• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Our expedition in the construction of fluorescent supramolecular metallacycles

    2019-10-31 09:01:34JunlongZhuXiLiuJunhaiHuangLinXu
    Chinese Chemical Letters 2019年10期

    Junlong Zhu,Xi Liu,Junhai Huang,Lin Xu

    a Shanghai Key Laboratory of Green Chemistry and Chemical Processes,School of Chemistry and Molecular Engineering,East China Normal University,Shanghai 200062,China

    b Zhangjiang Institute,China State Institute of Pharmaceutical Industry,Shanghai 201203,China

    c State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian 116024,China

    Keywords:

    Supramolecular chemistry

    Fluorescent metallacycle

    Coordination-driven self-assembly

    Functionalized metallacycle

    Supramolecular gel

    ABSTRACT

    During the past few years,the construction of fluorescent supramolecular metallocycles has attracted extensive attention due to their diverse applications such as sensing,photoelectric devices,and mimicking complicated natural photo-processes.In this review,we will discuss how we entered the field of fluorescent supramolecular metallacycles and what we investigated in this field.The preparation of various fluorescent supramolecular metallacycles and their applications in monitoring the dynamics of coordination-driven self-assembly,sensing,catalysts,and supramolecular gels will be summarized.

    1.Introduction

    It is our pleasure to write this review tracing our expedition in the construction of fluorescent supramolecular metallacycles,with a particular focus on how we entered this field and what we found in this field.During my(Lin Xu)doctoral study in the group of Prof.Xuhong Qian at East China University of Science and Technology from 2007 to 2012,I was committed to develop fluorescent probes for anions,cations,and biological small-molecules.For example,based on an excited-state intramolecular proton transfer (ESIPT)mechanism,we have prepared a new ratiometric fluorescence probe for the detection of hydrogen sulfide(H2S)in living cells[1].In July 2012,I started my independent research at East China Normal University.Since that time,in parallel with the continuous research in the development of fluorescent probes [2-4],I paid significant attention on the construction of fluorescent supramolecular metallacycles[5].In particular,using fluorescence technology to solve the partial problems in the field of supramolecular assembly,including using fluorescence method to investigate the dynamic process and mechanism of self-assembly as well as preparing functional supramolecular assemblies.

    Coordination-driven self-assembly,based on the interaction between metal and ligand,is an efficient method to construct discrete supramolecular metallacycles with well-defined shapes,sizes,and geometries [6-14].Compared to stepwise covalent synthetic approaches with time-consuming process and lower yields,such strategy exhibited various synthetic superiority including fewer steps,nearly quantitative yields,defect-free assembly,and inherent self-correction.During the past few decades,Fujita [15],Stang [16],Mirkin [17],Newkome [18],and others [19-24]have constructed various metallacycles through coordination-driven self-assembly during the past three decades.

    Besides the construction of complicated and delicate supramolecular metallacycles,fluorescent metallacycles have attracted extensive attention due to theirdiverse applications such as sensing,photoelectric devices,and mimicking complicated natural photoprocesses[25-39].The placement and total number of introduced fluorophores within metallacycles could be precisely controlled by coordination-driven self-assembly.Moreover,the presence of chromophores in metallacycles allows for real-time monitoring the self-assembly process and dynamics of the resultant metallacycles by highly sensitive fluorescence technique.Furthermore,compared with organic fluorescent macrocycles,the stimuliresponsive fluorescent metallacycles were easier to be realized by taking advantage of the dynamic nature of metal-ligand bonds.Therefore,we have been paying considerable attention to designing and constructing different kinds of fluorescent metallacycles and investigating their photophysical properties as well as potential applications.In this review,we will summarize our efforts in the construction of various fluorescent metallacycles and their applications in monitoring the dynamics of coordination-driven selfassembly,sensing,catalysts,and stimulus-responsive supramolecular fluorescent gels.

    2.Self-assembly of supramolecular metallacycles with fluorescent properties

    From the topological point of view,theoretically,there are four ways to construct fluorescent metallocycles.Firstly,the exofunctionalized fluorescent metallocycle could be constructed by incorporating the fluorophore moiety onto the exterior surface of the directional building block.Secondly,the endo-functionalized fluorescent metallocycle could be obtained by attaching the fluorophore moiety into the inner side of the directional building block with a turning angle less than 180°.Moreover,the fluorophore moiety could function as the edge or corner of the directional building block to construct the edge or cornerfunctionalized fluorescent metallocycle [40].

    Pyrene and its derivatives have been extensively investigated for their fascinating fluorescent properties.For example,they poessess high fluorescent quantum,relatively long excited-state lifetime,and extraordinary distinction of the fluorescence bands for monomers and excimers[41-45].In consequence,the incorporation of multiple pyrene subunits into a single scaffold to construct supramolecular metallacycles with fluorescent properties has evolved to be one charming subject[46,47].However,it is challenging to introducted multiple pyrene groups into a well-defined discrete supramolecular systems in a controlled way.We constructed varioustris-and hexakis(pyrene)hexagonal metallocycles 4 and 5 with precise shapes and sizes through the coordination-driven self-assembly of the pyrenemodified 120°acceptor 1 and its complementary 120°donor ligand 2 or 180°donor ligand 3,respectively(Scheme 1)[48].Analogously,another series of“isomeric”multipyrene hexagons 9 and 10 were constructed through the coordination-driven self-assembly of the pyrene-modified 120°donor 6 and its complementary 120°acceptor ligand 7 or 180°acceptor ligand 8,respectively.These hexagonal metallocycles exhibited a similar geometry,but luminescent behaviors of them differed from each other dramatically(Fig.1).For example,hexagonal metallocycles 9(3.3×10-6mol/L)and 10 (1.7×10-6mol/L) in dichloromethane exhibited a longer emission band at λmax550 nm corresponding the excimer emission of the pyrene chromophore,while hexagonal metallocycles 4(3.3×10-6mol/L) and 5 (1.7×10-6mol/L) in dichloromethane disabled to form excimers due to the relatively lower charge densities of 4 and 5 compared to that of 9 and 10.This investigation indicated the structural effect could impact the formation of pyrene excimer.

    There have been some successful examples in preparation of fluorescent metallacycles by coordination-driven self-assembly[49,50],but the construction of fluorescent metallacycles with highly emissive property,especially in situ generated by external stimuli,is still a challenge.Light is often chosen as the source of stimuli-response because it is the cleanest energy [51-53].More recently,we constructed the highly emissive fluorescent metallacycles 18 and 19 upon irradiating non-fluorescent metallacycles 14 and 15,respectively [54].Through the reaction of the 120°diarylethene-based dipyridyl donors 12 and 16 with 120°acceptor 11 in a 1:1 ratio in dichloromethane at room temperature,respectively,non-fluorescent metallacycles 14 and 15 could be readily obtained without further purification (Scheme 2).The highly emissive fluorescent metallacycles 18 and 19 could be formed from non-fluorescent metallacycles 14 and 15 by UV irradiation with high conversion yields,respectively,due to the photoswitchable property of diarylethene ligands (Fig.2).This“turn-on” fluorescent switch differed from the most common photochromic systems,where the fluorescence is often quenched by UV irradiation.

    Scheme 1.Cartoon representation of the formation of multi-pyrene hexagons 4,5 and 9,10.

    Fig.1.Emission spectra of 1 (10-5 mol/L),6 (10-5 mol/L),4 (3.3×10-6 mol/L),5(1.7×10-6 mol/L),9 (3.3×10-6 mol/L),and 10 (1.7×10-6 mol/L) in CH2Cl2.Reproduced with permission [48].Copyright 2013,American Chemical Society.

    Scheme 2.Cartoon representation of the formation of dithienylethene hexagons 14,15,18 and 19.

    Fig.2.(a) Absorption spectral changes of 12 (10-5 mol/L in CH2Cl2) upon UV irradiation at 365 nm.(b)Emission spectral changes of 12(10-5 mol/L in CH2Cl2,EX= 450 nm)upon UV irradiation at 365 nm.Copied with permission[54].Copyright 2019,Wiley-VCH.

    Carbazole has been extensively explored owing to its wide application such as charge-hole transport material in organic light-emitting diodes (OLEDs) and light-emitting photosensitizer[55-61].Dendrimers are hyperbranched macromolecules consisting of some dendritic wedges which extend from a core [62-69].Recently,we prepared a series of carbazole-containing metallodendrimers 22a-c and 23a-c by self-assembly of carbazolecontaining dendrimers donors 21a-c with 60°acceptor 20 or 120°acceptor 11 in a 1:1 M ratio,respectively (Scheme 3) [70].The research of fluorescent properties of dendrimers 21a-c,22a-c,and 23a-c displayed that all of them possessed aggregation-induced emission (AIE) properties (Fig.3).Especially,metallodendrimers 22a-c and 23a-c exhibited generation-dependent AIE properties compared to ligands 21a-c proved by emission spectra in solvent mixtures of DCM and n-hexane with different volume ratio,as well as Tyndall effect,SEM and DLS consequence.This work provided the first examples of coordination-driven self-assembly of carbazole-containing metallodendrimers with generation-dependent AIE properties.

    Besides preparing homo-functional fluorescent metallocycles,we constructed hetero-functional fluorescent metallocycles 26a-c and 27a-c by coordination-driven self-assembly of the pyrenemodified 120°donors 1 or 24 and their complementary 60°dendritic acceptors 25a-c,respectively (Scheme 4) [71].The investigation of photochemical behavior showed that fluorescence quantum yields of 27a-c in DCM(0.47-0.61)are higher than those of 26a-c(0.14-0.17).Moreover,all fluorescence quantum yields of metallocycles 26a-c and 27a-c are higher than those of their pyrene-modified precursors 1 (0.03) and 24 (0.09),respectively,which may result from the inhibition of the aggregation of pyrene by dendrons.This strategy can be applied to construct high emission fluorescent metallodendrimers with well-defined shapes and sizes.

    Scheme 3.Cartoon representation of the formation of metallodendrimers 22a-c and 23a-c.

    3.Functionalized fluorescent supramolecular metallacycles

    3.1.Real-time monitoring the dynamics of coordination-driven selfassembly

    Fig.3.Fluorescence spectra of 21a(a),22a(b),and 23a(c)in mixtures of n-hexane/CH2Cl2 with different fh.Changes in the photoluminescence(PL)signal intensities of 21a(d),22a (e),and 23a (f) in mixtures of n-hexane/CH2Cl2 with different fh are also shown.Reproduced with permission [70].Copyright 2015,Wiley-VCH.

    Up to now,a large variety of intricate and fascinating metallacycles with well-defined shapes and sizes have been efficiently prepared through coordination-driven self-assembly[72-76].However,it is a huge challenge to investigate the dynamic process of coordination-driven self-assembly owing to the presence of numerous intermediates and uncertain processes within self-assembly.Recently,we chose coumarin and rhodamine moieties as the fluorescence-resonance energy transfer (FRET)donor and receptor,respectively,resulting from most overlap between the emission spectrum of coumarin and the excitation spectrum of rhodamine.Thus,the dipyridyl ligand 28 modified by 7-(diethylamino)-coumarin and the diplatinum(II) ligand 29 modified by rhodamine were successfully synthesized.Then,the fluorescent metallacycle 30 was prepared through coordinationdriven self-assembly of the ligand 28 and the ligand 29(Scheme 5)[77].As shown in Fig.4a,the rhodamine emission increased obviously accompanied by a decrease in coumarin emission during the self-assembly of the dipyridyl ligand 28 and the diplatinum(II)ligand 29,which attributed to FRET between coumarin and rhodamine moieties.In addition,we mix coumarin-based metallacycle and rhodamine-based metallacycle in a 1:1 ratio in acetone/water(5:1,v/v).As a result,coumarin emission decreased obviously accompanied by an increase in rhodamine emission,which was consistent with FRET progress resulting from the formation of new metallacycles containing both coumarin and rhodamine.Moreover,we designed disassembly and reassembly experiment by adding and removing competitive ligands such as halide ions to bring about reversible disassembly and reassembly through FRET approach (Scheme 6).As shown in Fig.4b,the gradual addition of 6.0 equiv.of Br-into the solution of metallacycle 30 resulted in an obvious decrease in rhodamine emission accompanied by an increase in coumarin emission,which indicated the disassembly of metallacycle 30 with the addition of Br-.After that,the addition of 6.0 equiv.of Ag+into the halogenated solution of 30 brought about the reassembly of metallacycle 30 proved by the reappearance of the FRET process.All results indicated that the self-assembly process and dynamics of the fluorescent metallacycle could be monitored in real time by employing FRET.

    3.2.Sensing

    Proton plays a vital role in many chemical and biological processes [78,79].Therefore,it is urgent to develop methods for detecting the change of pH.We chose 1,8-naphthalimide as the fluorophore owing to its great photostability,high quantum yield,and good compatibility [80-85].Therefore,naphthalimide fluorophore was connected to 120°dipyridyl donor by the nonconjugate incorporation way,which was able to avert the quenching of fluorescence.Weak fluorescent metallacycle 32 was obtained by self-assembly of naphthalimide-modified 120°dipyridyl donor 31 with 120°diplatinum acceptor 11 in mild condition(Scheme 7)[86].As shown in Fig.5a,as the pH decreased from 7.5 to 3.5,the fluorescence of metallacycle 32 gradually became stronger.This resulted from the inhibition of PET channel along with the protonation of the N atom in the N-methyl piperazine moiety [87-92].Furthermore,the enhancement of fluorescence intensity of 32 at 514 nm corresponded to the concentration of H+(0-60 μmol/L)in a linear relationship(linearly dependent coefficient: R2=0.9906),which suggested that the metallocycle 32 could quantitatively detect H+concentration below 60 μmol/L.This study provided such a non-conjugate incorporation method to prepare metallacycles with various fluorophore for fluorescence detection of different analytes.

    3.3.Catalysts

    Metallacycles are instable under relatively severe conditions due to the dynamic property of coordination bonds[93-95].As for fluorescent metallacycles,their luminescent properties suffer from the aggregation-cause quenching(ACQ)effect[96,97].Therefore,it is essential to construct the isolated fluorescent metallacycles with great stability and dispersity refraining from ACQ effect.Recently,we fabricated the hybrid materials(34?C)composed of porphyrinbased metallacycle 34,which is obtained through self-assembly of the 120°donor precursor 33 modified by porphyrin with typical 120°diplatinum(II) acceptor 11 within the cavity of mesoporous carbon FDU-16 (Scheme 8) [98].The hybrid materials possessed higher1O2generation efficiency than that of free metallacycles in solution and greatly improved stability and activity of metallacycles 34 inside the confined cavity,which could function as heterogeneous catalyst for photooxidation of sulfides (Fig.6a).Full conversion from sulfides to sulfoxides catalyzed by 34?C was observed after 4 h of white LED irradiation monitored by NMR and GC--MS.Under the same reaction conditions,the reaction catalyzed by metallacycle 34 or composites 34/C gave 42% and 54% conversion,respectively,and the conversion efficiency without a catalyst became lower (Fig.6b).More importantly,the catalytic activity of 34?C reduced a little bit after five reuse cycles.In contrast,the pristine metallacycle 34 was observed to deactivate remarkably even after two cycles (Fig.6c).This work was the first example of isolated functionalized metallacycle in the confined space,which presented a novel strategy to improve the dispersity and stability of metallacycles.

    Scheme 4.Cartoon representation of the formation of metallodendrimers 26a-c and 27a-c.

    Scheme 5.Cartoon representation of the formation of metallacycle 30.

    Fig.4.(a)Time-dependent changes in the emission spectra of the mixture of ligand 28 (30 μmol/L) and ligand 29 (30 μmol/L) in acetone; (b) Emission spectra of metallacycle 30 (5.0×10-6 mol/L) upon titration of TBAB in acetone-d6/D2O=5:1(v/v).Reproduced with permission [77].Copyright 2017,American Chemical Society.

    Scheme 6.Cartoon representation of reversible disassembly and reassembly of 30 induced by addition and removal of Br-.

    Scheme 7.Cartoon representation of the formation of metallacycle 32.

    Fig.5.(a)Fluorescence spectra of 32(20 μmol/L)upon addition of proton in aqueous solution(acetone/water,4/1,v/v);Inset(a)and(b):Curves of fluorescence intensity at 514 nm of 32 (20 μmol/L) versus increasing concentrations of CF3COOH.Reproduced with permission [86].Copyright 2014,Royal Society of Chemistry.

    Scheme 8.Cartoon representation of the formation of trisporphyrin metallacycle 34 in cavities of mesoporous carbon FDU-16.

    Fig.6.(a)Scheme for the photooxidation of sulfides(34?C as catalyst);(b)Photooxidation profile of sulfides; (c) Reusability hybrids 34?C and metallacycle 34.Reproduced with permission [98].Copyright 2018,American Chemical Society.

    3.4.Supramolecular gels

    Supramolecular gels are generated by self-assembly of small molecules or complexes through non-covalent interactions including π-π stacking,hydrogen bond,and coordination bond.As smart soft materials,they have been widely applied in many fields such as drug delivery,wound healing,tissue engineering,nanoelectronics,and chemical sensing [99,100].Metallacycles with well-defined shape and size can be readily modified by multiple functional moieties with non-covalent interactions to form supramolecular gels via hierarchical self-assembly [101-103].Furthermore,the reversible non-covalent interaction gave supramolecular gels with stimuli-response.

    Recently,we constructed a fluorescent metallacycle 37 with AIE property via coordination-driven self-assembly of the dipyridyl donor 36 modified with multiple amide groups and long hydrophobic alkyl chains and diplatinum(II)acceptor 35 decorated with tetraphenylethylene (Scheme 9) [104].Fluorescence emission-enhanced supramolecular gel was successfully prepared in acetone/water (5:1) at a low critical gelator concentration (CGC)(21.3 mg/mL)of metallacycle 37 by hierarchical self-assembly due to the intermolecular interactions derived from amide groups and long alkyl chains.Furthermore,the reversible gel-sol transitions were realized via disassembly and reassembly of metallacycle 37 by adding and removing bromine ions or fluorine ions because of the dynamic nature of coordination bond and hydrogen bond(Fig.7).Meanwhile,the apparent fluorescence switch was observed during the reversible gel-sol transitions.This research presented the interesting supramolecular metallogel possessing fluorescence emission-enhanced property with multiple stimuliresponsive behaviors via hierarchical self-assembly.

    Scheme 9.Cartoon representation of the formation of metallacycle 37.

    Fig.7.Photographs demonstrating the reversible stimuli-responsive gel-sol transition of hexagonal metallacycle 37 in acetone/water (5:1) by the addition of(a)TBAB and AgPF6 and(b)TBAF and HClO4.Digital photos of the reversible stimuliresponsive gel-sol transition of hexagonal metallacycle 37 by the addition of (c)TBAB and AgPF6 and(d)TBAF and HClO4 under irradiation by a UV lamp at 365 nm.Copied with permission [104].Copyright 2017,Royal Society of Chemistry.

    Scheme 10.Cartoon representation of the formation of metallacycles 39 and 40.

    Fig.8.Gel-sol transitions of supramolecular polymer gel 41?40 triggered by a variety of stimuli.Copied with permission [105].Copyright 2018,Royal Society of Chemistry.

    Besides the above supramolecular gel obtained via hierarchical self-assembly based on metal-ligand coordination bond and hydrogen bond,we prepared another kind of supramolecular gel via hierarchical self-assembly based on metal-ligand coordination bond and host-guest interactions [105].Through coordinationdriven self-assembly of 120°tetraphenylethylene-based dipyridyl donor 39 decorated with pillar[5]arene and the corresponding complementary 60°diplatinum(II) acceptors 20 or 120°diplatinum(II) acceptors 11,two different metallacycles 39 and 40 with different shapes and sizes were obtained,respectively(Scheme 10).The metallacycles host 39 or 40 and the neutral ditopic guest 41 can form the cross-linked supramolecular polymers with AIE properties under high concentration conditions through hostguest interactions.Interestingly,cross-linked supramolecular gels were generated with further increase of the concentrations.Furthermore,both gels 41?39 and 41?40 displayed reversible gel-sol transitions under different stimuli of temperature,competitive guest molecules,and halides,along with the “onoff”of fluorescence by taking the advantages of the dynamic nature of metal-ligand bonds and host-guest interactions (Fig.8).This investigation offered another new strategy to fabricate smart soft materials efficiently.

    4.Conclusion

    In this review,we summarized the recent advances of our group on the construction of fluorescent metallacycles via coordinationdriven selfassembly.A variety of fluorescent metallacycles with different shapes,sizes,and fluorescent moieties were designed and synthesized successfully,which indicated that coordinationdriven self-assembly was a simple and highly efficient strategy with numerous synthetic superiority,including fewer steps,nearly quantitative yields,defect-free assembly,and inherent selfcorrection.Furthermore,their photophysical properties and applications in monitoring the dynamics of coordination-driven self-assembly,sensing,catalysts,and supramolecular gels were also discussed.

    Although much progress has been made with the fluorescent metallacycles,three vital aspects should be considered in my opinion.On one hand,except for fluorescence intensity,the combination of electrospray ionization mass spectrometry (ESIMS),NMR,and super-resolution fluorescence microscopy techniques would be an effective method for monitoring the dynamic the self-assembly process of metallacycles.On the other hand,research focus should be shifted from the two-dimensional (2D)fluorescent metallacycles towards three-dimensional (3D) fluorescent metallacages,because metallacages,which contain guests by host-guest interactions,could be uesd for drug delivery,sensing,and catalysts.Thirdly,there have been relatively fewer reports on biological applications of fluorescent metallocycles and metallocages.Thus,fluorescent metallocycles and metallocages with high water solubility,good biocompatibility,or near-infrared emission should be constructed.Generally,3D metallacages display larger volume and higher molecular weight than those of 2D metallacycles,thus,the challenges of high stability,good solubility,and low toxicity need to be considered particularly for 3D fluorescent metallacages in biological application.

    Acknowledgments

    Thanks to all excellent authors whose names appear in the references.We acknowledge the National Natural Science Foundation of China (Nos.21871092 and 21672070),Shanghai Pujiang Program (No.18PJD015),and the State Key Laboratory of Fine Chemicals (No.KF1801) for the financial support.

    十八禁网站网址无遮挡 | 国产精品熟女久久久久浪| 精品久久久久久久久av| 精品久久久久久久久亚洲| 欧美亚洲 丝袜 人妻 在线| 久久国产精品大桥未久av | 久久久国产一区二区| 中文字幕av成人在线电影| 99久久精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美精品专区久久| 免费av不卡在线播放| 免费在线观看成人毛片| 国产av国产精品国产| 日产精品乱码卡一卡2卡三| 一个人看的www免费观看视频| 久久av网站| 国产 一区 欧美 日韩| 久久久a久久爽久久v久久| 久久精品国产亚洲av天美| 热re99久久精品国产66热6| 中文字幕精品免费在线观看视频 | 免费不卡的大黄色大毛片视频在线观看| 日韩中字成人| 波野结衣二区三区在线| 尤物成人国产欧美一区二区三区| 亚洲av不卡在线观看| 男人狂女人下面高潮的视频| 精品久久久久久久末码| 一本色道久久久久久精品综合| 亚洲av国产av综合av卡| 97在线人人人人妻| 男人爽女人下面视频在线观看| 国产视频首页在线观看| 哪个播放器可以免费观看大片| av.在线天堂| 久久久久国产网址| 国产日韩欧美在线精品| 国产亚洲一区二区精品| 熟女人妻精品中文字幕| 国精品久久久久久国模美| 日韩中文字幕视频在线看片 | 日本猛色少妇xxxxx猛交久久| freevideosex欧美| 在线观看av片永久免费下载| 亚洲精品乱码久久久久久按摩| 亚洲无线观看免费| 蜜桃亚洲精品一区二区三区| 少妇丰满av| 少妇被粗大猛烈的视频| 久久99热这里只有精品18| 色哟哟·www| 岛国毛片在线播放| 欧美人与性动交α欧美软件| 久久青草综合色| 热re99久久国产66热| 最近手机中文字幕大全| 国产在视频线精品| 日韩 亚洲 欧美在线| 婷婷成人精品国产| 欧美成人精品欧美一级黄| 久久久久久久国产电影| 好男人电影高清在线观看| 精品少妇一区二区三区视频日本电影| 国产成人精品久久二区二区免费| 一本大道久久a久久精品| 一本大道久久a久久精品| 欧美日韩精品网址| 久久国产精品影院| 久久久精品区二区三区| 悠悠久久av| 欧美激情 高清一区二区三区| 一二三四社区在线视频社区8| 国产av一区二区精品久久| 亚洲成人国产一区在线观看 | 你懂的网址亚洲精品在线观看| 免费女性裸体啪啪无遮挡网站| 精品久久久久久久毛片微露脸 | 另类亚洲欧美激情| 亚洲精品国产av蜜桃| 一级黄片播放器| 亚洲欧美清纯卡通| 看免费av毛片| 国产成人a∨麻豆精品| 亚洲精品国产一区二区精华液| 香蕉丝袜av| 亚洲国产精品999| 久久精品熟女亚洲av麻豆精品| 国产野战对白在线观看| 超碰97精品在线观看| 97人妻天天添夜夜摸| 婷婷色综合www| 国精品久久久久久国模美| 午夜福利视频精品| 久久99热这里只频精品6学生| 一本色道久久久久久精品综合| 别揉我奶头~嗯~啊~动态视频 | 在线看a的网站| 视频区欧美日本亚洲| 老汉色av国产亚洲站长工具| 男女床上黄色一级片免费看| 亚洲av美国av| 尾随美女入室| 亚洲久久久国产精品| 精品一品国产午夜福利视频| 久久精品国产a三级三级三级| 欧美日韩黄片免| 中文字幕亚洲精品专区| www.自偷自拍.com| 亚洲国产成人一精品久久久| 国产在线一区二区三区精| 三上悠亚av全集在线观看| 亚洲专区国产一区二区| 欧美性长视频在线观看| 一区二区三区乱码不卡18| 丰满少妇做爰视频| 亚洲国产欧美网| 丝袜脚勾引网站| 欧美性长视频在线观看| 日韩免费高清中文字幕av| 午夜福利视频精品| 我的亚洲天堂| 一级片'在线观看视频| 少妇的丰满在线观看| 国产成人91sexporn| 午夜av观看不卡| 免费观看a级毛片全部| 大香蕉久久成人网| 国产欧美日韩综合在线一区二区| 免费在线观看黄色视频的| 亚洲人成电影免费在线| 亚洲天堂av无毛| 又大又爽又粗| 亚洲熟女精品中文字幕| 两人在一起打扑克的视频| e午夜精品久久久久久久| 老司机午夜十八禁免费视频| 亚洲天堂av无毛| 国产精品偷伦视频观看了| 久久天躁狠狠躁夜夜2o2o | 亚洲国产欧美网| 国产av国产精品国产| 人人妻人人添人人爽欧美一区卜| av天堂久久9| 50天的宝宝边吃奶边哭怎么回事| 黑人欧美特级aaaaaa片| 久久午夜综合久久蜜桃| 国产高清videossex| 777米奇影视久久| 首页视频小说图片口味搜索 | 美女视频免费永久观看网站| 久久精品久久久久久久性| 一级黄片播放器| 亚洲专区国产一区二区| 美女国产高潮福利片在线看| 国产老妇伦熟女老妇高清| 一二三四在线观看免费中文在| 日韩 亚洲 欧美在线| 久久久精品区二区三区| 丝袜在线中文字幕| 丝瓜视频免费看黄片| 国产在线一区二区三区精| 精品人妻在线不人妻| 亚洲国产日韩一区二区| 久久国产精品大桥未久av| 香蕉丝袜av| 欧美精品人与动牲交sv欧美| 亚洲激情五月婷婷啪啪| 91国产中文字幕| 精品熟女少妇八av免费久了| 少妇人妻 视频| 国产成人一区二区三区免费视频网站 | 午夜福利视频精品| 成年人午夜在线观看视频| 丰满饥渴人妻一区二区三| 女人被躁到高潮嗷嗷叫费观| 亚洲 国产 在线| 极品少妇高潮喷水抽搐| 亚洲av成人不卡在线观看播放网 | 黄色一级大片看看| 少妇被粗大的猛进出69影院| 午夜免费观看性视频| 91麻豆精品激情在线观看国产 | √禁漫天堂资源中文www| www.精华液| 国产视频首页在线观看| 中文字幕最新亚洲高清| 亚洲国产精品一区三区| 亚洲色图综合在线观看| 国产99久久九九免费精品| 在现免费观看毛片| 五月天丁香电影| 一级a爱视频在线免费观看| 国产精品国产三级国产专区5o| 国产亚洲一区二区精品| 欧美成人精品欧美一级黄| av天堂在线播放| 免费少妇av软件| 一区二区日韩欧美中文字幕| 亚洲,欧美精品.| 在线天堂中文资源库| 一二三四社区在线视频社区8| 国产欧美日韩精品亚洲av| 视频区欧美日本亚洲| 国产有黄有色有爽视频| 久久久精品国产亚洲av高清涩受| 日本午夜av视频| 亚洲伊人久久精品综合| 亚洲综合色网址| 99九九在线精品视频| 亚洲国产欧美日韩在线播放| 亚洲av综合色区一区| 每晚都被弄得嗷嗷叫到高潮| 好男人电影高清在线观看| 国产野战对白在线观看| 日本欧美视频一区| 99国产精品免费福利视频| 国产av精品麻豆| 国产免费福利视频在线观看| 99国产精品一区二区蜜桃av | 欧美日韩亚洲综合一区二区三区_| 亚洲欧美一区二区三区黑人| 视频在线观看一区二区三区| 视频区图区小说| 可以免费在线观看a视频的电影网站| 丰满迷人的少妇在线观看| 日日爽夜夜爽网站| 久久久久网色| 性色av一级| 午夜影院在线不卡| 亚洲成av片中文字幕在线观看| 国产高清不卡午夜福利| 美女主播在线视频| 免费av中文字幕在线| 午夜福利影视在线免费观看| 丰满饥渴人妻一区二区三| 97在线人人人人妻| 赤兔流量卡办理| 亚洲中文av在线| 亚洲熟女精品中文字幕| xxx大片免费视频| 亚洲色图综合在线观看| 2021少妇久久久久久久久久久| 啦啦啦啦在线视频资源| 精品人妻1区二区| 一区福利在线观看| 免费观看人在逋| 亚洲天堂av无毛| 亚洲综合色网址| 美女福利国产在线| 亚洲欧美中文字幕日韩二区| 亚洲精品在线美女| 人人妻,人人澡人人爽秒播 | 少妇裸体淫交视频免费看高清 | av在线app专区| 一区二区日韩欧美中文字幕| 国产在线免费精品| 一级,二级,三级黄色视频| 极品人妻少妇av视频| 成人18禁高潮啪啪吃奶动态图| 婷婷色综合www| 午夜精品国产一区二区电影| 久久天堂一区二区三区四区| 国产免费福利视频在线观看| 亚洲天堂av无毛| 午夜久久久在线观看| 午夜日韩欧美国产| 欧美日韩av久久| 日本五十路高清| 国产欧美日韩精品亚洲av| 一级片免费观看大全| 欧美日韩视频精品一区| 777米奇影视久久| 校园人妻丝袜中文字幕| 曰老女人黄片| 97在线人人人人妻| 人人妻人人爽人人添夜夜欢视频| 欧美精品一区二区大全| 亚洲国产av影院在线观看| 深夜精品福利| 交换朋友夫妻互换小说| 国产成人av教育| 亚洲情色 制服丝袜| 色婷婷久久久亚洲欧美| 欧美日韩亚洲高清精品| 97在线人人人人妻| 一本一本久久a久久精品综合妖精| 国产成人精品在线电影| 亚洲精品久久久久久婷婷小说| 菩萨蛮人人尽说江南好唐韦庄| 成人三级做爰电影| 欧美人与性动交α欧美软件| 在线观看www视频免费| 国产免费又黄又爽又色| 国产一区二区激情短视频 | 99国产综合亚洲精品| 麻豆国产av国片精品| 久久久久精品国产欧美久久久 | 首页视频小说图片口味搜索 | 国产精品二区激情视频| 亚洲激情五月婷婷啪啪| 国产亚洲欧美精品永久| 男男h啪啪无遮挡| 国产精品国产三级国产专区5o| 亚洲第一av免费看| 国产精品av久久久久免费| 久久精品久久久久久噜噜老黄| 亚洲精品久久午夜乱码| 久久久久国产精品人妻一区二区| 一区二区日韩欧美中文字幕| 在线精品无人区一区二区三| 黄频高清免费视频| 国产成人a∨麻豆精品| 色综合欧美亚洲国产小说| 一区二区三区四区激情视频| 亚洲精品成人av观看孕妇| 在线观看一区二区三区激情| 看十八女毛片水多多多| 青草久久国产| 免费久久久久久久精品成人欧美视频| 国精品久久久久久国模美| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区四区第35| 免费女性裸体啪啪无遮挡网站| 一区二区av电影网| 国产亚洲午夜精品一区二区久久| 亚洲自偷自拍图片 自拍| 精品亚洲成a人片在线观看| 国产有黄有色有爽视频| 女警被强在线播放| 亚洲欧美一区二区三区久久| 欧美亚洲日本最大视频资源| 亚洲久久久国产精品| 亚洲激情五月婷婷啪啪| 久久久久国产一级毛片高清牌| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美视频二区| 宅男免费午夜| 亚洲av日韩在线播放| 成人国产av品久久久| 十八禁高潮呻吟视频| 夫妻性生交免费视频一级片| 久久这里只有精品19| 欧美日韩视频高清一区二区三区二| 国产黄色视频一区二区在线观看| 精品视频人人做人人爽| 国产亚洲精品久久久久5区| 最新在线观看一区二区三区 | 欧美日韩亚洲高清精品| 人人妻人人爽人人添夜夜欢视频| 最新的欧美精品一区二区| 免费久久久久久久精品成人欧美视频| 国产老妇伦熟女老妇高清| 极品少妇高潮喷水抽搐| 国产亚洲精品久久久久5区| 各种免费的搞黄视频| 婷婷色综合www| 男女午夜视频在线观看| 人体艺术视频欧美日本| 少妇人妻久久综合中文| av在线播放精品| 成人国产一区最新在线观看 | 我的亚洲天堂| 亚洲专区中文字幕在线| 国产男女超爽视频在线观看| 一本色道久久久久久精品综合| 午夜福利影视在线免费观看| 男女午夜视频在线观看| 色网站视频免费| 国产精品人妻久久久影院| 一边摸一边抽搐一进一出视频| 国产日韩欧美在线精品| 高清黄色对白视频在线免费看| 2018国产大陆天天弄谢| 欧美精品亚洲一区二区| 亚洲av美国av| 18禁黄网站禁片午夜丰满| 一区二区三区乱码不卡18| 久久久国产欧美日韩av| 免费女性裸体啪啪无遮挡网站| 高清av免费在线| 久久久久久免费高清国产稀缺| 人妻一区二区av| 只有这里有精品99| 我的亚洲天堂| 超碰97精品在线观看| 欧美日本中文国产一区发布| 欧美日韩福利视频一区二区| 欧美乱码精品一区二区三区| 欧美av亚洲av综合av国产av| 在线看a的网站| 欧美另类一区| 亚洲av综合色区一区| 亚洲精品美女久久久久99蜜臀 | 侵犯人妻中文字幕一二三四区| 赤兔流量卡办理| 日本av免费视频播放| 成年av动漫网址| 国产在线视频一区二区| 精品国产一区二区三区久久久樱花| 久久精品久久久久久噜噜老黄| 美女福利国产在线| 新久久久久国产一级毛片| 精品免费久久久久久久清纯 | av一本久久久久| 亚洲av综合色区一区| 肉色欧美久久久久久久蜜桃| 免费久久久久久久精品成人欧美视频| 国产日韩欧美视频二区| 午夜福利在线免费观看网站| 国产97色在线日韩免费| 少妇 在线观看| 亚洲中文av在线| 777米奇影视久久| 亚洲欧美一区二区三区国产| 熟女av电影| 人人妻人人澡人人看| 超碰成人久久| 18禁国产床啪视频网站| 青草久久国产| 99久久综合免费| 久久久国产欧美日韩av| 老鸭窝网址在线观看| 亚洲精品久久午夜乱码| 日韩制服丝袜自拍偷拍| 少妇裸体淫交视频免费看高清 | 亚洲九九香蕉| 国产成人一区二区三区免费视频网站 | 色视频在线一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美一区二区三区黑人| 伦理电影免费视频| 精品亚洲成国产av| 美女大奶头黄色视频| 9191精品国产免费久久| 国产精品麻豆人妻色哟哟久久| 欧美日韩成人在线一区二区| 色播在线永久视频| av视频免费观看在线观看| 操出白浆在线播放| 老司机影院成人| 亚洲精品美女久久av网站| 日韩中文字幕视频在线看片| 亚洲精品第二区| 女人久久www免费人成看片| 自拍欧美九色日韩亚洲蝌蚪91| 又紧又爽又黄一区二区| 可以免费在线观看a视频的电影网站| 一本色道久久久久久精品综合| 久久久久国产精品人妻一区二区| 精品人妻熟女毛片av久久网站| 国产成人91sexporn| 精品福利观看| 人人妻人人澡人人爽人人夜夜| 两人在一起打扑克的视频| 亚洲精品av麻豆狂野| 午夜影院在线不卡| 制服诱惑二区| 夜夜骑夜夜射夜夜干| 国产精品二区激情视频| 两人在一起打扑克的视频| 一区二区三区激情视频| 99精国产麻豆久久婷婷| 国产精品一区二区免费欧美 | 亚洲专区中文字幕在线| 欧美精品一区二区大全| 啦啦啦中文免费视频观看日本| 亚洲国产毛片av蜜桃av| 亚洲天堂av无毛| 中文乱码字字幕精品一区二区三区| 国产精品九九99| av一本久久久久| 国产精品久久久av美女十八| 观看av在线不卡| 狂野欧美激情性bbbbbb| 国产精品av久久久久免费| av国产精品久久久久影院| 成年人免费黄色播放视频| 中国国产av一级| 人妻 亚洲 视频| 国产成人91sexporn| 性色av一级| 男的添女的下面高潮视频| 精品人妻熟女毛片av久久网站| 你懂的网址亚洲精品在线观看| 久久青草综合色| 另类亚洲欧美激情| 两人在一起打扑克的视频| 国产欧美日韩一区二区三区在线| 丝袜人妻中文字幕| 国产精品久久久久成人av| 久久国产精品大桥未久av| 精品少妇久久久久久888优播| 精品一区二区三卡| 欧美日韩福利视频一区二区| 精品福利观看| 成年美女黄网站色视频大全免费| 精品高清国产在线一区| 欧美黑人欧美精品刺激| 国产男人的电影天堂91| 亚洲少妇的诱惑av| 国产成人av教育| 999精品在线视频| 国产色视频综合| 亚洲国产精品成人久久小说| 99精国产麻豆久久婷婷| 日日摸夜夜添夜夜爱| 尾随美女入室| 久久影院123| 国产真人三级小视频在线观看| 亚洲欧洲国产日韩| 欧美 日韩 精品 国产| 青草久久国产| 天堂俺去俺来也www色官网| 欧美精品人与动牲交sv欧美| 欧美性长视频在线观看| 色网站视频免费| 亚洲成人手机| 国产欧美日韩精品亚洲av| 9色porny在线观看| 国产欧美日韩一区二区三 | 视频在线观看一区二区三区| 国产老妇伦熟女老妇高清| 久久人妻福利社区极品人妻图片 | 亚洲成av片中文字幕在线观看| 熟女少妇亚洲综合色aaa.| 国产又爽黄色视频| 国产97色在线日韩免费| 精品人妻一区二区三区麻豆| 99精品久久久久人妻精品| 建设人人有责人人尽责人人享有的| 日韩人妻精品一区2区三区| a级毛片黄视频| 国产亚洲精品久久久久5区| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区在线观看99| 日日爽夜夜爽网站| 亚洲精品美女久久av网站| 高潮久久久久久久久久久不卡| 国产伦理片在线播放av一区| 成人影院久久| 欧美变态另类bdsm刘玥| 黑人猛操日本美女一级片| 国产在线观看jvid| 亚洲成国产人片在线观看| 午夜福利视频在线观看免费| 色婷婷av一区二区三区视频| 男女午夜视频在线观看| 性少妇av在线| 男人舔女人的私密视频| 一区在线观看完整版| 美女视频免费永久观看网站| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 91国产中文字幕| 啦啦啦啦在线视频资源| 亚洲天堂av无毛| 在线亚洲精品国产二区图片欧美| 母亲3免费完整高清在线观看| 又黄又粗又硬又大视频| 女人久久www免费人成看片| av国产精品久久久久影院| 亚洲精品美女久久久久99蜜臀 | 18禁国产床啪视频网站| 制服人妻中文乱码| 国产不卡av网站在线观看| 激情五月婷婷亚洲| 国产一卡二卡三卡精品| 国产日韩一区二区三区精品不卡| 欧美激情 高清一区二区三区| 久久影院123| 欧美人与善性xxx| 欧美日韩视频高清一区二区三区二| 99re6热这里在线精品视频| 免费在线观看日本一区| 国产在线免费精品| 精品少妇内射三级| 午夜福利在线免费观看网站| 黄色怎么调成土黄色| 19禁男女啪啪无遮挡网站| 亚洲成人手机| 国产精品av久久久久免费| 国产精品熟女久久久久浪| 婷婷色麻豆天堂久久| 亚洲国产欧美日韩在线播放| 99久久精品国产亚洲精品| 免费黄频网站在线观看国产| 一级片'在线观看视频| 国产午夜精品一二区理论片| 国产一区二区 视频在线| 看十八女毛片水多多多| 欧美性长视频在线观看| 亚洲精品自拍成人| 国产无遮挡羞羞视频在线观看| 少妇人妻 视频| 日韩视频在线欧美| 久久久久精品国产欧美久久久 | 一个人免费看片子| 国产精品三级大全| 精品少妇黑人巨大在线播放| 精品国产国语对白av| 交换朋友夫妻互换小说| 另类精品久久| 99热网站在线观看| 欧美变态另类bdsm刘玥| av在线播放精品| 欧美激情高清一区二区三区| 久久久久国产精品人妻一区二区| 欧美人与性动交α欧美精品济南到| av在线app专区| 欧美另类一区| 在线天堂中文资源库| 中文字幕精品免费在线观看视频| 久久天躁狠狠躁夜夜2o2o | 成人黄色视频免费在线看|