented sustainable architecture.
Acknowledgments:
The work was the direct result of cooperation between experienced architects,around 40 architecture students over two semesters,with support from the University of Stuttgart,FKZ 22021516,the German Agency for Renewable Resources (FNR) in the Ministry of Food and Agriculture (BMEL),the Baden-Württemberg Foundation,Fraunhofer-Institut für Holzforschung (Fraunhofer WKI),and industrial funding from Mathias Stange ETS and profine GmbH in the framework of the Research Project(BioProfile),International and local collaboration has taken place,among others with the Technical University Eindhoven in the Netherlands (TU/e) - Department of Built Environment - Prof.Patrick Teuffel and various institutes of the University of Stuttgart,including the Institute of Construction and Structural Design (KE,Faculty 02:Civil and Environmental Engineering) - Prof.Urlike Kuhlmann and the Institute of Engineering Geodesy (IIGS,Faculty 06:Aerospace Engineering and Geodesy) - Prof.Volker Schwieger.Wooden beams were fabricated and supported by Burgbacher Holztechnologie GmbH,resin was provided by Hexion Inc.