• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topology-optimization of Lens Contact Support Structures: PV Value as An Optimization Objective

    2019-11-06 07:54:42LIYimangZHOUZiyunLIUYongming
    發(fā)光學(xué)報(bào) 2019年10期

    LI Yi-mang, ZHOU Zi-yun, LIU Yong-ming

    (1. School of Mechanical Engineering, Changzhou University, Changzhou 213164, China; 2. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China)

    Abstract: The contact position, contact area, contact stress and flexibility of single lens support structure in an optical system are important influencing factors of the system’s imaging quality. Topology optimization of the single-lens contact support structure is carried out using the aberration index PV value as the optimization objective to reduce geometric aberration aberration in the single mirror caused by gravitational force. We first establish the contact topology optimization model, then use a linear elastic structure in unilateral contact with a rigid support as-modeled by Signorini’s contact conditions as an example to verify the model. The aberration index PV value of the lens is described as a function of lens deformation; thus, the value serves as a functional objective of the topology optimization model. We use the SIMP method to describe the topology optimization design variables, and the augmented Lagrange multiplier method to solve the contact condition. The optimal solution of the topology optimization model can be solved via MMA optimization algorithm. The optimal topological configuration of supporting structures that satisfy geometric aberration requirements is defined by the optimal solution of the design variables. We found that the PV value of the lens can be reduced by 14% and the lens surface RMS value by 13.8% after applying the proposed method. We also tested the lens PV value and RMS value on an experimental platform supported by the optimal contact support structure. The surface of the plane mirror surface PV values decreased by 60.4% and 42.9%, and the RMS values by 74.3% and 38.9%. To this effect, the optimal contact support structure effectively improves the precision of the single lens support and demonstrates significant potential for practical application.

    Key words: topology optimization; optomechanics; mirrors analysis; optical machanical structure

    1 Introduction

    Optics is a classic discipline as well as a very popular modern research subject[1-3]. Optics helps us to better understand the environment of outer space and explore our own world down to the nanometer level. Advancements in optical technology have brought about increasingly stringent requirements for the precision of single lenses[4]. For example, consider the 193 nm lithography projector which has objective accuracy of 1-2 nm RMS; its components must be engineered with remarkable precision to achieve such accuracy[5-6].

    The precision single lens and its supporting technology play an important role in the optical system. However, a general lack of effective support structure designs yet hinders the further development of precision single lenses. The purpose of structural design is to select those design variables which most effectively optimize the performance of the structure, so the structural design problem can be attributed to an optimization problem[7-9]. Commonly used structural optimization techniques include size optimization, shape optimization, free size optimization, free shape optimization, topographical optimization, and topological optimization. Topological optimization is conducted to identify the optimal topology of the structure at the conceptual design stage; it is significantly more efficient than the traditional shape or size optimization processes[10-13].

    Topology optimization design was the focus of the present study. We first established a contact topology optimization model, then used a linear elastic structure in unilateral contact with a rigid support as-modeled by Signorini’s contact conditions as an example to verify its correctness. Based on the model, the aberration index PV value of the lens can be described as a function of the lens deformation. We also used the SIMP method to describe the topology optimization design variables, and the augmented Lagrange multiplier method to solve the contact condition. We obtained the optimal solution to the topology optimization modelviaMMA optimization algorithm. The optimal topological configuration of supporting structures that satisfy geometric aberration requirements can be defined by the optimal solution of topological optimization design variables. We analyzed the topological optimization results in detail, then established an experimental platform for the sake of further assessment. The lens PV value and RMS value were tested as-supported by the optimal contact support structure[22-27].

    This paper is organized as follows. The precision single lens and relevant supporting technology are discussed in Section 2. In Section 3, the contact topology optimization model and PV minimum topology optimization model are established. Section 4 presents our simulation results. Section 5 describes our experimental setup for precision single lens support and the results of our model verification.

    2 Precision Single Lens and Supporting Technology

    The objective lens of a 193 nm mask alignment system is shown in Fig.1. It is mainly composed of a lithography mask, silicon wafer, and projection lithography lenses. A light beam is irradiated onto the silicon wafer through the projection lithography lenses.

    The increasing integration of integrated circuit devices and device operating speed have created increasingly stringent requirements for manufacturing lithography projector projection objective lens resolution. Current projection lithography projection objectives include not only the application of large numerical apertures and short wavelength technologies, but also the use of improved lithography resolution wavefront engineering technology to ultimately enhance the lithography resolution. Aberration in the lithographic projection lens markedly influences the quality of the lithography. By design, the entire objective lens from 20 to 30 lenses has system wavefront requirements less than 10 nm. After tolerance distribution is established to meet the design accuracy requirements (lens surface of 1-2 nm), there are very high demands for optical components of the processing and objective lens support.

    Fig.1 Objective lens of 193 nm mask alignment system

    3 Optimization Mode Topology

    Different boundary conditions correspond to different topologies and thus different topology optimization processes. Structural topological optimization must align with the actual physical boundary conditions. In a typical light machine, the metal support structure contacts the optical components which are fixed in the mirror. The characteristics of contact problems in this design include unequal inequality constraints with strong nonlinearity. It is difficult to solve contacting nonlinear topology optimization problems. To this effect, the topological optimization problem of contact nonlinear coupling structures and the design of optical machines is very significant in terms of practical application.

    The equilibrium equation of the contact nonlinear finite element discrete form based on the Lagrange multiplier method can be written as follows:

    (1)

    [Kcλ]=[KcU]T,

    (2)

    (3)

    (4)

    whereNcis the interpolation of basis functions and the unit vector matrix,θis the overall coordinates to the local coordinate transformation matrix, [Kcλ] is the equivalent node contact force corresponding to the stiffness matrix, [KcU] is the displacement constraint stiffness matrix,Uis the displacement solution vector,PNis the Lagrange multiplier,Ris the equivalent node load, andgcis the contact gap.

    (5)

    You can read more about the history of the Christmas Tree, which was in use during Andersen s lifetime, on the Christmas Tree Farm Network and The Christmas Archives.

    A contact topology optimization model with optical aberration PV value as the target is as follows:

    (6)

    (7)

    (8)

    (9)

    Fig.2 Program flow chart

    We established the interpolation model using the improved SIMP method, the advantages of which include simple modeling, convenient solution, high computational efficiency, versatility, and portability. The interpolation model is as follows:

    (10)

    Here, we use the Lagrange multiplier method to construct the constrained optimization model. The Lagrange function is:

    (11)

    The derivative of the Lagrange function for optimizing the design variables is:

    (12)

    by Newton-Ranhson iteration, the following expression holds when the structural balance reaches convergence:

    (13)

    The tangent stiffness matrix of the solution can be rewritten as:

    (14)

    The derivative of the Lagrange function for optimizing the design variables is reduced to:

    (15)

    There is numerical instability inherent to the model above, but processing for sensitivity, density, and filtering method can effectively prevent it.

    4 Simulation and Results

    We next conducted a series of simulations to validate the model established above. First, we built a two-dimensional nonlinear topological optimization model with static strain energy as shown in Fig.3, where white areas are the optimization area and black areas are the rigid support section. The design area was optimized with boundary 1 as the contact boundary, rolling support at the lower left end, vertical downward force at the lower right end, size of 10 000 N, and the fixed area is marked in black. The Young’s modulus 2.1 e5 MPa and Poisson’s ratio is 0.3. The objective function is the minimum static strain energy.

    In Fig.4, the red area represents the entity,the blue area has no structure, the intermediate transition area is the false material, and the material is processed. It was optimized using a quadrilateral mesh with 10 501 grids. The results gathered using this model are consistent with the results of a smooth contact conditions model taken from the literature [14]; the results are shown in Fig.4(a) and Fig.4(b). The proposed non-smooth inequality contact condition model is indeed correct and reliable.

    Fig.3 Design area and boundary conditions

    Fig.4 (a) Topological optimization results based on non-smooth inequality contact conditions. (b) Topological optimization results based on smooth equation contact conditions.

    We next took the plane mirror model shown in Fig.5 as an example to establish the contact topology optimization model. In the figure, the red area is the optimized design area, boundary 1 is fixed, and the mirror is affected by gravity. The objective function is the minimum absolute value of thez-direction of the center point of the plane mirror. We analyzed the initial structure to obtain the negativez-direction of the center point of the plane mirror with the smallest possible objective function,Vmin=0.7,p=4. We used a hexahedral mesh and 131 100 triangular prism grids.

    Fig.5 Topology optimization model of optical coupling force with nonlinear contacted for plane mirror

    The initial value of the objective function was 35.3 nm; after optimization, it was 16.9 nm. The objective function, the absolute value of thez-direction of the center of the plane mirror, was reduced by 52.12% and presented significant optimization effect. The iterative process graph is shown in Fig.6.

    The absolute value of thez-direction displacement of the center point of the planar mirror was reduced by 62.57%, the PV value was reduced by 14%, and the RMS value of the face was reduced by 13.8% in our experiment. After the optimization process and the accompanying change in volume fraction, we found that a larger volume fraction yields a smaller objective function, PV value, and RMS value.

    Fig.6 Iterative process graph

    5 Experiments and Results

    5.1 Experiment Setup

    The experiment system for the precision single lens support is designed as Fig.7. A laser beam (650 nm wavelength, continuous irradiance mode semiconductor) propagates through a standard mirror, the designed precision single lens, reflector lens, and then is reflected and focused on the detector of interferometer(Zygo Corporation, diameter 102 mm, system resolution 1 024×1 024). The precision single lens is placed on the designed support structure. This experimental setup can be measured to optimize the design of the support structure after the precision single lens accuracy.

    Fig.7 Experiment setup for the precision single lens support

    5.2 Results and Analysis

    The results of theN-step rotation averaging method are shown in Fig.8. Fig.8(a) and Fig.8(c) are the results after structural optimization while Fig.8(b) and Fig.8(d) are the results before optimization. The plane mirror surface PV values before optimization were 32.685 nm and 34.964 nm, and the RMS values were 4.976 nm and 6.015 nm, respectively. The suplane mirror surface PV values after optimization were 12.958 nm and 19.794 nm, and the RMS values were 1.279 nm and 3.676 nm, respectively. The plane mirror surface PV values decreased by 60.4% and 42.9%, and the RMS values decreased by 74.3% and 38.9%. The detailed measurement results are listed in Tab.1.

    Fig.8 Interferometer measurement results for precision single lens

    Tab.1 Before and after structural optimization: result analysis

    6 Conclusion

    This paper presented a novel topology optimization design for precision single lens support. A contact topology optimization model with optical aberration PV value as target was established, then used to design and optimize a high precision single lens. An experimental platform was set up and used to further analyze the effectiveness of the proposed model. The plane mirror surface PV value and RMS value were obtained after applying the proposed supporting structure. The plane mirror surface PV values decreased by 60.4% and 42.9%, and the RMS values decreased by 74.3% and 38.9% after structural optimization. These results suggest that the proposed method has very strong potential for practical application.

    Acknowledgments: The authors would like to thank Tao Wang for the assistance rendered with the mechanical adjustment stage and appreciate useful discussions with Hai Yu of CIOMP.

    亚洲av电影在线进入| 国精品久久久久久国模美| 欧美xxxx性猛交bbbb| 亚洲欧美色中文字幕在线| 久久鲁丝午夜福利片| 伊人亚洲综合成人网| 一级毛片 在线播放| 视频中文字幕在线观看| 韩国av在线不卡| 免费人成在线观看视频色| 久久久久精品人妻al黑| 国产一区二区在线观看日韩| 两个人看的免费小视频| 亚洲精品456在线播放app| 欧美老熟妇乱子伦牲交| av播播在线观看一区| 中文精品一卡2卡3卡4更新| 人妻人人澡人人爽人人| 成年av动漫网址| 亚洲性久久影院| 亚洲av国产av综合av卡| 两个人看的免费小视频| 秋霞在线观看毛片| 午夜视频国产福利| 日韩av不卡免费在线播放| 午夜激情久久久久久久| 狂野欧美激情性bbbbbb| 人人妻人人爽人人添夜夜欢视频| 国产黄色免费在线视频| 视频中文字幕在线观看| 超碰97精品在线观看| 宅男免费午夜| 国产熟女午夜一区二区三区| 综合色丁香网| 亚洲精品456在线播放app| 伦精品一区二区三区| 一区二区三区精品91| 久久久久人妻精品一区果冻| 国产精品99久久99久久久不卡 | 日韩制服丝袜自拍偷拍| 老司机影院毛片| 久久这里只有精品19| 91精品伊人久久大香线蕉| 久久久久久久国产电影| 熟女电影av网| 久久人人爽人人爽人人片va| 亚洲精品成人av观看孕妇| 国产av一区二区精品久久| 国产女主播在线喷水免费视频网站| 七月丁香在线播放| 久久久久久久精品精品| 大片免费播放器 马上看| 丰满少妇做爰视频| 午夜福利视频精品| 亚洲四区av| 日韩成人av中文字幕在线观看| 亚洲欧美日韩卡通动漫| 在现免费观看毛片| 美女视频免费永久观看网站| 国产又爽黄色视频| 午夜福利,免费看| 满18在线观看网站| 免费播放大片免费观看视频在线观看| 美国免费a级毛片| 在线观看人妻少妇| 伊人亚洲综合成人网| 国国产精品蜜臀av免费| 日韩 亚洲 欧美在线| 精品人妻在线不人妻| 天天躁夜夜躁狠狠久久av| 国产精品欧美亚洲77777| 午夜激情av网站| 亚洲精品久久午夜乱码| 亚洲伊人色综图| 久久久久久久久久人人人人人人| 99久久中文字幕三级久久日本| 美国免费a级毛片| 亚洲欧美色中文字幕在线| 日本黄大片高清| 亚洲综合色网址| 国产精品一区www在线观看| 午夜免费观看性视频| 久久久亚洲精品成人影院| www.熟女人妻精品国产 | av播播在线观看一区| 校园人妻丝袜中文字幕| 伊人久久国产一区二区| 人体艺术视频欧美日本| 国产精品欧美亚洲77777| 99热全是精品| 亚洲成色77777| 亚洲av.av天堂| 99久久精品国产国产毛片| 乱码一卡2卡4卡精品| 午夜福利在线观看免费完整高清在| 一本色道久久久久久精品综合| 中文字幕精品免费在线观看视频 | 综合色丁香网| 精品人妻一区二区三区麻豆| 日韩一本色道免费dvd| 狂野欧美激情性xxxx在线观看| 丰满饥渴人妻一区二区三| 九草在线视频观看| 自拍欧美九色日韩亚洲蝌蚪91| 午夜激情av网站| 宅男免费午夜| 亚洲综合色惰| 久久久久国产精品人妻一区二区| 成人免费观看视频高清| 国产成人免费观看mmmm| 女性被躁到高潮视频| h视频一区二区三区| 国产黄色免费在线视频| 亚洲高清免费不卡视频| 免费少妇av软件| 1024视频免费在线观看| 91精品国产国语对白视频| 97在线人人人人妻| 亚洲一区二区三区欧美精品| 黄色毛片三级朝国网站| 亚洲国产看品久久| 哪个播放器可以免费观看大片| 国产成人a∨麻豆精品| 精品人妻一区二区三区麻豆| 最新的欧美精品一区二区| 天堂8中文在线网| 狠狠精品人妻久久久久久综合| 国产男女超爽视频在线观看| 男女国产视频网站| 日韩制服丝袜自拍偷拍| 亚洲精品自拍成人| 精品少妇久久久久久888优播| 久久人人97超碰香蕉20202| 国产av码专区亚洲av| 国产精品免费大片| 亚洲精品456在线播放app| 夫妻性生交免费视频一级片| 国产片内射在线| 婷婷成人精品国产| 男女免费视频国产| 国产精品女同一区二区软件| 国产成人精品一,二区| 91午夜精品亚洲一区二区三区| 国产成人av激情在线播放| 天天躁夜夜躁狠狠躁躁| 美女大奶头黄色视频| 成人漫画全彩无遮挡| 纯流量卡能插随身wifi吗| 中文字幕人妻丝袜制服| xxxhd国产人妻xxx| 精品一区二区三卡| 免费在线观看黄色视频的| 国语对白做爰xxxⅹ性视频网站| 免费人成在线观看视频色| 成人手机av| 国产精品久久久久久av不卡| 免费少妇av软件| 免费人妻精品一区二区三区视频| 夜夜骑夜夜射夜夜干| 亚洲人成网站在线观看播放| 女人精品久久久久毛片| 国产无遮挡羞羞视频在线观看| 伦理电影大哥的女人| 亚洲国产欧美在线一区| 中文字幕免费在线视频6| 精品熟女少妇av免费看| 最近中文字幕高清免费大全6| 伊人久久国产一区二区| 91aial.com中文字幕在线观看| 美女福利国产在线| 欧美变态另类bdsm刘玥| av免费观看日本| 又黄又粗又硬又大视频| 国产一区二区三区综合在线观看 | 久久久欧美国产精品| 最新中文字幕久久久久| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| av又黄又爽大尺度在线免费看| 久久人人爽人人片av| 岛国毛片在线播放| 亚洲精品国产色婷婷电影| 自线自在国产av| 边亲边吃奶的免费视频| 嫩草影院入口| 欧美人与善性xxx| 最近最新中文字幕免费大全7| 侵犯人妻中文字幕一二三四区| 国产精品.久久久| 777米奇影视久久| 在线观看www视频免费| 夫妻性生交免费视频一级片| 久久久精品94久久精品| 九九爱精品视频在线观看| 天天操日日干夜夜撸| xxxhd国产人妻xxx| 精品国产一区二区三区四区第35| 少妇人妻 视频| 九色亚洲精品在线播放| 国产精品久久久久久久电影| 久久久久人妻精品一区果冻| 精品亚洲成国产av| 满18在线观看网站| 伦理电影免费视频| 午夜91福利影院| 卡戴珊不雅视频在线播放| 亚洲精品456在线播放app| 亚洲成av片中文字幕在线观看 | 欧美人与善性xxx| 看非洲黑人一级黄片| 精品一区在线观看国产| 又黄又粗又硬又大视频| 精品人妻一区二区三区麻豆| 久久精品人人爽人人爽视色| 日韩中字成人| 亚洲精品av麻豆狂野| 亚洲精品456在线播放app| 国产亚洲精品久久久com| 精品亚洲乱码少妇综合久久| 国产精品成人在线| 97人妻天天添夜夜摸| 五月开心婷婷网| 2018国产大陆天天弄谢| 精品亚洲成国产av| 日韩不卡一区二区三区视频在线| 超碰97精品在线观看| 日本黄大片高清| 免费观看无遮挡的男女| 免费在线观看完整版高清| 成人国产av品久久久| 国产av国产精品国产| 久久狼人影院| 桃花免费在线播放| 天天躁夜夜躁狠狠躁躁| 如日韩欧美国产精品一区二区三区| 热99国产精品久久久久久7| 欧美人与善性xxx| 又粗又硬又长又爽又黄的视频| 欧美 日韩 精品 国产| 欧美精品一区二区大全| 亚洲国产最新在线播放| 99re6热这里在线精品视频| 777米奇影视久久| 男人舔女人的私密视频| 亚洲美女黄色视频免费看| www日本在线高清视频| 看免费成人av毛片| 国产精品免费大片| 免费少妇av软件| 又大又黄又爽视频免费| 亚洲av综合色区一区| 欧美精品一区二区大全| 国内精品宾馆在线| 插逼视频在线观看| 亚洲高清免费不卡视频| 高清视频免费观看一区二区| 成人影院久久| 国产色婷婷99| 十分钟在线观看高清视频www| 婷婷成人精品国产| 一区二区三区精品91| 在线 av 中文字幕| 99视频精品全部免费 在线| 校园人妻丝袜中文字幕| 国产毛片在线视频| 欧美精品av麻豆av| 国产av一区二区精品久久| 日韩精品有码人妻一区| 女性被躁到高潮视频| 亚洲欧美日韩另类电影网站| 色视频在线一区二区三区| 色婷婷久久久亚洲欧美| 精品一品国产午夜福利视频| 天天躁夜夜躁狠狠久久av| 啦啦啦视频在线资源免费观看| 日韩视频在线欧美| 欧美日韩成人在线一区二区| 丰满迷人的少妇在线观看| 国产爽快片一区二区三区| 全区人妻精品视频| 一级a做视频免费观看| 最近2019中文字幕mv第一页| 国产伦理片在线播放av一区| 大香蕉久久成人网| 日本vs欧美在线观看视频| 王馨瑶露胸无遮挡在线观看| 秋霞伦理黄片| 亚洲av中文av极速乱| 一区二区三区四区激情视频| 国产亚洲av片在线观看秒播厂| 国产av码专区亚洲av| 国产日韩一区二区三区精品不卡| 亚洲成人一二三区av| 肉色欧美久久久久久久蜜桃| 黄色怎么调成土黄色| 久久婷婷青草| 最黄视频免费看| 嫩草影院入口| 久久婷婷青草| 亚洲熟女精品中文字幕| 五月天丁香电影| 亚洲av电影在线进入| 制服人妻中文乱码| 国产精品麻豆人妻色哟哟久久| 汤姆久久久久久久影院中文字幕| 久久综合国产亚洲精品| 成年女人在线观看亚洲视频| 色网站视频免费| 777米奇影视久久| 少妇熟女欧美另类| 伦精品一区二区三区| 多毛熟女@视频| 国产精品久久久久久久久免| 亚洲av欧美aⅴ国产| 午夜老司机福利剧场| 欧美激情国产日韩精品一区| 十分钟在线观看高清视频www| 国产 精品1| 深夜精品福利| 日韩大片免费观看网站| 最近的中文字幕免费完整| 欧美激情极品国产一区二区三区 | 欧美成人午夜精品| 波野结衣二区三区在线| 免费观看无遮挡的男女| 成人免费观看视频高清| 丝袜美足系列| 国产成人精品在线电影| 国产1区2区3区精品| 日本黄色日本黄色录像| av一本久久久久| 国产乱人偷精品视频| 欧美日韩综合久久久久久| 精品一区在线观看国产| 久热久热在线精品观看| 亚洲精品aⅴ在线观看| 精品卡一卡二卡四卡免费| 精品视频人人做人人爽| av免费观看日本| av女优亚洲男人天堂| 亚洲av电影在线进入| 观看美女的网站| 久久久久久久亚洲中文字幕| 久久免费观看电影| 久久国产亚洲av麻豆专区| 午夜福利乱码中文字幕| 最新中文字幕久久久久| 久久精品夜色国产| 插逼视频在线观看| 国产综合精华液| 国产成人午夜福利电影在线观看| 大片电影免费在线观看免费| 久久久久久人妻| 在线观看免费日韩欧美大片| 美女国产高潮福利片在线看| 亚洲,欧美,日韩| 国产国语露脸激情在线看| 黄色 视频免费看| 久久精品人人爽人人爽视色| 欧美精品av麻豆av| 免费人成在线观看视频色| 搡女人真爽免费视频火全软件| 国产 精品1| 99精国产麻豆久久婷婷| 高清不卡的av网站| 日韩成人伦理影院| √禁漫天堂资源中文www| 丝袜喷水一区| 国产一区二区在线观看日韩| 99久久精品国产国产毛片| 国产成人午夜福利电影在线观看| 桃花免费在线播放| 久久久久久人妻| 美女主播在线视频| 国产一区二区在线观看日韩| 亚洲欧美中文字幕日韩二区| 国产男女超爽视频在线观看| 精品久久国产蜜桃| 国产精品蜜桃在线观看| 永久免费av网站大全| 亚洲欧美日韩卡通动漫| 欧美变态另类bdsm刘玥| 美女国产视频在线观看| 久久精品久久久久久久性| 国产免费福利视频在线观看| 高清不卡的av网站| 18+在线观看网站| 欧美国产精品一级二级三级| 熟女av电影| 黑人欧美特级aaaaaa片| 亚洲精品美女久久av网站| av在线播放精品| 五月开心婷婷网| 好男人视频免费观看在线| 欧美日韩综合久久久久久| 又黄又粗又硬又大视频| 一级片免费观看大全| 一二三四在线观看免费中文在 | 久久韩国三级中文字幕| 久久久久久久久久成人| 欧美性感艳星| 久久av网站| 777米奇影视久久| 久久久久久人妻| 精品一区二区三区四区五区乱码 | 搡女人真爽免费视频火全软件| 亚洲国产精品国产精品| 国产欧美另类精品又又久久亚洲欧美| 久久久精品免费免费高清| 久久ye,这里只有精品| 高清视频免费观看一区二区| 国产精品久久久久久av不卡| 国产av码专区亚洲av| www日本在线高清视频| 一级片免费观看大全| 国产精品国产三级国产专区5o| 只有这里有精品99| 自线自在国产av| 99久久中文字幕三级久久日本| 国产xxxxx性猛交| 一级毛片电影观看| 在线精品无人区一区二区三| 精品少妇内射三级| 寂寞人妻少妇视频99o| 丝袜脚勾引网站| 丝袜人妻中文字幕| 亚洲国产欧美日韩在线播放| 国产成人免费观看mmmm| 一区二区日韩欧美中文字幕 | 精品一区二区三卡| 青春草亚洲视频在线观看| 国产探花极品一区二区| 好男人视频免费观看在线| 狠狠婷婷综合久久久久久88av| 亚洲国产色片| 一区二区三区精品91| 在线亚洲精品国产二区图片欧美| 亚洲av男天堂| 80岁老熟妇乱子伦牲交| 日韩成人av中文字幕在线观看| videosex国产| 免费日韩欧美在线观看| 亚洲精品久久久久久婷婷小说| 国产无遮挡羞羞视频在线观看| 视频区图区小说| 亚洲欧美色中文字幕在线| 男女高潮啪啪啪动态图| 黄色配什么色好看| 亚洲精品国产av成人精品| 伊人亚洲综合成人网| 国产69精品久久久久777片| 日韩不卡一区二区三区视频在线| 夜夜爽夜夜爽视频| 在线观看国产h片| 精品酒店卫生间| 春色校园在线视频观看| 亚洲精品乱码久久久久久按摩| 亚洲精品456在线播放app| 亚洲伊人久久精品综合| 精品一品国产午夜福利视频| 日本av手机在线免费观看| 久久久久久久久久人人人人人人| 久久热在线av| 蜜桃在线观看..| 啦啦啦视频在线资源免费观看| 国产精品久久久久久久电影| 亚洲精品成人av观看孕妇| 欧美bdsm另类| 免费少妇av软件| 国产日韩一区二区三区精品不卡| 人人妻人人澡人人爽人人夜夜| 国产老妇伦熟女老妇高清| 亚洲精品,欧美精品| 丝瓜视频免费看黄片| 国产一区亚洲一区在线观看| 日韩在线高清观看一区二区三区| 丝袜美足系列| 国产精品 国内视频| 国产一级毛片在线| 国产欧美另类精品又又久久亚洲欧美| 亚洲,欧美精品.| 美女福利国产在线| av网站免费在线观看视频| 蜜桃国产av成人99| 成人国产av品久久久| 中文字幕亚洲精品专区| 国产男人的电影天堂91| 91精品三级在线观看| 性色avwww在线观看| 美女大奶头黄色视频| 如何舔出高潮| 中文精品一卡2卡3卡4更新| 久久av网站| 咕卡用的链子| 亚洲av国产av综合av卡| 亚洲av在线观看美女高潮| 色哟哟·www| 欧美日本中文国产一区发布| 亚洲四区av| 街头女战士在线观看网站| 国产深夜福利视频在线观看| 夫妻午夜视频| 亚洲经典国产精华液单| 51国产日韩欧美| 人人妻人人澡人人看| 男女无遮挡免费网站观看| 亚洲精品久久午夜乱码| 亚洲国产精品一区二区三区在线| 超碰97精品在线观看| 亚洲成国产人片在线观看| 久久av网站| 国语对白做爰xxxⅹ性视频网站| 午夜日本视频在线| 高清在线视频一区二区三区| 精品一区在线观看国产| 国产男女超爽视频在线观看| 99热6这里只有精品| 国产精品秋霞免费鲁丝片| 在线观看免费视频网站a站| 国精品久久久久久国模美| 高清黄色对白视频在线免费看| 蜜桃国产av成人99| 国产男人的电影天堂91| 亚洲精品美女久久av网站| 在线 av 中文字幕| 国产一区二区在线观看日韩| 成年女人在线观看亚洲视频| 黄色毛片三级朝国网站| 天天躁夜夜躁狠狠久久av| 男人舔女人的私密视频| 国国产精品蜜臀av免费| 亚洲人成77777在线视频| 久久精品夜色国产| 亚洲伊人久久精品综合| a级片在线免费高清观看视频| 国产免费一区二区三区四区乱码| 国产黄色免费在线视频| 乱码一卡2卡4卡精品| 9色porny在线观看| 免费观看在线日韩| 飞空精品影院首页| 有码 亚洲区| 伦理电影大哥的女人| 亚洲人与动物交配视频| 少妇人妻久久综合中文| 国产精品不卡视频一区二区| 一级毛片我不卡| 在线观看免费日韩欧美大片| 久久久久久久亚洲中文字幕| 久久青草综合色| 在线看a的网站| 久久久久久久大尺度免费视频| 日本猛色少妇xxxxx猛交久久| 久久久久久久久久久免费av| 少妇熟女欧美另类| 国产精品国产三级国产av玫瑰| 国产毛片在线视频| 色婷婷久久久亚洲欧美| 免费播放大片免费观看视频在线观看| 少妇被粗大的猛进出69影院 | 久久久久国产网址| 亚洲欧美一区二区三区国产| 99热网站在线观看| 久久av网站| 老司机亚洲免费影院| av福利片在线| av视频免费观看在线观看| 咕卡用的链子| 亚洲熟女精品中文字幕| 午夜福利乱码中文字幕| av国产久精品久网站免费入址| 这个男人来自地球电影免费观看 | 纯流量卡能插随身wifi吗| 97在线视频观看| 人体艺术视频欧美日本| 亚洲精品456在线播放app| 日本猛色少妇xxxxx猛交久久| 久久女婷五月综合色啪小说| 丰满饥渴人妻一区二区三| 欧美精品国产亚洲| 女性生殖器流出的白浆| 三级国产精品片| av又黄又爽大尺度在线免费看| 欧美激情极品国产一区二区三区 | 少妇人妻 视频| 熟女av电影| 18禁在线无遮挡免费观看视频| freevideosex欧美| 少妇精品久久久久久久| av在线播放精品| 日韩av在线免费看完整版不卡| 涩涩av久久男人的天堂| 亚洲精品久久午夜乱码| 一级片免费观看大全| 极品少妇高潮喷水抽搐| 色视频在线一区二区三区| 亚洲精品aⅴ在线观看| 99久久人妻综合| 丰满迷人的少妇在线观看| 亚洲欧美一区二区三区黑人 | 夫妻性生交免费视频一级片| 三级国产精品片| 中文精品一卡2卡3卡4更新| 看十八女毛片水多多多| 99热6这里只有精品| xxx大片免费视频| 久久精品人人爽人人爽视色| 欧美丝袜亚洲另类| 97在线视频观看| 天堂中文最新版在线下载| 免费黄网站久久成人精品| 免费大片18禁| 久久久亚洲精品成人影院| 欧美精品高潮呻吟av久久| 一二三四中文在线观看免费高清|