• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heteroatom-substituted rhodamine dyes:Structure and spectroscopic properties

    2019-10-31 09:00:32FeiDengZhaochaoXu
    Chinese Chemical Letters 2019年10期

    Fei Deng,Zhaochao Xu

    a CAS Key Laboratory of Separation Science for Analytical Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China

    b University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords:

    Rhodamine

    Heteroatom

    Si-rhodamine

    Optical properties

    Fluorescent dyes

    ABSTRACT

    Rhodamine is one class of most popular dyes used in fluorescence imaging due to the outstanding photoproperties including high brightness and photostability.In recent years,replacement the xanthene oxygen with other elements,especially silicon,has attracted great attentions in the development of new rhodamine derivatives.This review summarized the structures and photophysical properties of heteroatom-substituted rhodamines.We hope this review can help to understand the structure-property relationships of rhodamine dyes and then elucidate the way to create derivatives with improved photoproperties.

    1.Introduction

    Fluorescence microscopy is an essential tool for visualizing biological processes in living cells [1-6].The key point of this strategy is to select a proper fluorophore [7-10].Compared with fluorescent proteins and quantum dots,organic dyes are attracting much more attention in recent 20 years,ascribed to their advantages of mall size,easy of chemical modification,good brightness and photostability,and emissions spanning the entire color spectrum[11].Particularly,the single-molecule imaging and super-resolution imaging have been driving the development of new fluorophores with super brightness and photostability [12].

    Rhodamines,a fluorophore with a history over a century,are the most popular dyes used in fluorescence imaging due to their stability,brightness and water solubility[13].A typical structure of rhodamine is showed in Fig.1.Although pyronine and rhodamine share the same chromophore xanthene (Fig.1a,for example,Pyronin Y vs.tetramethylrhodamine(TMR)),rhodamine has higher brightness and stability,and is more suitable for biological application than pyronin.The carbon atom at 9-position of xanthene moiety was stabilized by the phenyl ring in rhodamine,where the one in pyronin Y was much more reactive to limit the applications of pyronine.Another feature of rhodamine is the equilibrium between the ring-opened fluorescent zwitterionic form and the ring-closed non-fluorescent lactone form (Fig.1b).This equilibrium has been widely used to design fluorogenic chemosensors [14].To avoid the formation of non-fluorescent lactone form,the common strategy is to introduce methyl or methoxyl groups at C-3'and C-7'in rhodamines[15,16].However,the absorption and emission of rhodamines within the range of 500-600 nm limit their applications in multicolour imaging and in vivo imaging[17].These scenarios necessitate the development of near-infrared (NIR) rhodamine fluorophores.

    It is required and challenging to extend the absorption and emission wavelength of rhodamines,especially to far-red and nearinfrared(NIR)region.The general strategies to elicit the absorption and emissionto NIR regioninclude theπ-conjugation extension and limited-flexibility of chromophore.The drawbacks of these methods are the associated decrease in brightness and watersolubility[18-20].Another way to shift emission into NIR region is to replace the xanthene oxygen in rhodamine by heteroatoms.This strategy has been demonstrated over half century and represented by C,N,S,Se and Te-rhodamine.Due to the limited improvement in fluorescent properties and complicated synthetic routes,these rhodamines did not get much attention,until the appearance of Si-Pyroninin2008,pioneered by QianandXiao et al.[21].Replacement of the oxygen in the skeleton of rhodamine with silicon produces a significant red-shift toNIR regionwhile maintaining the brightness.According to the advantage of Si-rhodamine in bioimaging,Nagano et al.developed a series of Si-rhodamines from far-red to NIR[22,23].Further studies revealed the fluorogenic behavior and extremely photostability of Si-rhodamine-carboxyl,which made it ideal fluorophore for live-cell super-resolution microscopy[24,25].The big success of Si-rhodamine has allowed a triumphant return of oxygen replacement in rhodamine modification,like borinate,phosphinate and sulfone.Here,we review various heteroatoms replaced rhodamines (Fig.1c) and focus on their photophysical properties in order to facilitate the modification and application of new rhodamine dyes.

    Fig.1.(a) A typical structure of pyronin and rhodamine.(b) Equilibrium of TMR between zwitterionic form and lactone form.(c) Elements used in rhodamine 10-position replacement was shown in red.

    2.Boron group

    Fig.2.Structures of B-rhodamines.

    The boron group is the chemical elements in group 13 of the periodic table,comprising boron(B),aluminium(Al),gallium(Ga),indium (In),thallium (Tl),and perhaps also the chemically uncharacterized nihonium (Nh).At the present time,only the element of boron was reported to replace rhodamine oxygen.The first B-pyronine JS-R was reported by Egawa et al.in 2016 (Fig.2 and Table 1,compound 4) [26].Incorporating a borinate moiety into a xanthene skeleton produced a significant (>60 nm)bathochromic shift compared to its parent dye pyronin Y.The molar absorption coefficient and quantum yield of JS-R were measured to be 1.3×105L mol-1cm-1and 0.59,respectively.Next,Stains et al.synthesized the corresponding B-rhodamine RF620(Fig.2 and Table 1,compound 5) by insertion of 2-methyl phenyl group at the 9-position of JS-R [27].Substitution by aromatic residues caused a slight red shift (<10 nm) in absorption and emission.Besides,molar absorption coefficient and quantum yield of RF620 were decreased to 1.09×105L mol-1cm-1and 0.36,respectively.Similar variation between pyronin Y and TMR were observed,that TMR displayed a deceased absorption and quantum yield compared with pronin Y.

    3.Carbon group

    The carbon group,Group 14 in the p-block,contains carbon(C),silicon(Si),germanium(Ge),tin(Sn),lead(Pb)and flerovium(Fl).Except Pb and Fl,all these elements have been successfully applied in rhodamine oxygen replacement.Compared with traditional Orhodamine,the obtained carbon-group-rhodamine fluorophores displayed significant red-shifts in fluorescence spectra.The bathochromic shift of group 14 rhodamines may be due to their lower LUMO levels.Except C-rhodamine,the existed σ*-π*conjugation in Si-,Ge-and Sn-rhodamine and the LUMO of π-system were stabilized.Besides,the conjugation became less efficient as the atomic number increase.As a consequence,the extent of red shift was C <Sn <Ge <Sn [28].

    3.1.Carbon-rhodamine (C-rhodamine)

    Replacement of rhodamine oxygen with a quaternary carbon elicits a 50-nm bathochromic shift.These C-rhodamines were firstly synthesized by Aaron et al.in 1963[29].In the following half century,few attentions had been paid to the research of Crhodamine,maybe due to the complex synthesis and low yield.Because of the high brightness and phtotostability,C-rhodamines have been successfully applied in super-resolution fluorescent imaging,which brought C-rhodamine back to the attention of dye scientists.

    Lavis et al.reported a series of C-rhodamines by alternating the substituents on the N atoms(Fig.3 and Table 1,compounds 6-9,17 and 18) [30-32].The twist of Caryl--N bond in rhodamine greatly influenced the brightness of the fluorophore.Replacing the N,Ndimethyl group in compound 7 with differently sized rings could mitigate twisted internal charge transfer (TICT) and regulate the brightness of the fluorophore.In particularly,the azetidinyl Crhodamine (compound 8) had higher quantum yield (φ=0.67)compared to compound 7(φ=0.52),while maintained the similar extinction coefficient (ε=1.21×105L mol-1cm-1).

    By introducing fluorine,Hell et al.obtained a series of Crhodamines with maximum absorption in the range of 560-630 nm (Fig.3 and Table 1,compounds 11-16) [33,34].Though the fluorination of the carbonrhodamine in tricyclic cores led to red-shifts of the absorption and emission compared to unmodified C-rhodamine,the extinction coefficients and quantum yields were reduced significantly.Taking compound 14 as an example,the extinction coefficients and quantum yields were only 6700 L mol-1cm-1and 0.06,whereas the unmodified compound 12 were 100,000 L mol-1cm-1and 0.59,respectively.These results were totally different to O-rhodamine.Typically,the fluorination of rhodamine could lead to slight improvement in brightness [35].However,introducing fluorine contained alkyl group into the N atoms of C-rhodamines (compounds 15 and 16) resulted in bathochromic shift while maintained the brightness compared to unmodified C-rhodamine,which was in accord with O-rhodamines.

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    In 2014,Klan et al.reported a NIR C-rhodamine (Fig.3 and Table 1,compound 10) by replacing the aromatic substituents at the position C9 with phenylethynyl group [36].This compound possessed two characteristic absorptions at 472 and 677 nm.Both of the absorption excited the maximum emission at 705 nm.The quantum yields were about 0.15 in methanol.

    3.2.Silicon-rhodamines (Si-rhodamine)

    In 2008,Xiao et al.replaced the oxygen in the pyronine Y with a silicon atom to obtain TMDHS(Fig.4 and Table 1,compound 19)[21].The absorption and emission of TMDHS were at 641 and 659 nm,nearly 90 nm bathochromic shift compared to pyronine Y.To improve the stability,Nagano et al.inserted 2-methyl phenyl group at the 9th position of TMDHS and created Sirhodamine [28].This compound exhibited λmax/λem=646 nm/660 nm,ε=1.1×105L mol-1cm-1and φ=0.31 in PBS buffer.These data illustrated Si-rhodamine was as bright as the Orhodamines.In order to fulfill the requirement of in vivo imaging,Nagano group further developed a series of NIR-excitable Sirhodamine (Fig.4 and Table 1,compounds 21-24) by the expansion of the xanthene ring.These compounds show the emissions over 700 nm [37,38].Especially,compound 22 showed excellent tolerance to photobleaching and high quantum efficiency (φ=0.12) [25].

    Like the modification in C-rhodamines,Lavis et al.also replaced dialkylamino substituents with differently sized rings to mitigate TICT and regulate the brightness in Si-rhodamine (Fig.4 and Table 1,compounds 25-29) [31,34,39,40].The azetidinyl Sirhodamine (compound 27) had similar absorption and emission(λmax/λem=646 nm/664 nm) and higher quantum yield (φ=0.31)compared to N,N-dimethyl Si-rhodamine (compound 26).Also,depending on the free rotation of the bond between the N atom and the Si-substituted xanthene moiety,Urano et al.designed a series of near-infrared fluorescence quenchers(Fig.4 and Table 1,compounds 30 and 31)[38].These compounds showed absorption in NIR region (660 nm and 779 nm) and the quantum yields were almost zero.

    In O-rhodamine modification,introducing halogen,especially fluorine,would improve the photostability and brightness of fluorophore.This strategy was also applied in Si-rhodamine.Lavis and Hell groups have vigorously developed various fluorine-containing Si-rhodamines (Fig.4 and Table 1,compounds 32-42).Similar to C-rhodamine,introducing fluorine into the tricyclic cores of Si-rhodamine decreased the extinction coefficients and quantum yields sharply,albeit with nearly 30 nm red-shift in wavelengths (compounds 32,34 and 36) [33,40].However,the fluorination or chlorination in the bottom phenyl group had a much smaller effect on brightness with 20-30 nm redshifts in wavelengths (compounds 35,37-42).The fluorinated azetidine (compound 33) exhibited ~10 nm blue shift in spectral properties,a slightly higher quantum yield (φ=0.56) relative to compound 27,which was similar to O-rhodamines and Crhodamines [32].

    Replacing the group at the 9-position also induced fluorescence changes(Fig.4 and Table 1,compounds 43-58).Compound 43 with a conjugated phenylethynyl group shifted the absorption and emission over 700 nm [36].The 9-imino-10-silaxanthone compounds 44 and 45 exhibit remarkably large Stokes shifts (around 200 nm),which were related to the excitation of an electron from the HOMO to the LUMO of the chromophores [41].These fluorophores with large Stokes shift would be useful in multicolor nanoscopy[42].Based on the structure of azetidinyl Si-rhodamine(compound 27),Lavis et al.also changed the substituents at the 9th position.(Compounds 46-58 showed similar absorption and emission spectra (~λmax/λem=650 nm/665 nm).The extinction coefficients of these compounds were about 1.2×105L mol-1cm-1.However,the quantum yields were greatly influenced by the substitutes.For example,compound 51 had a lower quantum yield of 0.2,while the quantum yields of compounds 52-56 were over 0.5 [33,40].The intramolecular rotation of phenyl ring in 51 may decrease the quantum yield.

    Dimethylsilane was routinely used as heteroatom in Sirhodamine.Indeed,the different substituents on silicon atoms also affect the fluorescence properties.For example,compounds 59-61 with different Si-substitutes were developed by Zhang et al.(Fig.4 and Table 1).These compounds displayed different bathochromic shifts and quantum yields [43].For compound 62,the substitute was changed from silane to silanediol,and the excitation and emission were further red-shifted to 663 nm and 681 nm,respectively,with ε=1.05×105L mol-1cm-1and φ=0.43 in PBS buffer [27].

    3.3.Germanium-rhodamines (Ge-rhodamine)

    Ge-rhodamines display further about 10 nm hypsochromic shift compared with Si-rhodamine.And the brightness is similar with that of Si-rhodamine (Fig.5 and Table 1,compounds 63-66)[28,34].Taking compound 65 as an example,it displayed λmax/λem=410 nm/471 nm,ε=9.7×104L mol-1cm-1and φ=0.43.Although the attention to Ge-rhodamine is constrained by the fact that synthetic raw materials are not readily available,the outstanding brightness and proper excitation wavelength make Ge-rhodamine a promising fluorophore in bioimaging(Fig.5).

    3.4.Tin-rhodamines (Sn-rhodamine)

    Compared to C-,Si-and Ge-rhodamine,Sn-rhodamines were rarely reported(Fig.6 and Table 1,compounds 67-68)[28].Nagano group synthesized both Sn-pyronine and Sn-rhodamine and found they were really chemical-active.Compound 68 showed the maximum absorption and emission at 614 nm and 628 nm,respectively.

    4.Nitrogen family

    4.1.Nitrogen-rhodamines (N-rhodamine)

    Replacement of the oxygen by a nitrogen atom on the pyronin framework produced acridine orange(69),which have been widely used as a nucleic acid-selective dye over half a century.When bound to DNA,acridine orange displayed a similar emission with that of fluorescein.When bound to RNA,its excitation and emission were shifted to 460 nm and 650 nm,respectively.Lavis et al.replaced the N,N-dimethylamino substituents in acridine orange with four-membered azetidine rings.Compound 70 showed an improved quantum yield from 0.21 to 0.52 (Fig.7 and Table 1,compounds 69-70) [31].

    4.2.Phosphorus-rhodamines (P-rhodamine)

    Fig.3.Structures of C-rhodamines.

    Besides nitrogen,phosphorus was also used to replace rhodamine oxygen.In 2015,Wang et al.reported a series of Prhodamines(Fig.8 and Table 1,compounds 71-73)[44].Due to the electron-withdrawing properties of the phosphorus moiety,these P-rhodamines elicit 140 nm bathochromic shifts relative to O-rhodamine.These compounds displayed similar absorption and emission spectra (λmax/λem=694 nm/711 nm).Due to the restricted intramolecular rotation,the quantum yields of 71-73,which have increasing number of methyl substituents in phenyl group,improved from 0.06 to 0.15.Stains et al.used phosphinate functional group as the bridge and created P-rhodamines 74-77 (Fig.8 and Table 1).Compound 74 exhibited excitation and emission maxima at 666 nm and 685 nm,respectively.The molar extinction coefficients and quantum yields were 1.65×105L mol-1cm-1and φ=0.38,respectively.Moreover,its ethyl ester counterpart compound 75 showed further 35 nm bathochromic shift,though the brightness decreased.By replacing the dimethylaniline in compounds 74 and 75 with julolidine substituent,the excitation and emissions in compounds 76 and 77 were further red-shifted to the rang over 700 nm [45].

    5.Oxygen family

    Due to the similar chemical characteristics in chalcogens,it was reasonable to replace the bridging oxygen atom with other chalcogens.The extent of red shift in emissions was correlate with the atom size(O <S <Se <Te)[46].This trend was thought to be related to the resonance effect of the chalcogen atom,which narrowed the HOMO-LUMO gap [47,48].Besides,the molar extinction coefficients and fluorescence quantum yields decreased with the increasing size of the chalcogen atom,which could be attributed to a strong heavy-atom effect [49].Different with oxygen,the common oxidation states in S,Se,and Te could be-2,+4 and+6.The corresponding oxide can also be applied in replacing the bridging oxygen atom.

    5.1.Sulfur-rhodamines (S-rhodamine)

    Most of S-rhodamines were firstly reported by Detty group(Fig.9 and Table 1,compounds 78-83).Compared to O-rhodamine,S-rhodamines displayed about 20 nm red-shift in absorption and emission spectra.However,the brightness was less than half that of O-rhodamine.Taking compound 78 as an example,it exhibited λmax/λem=571 nm/599 nm,ε=6.26×104L mol-1cm-1and φ=0.44 in methanol.These photophysical properties limited the wide applications of S-rhodamine in biological imaging[46,49,50].

    Guo et al.reported a series of sulfone-rhodamines in 2016(Fig.9 and Table 1,compounds 84-89)[51].The sulfone group serves as the bridge to rigidify their structures and a strong electron withdrawing group.The absorption and emission of sulfone-rhodamines reached 700 nm and 730 nm,respectively.Different substituents in phenyl group influenced the stability and brightness due to the steric effects,which have been referred in P-rhodamines.

    5.2.Selenium-rhodamines (Se-rhodamine)

    When the oxygen bridge was replaced by Selentium,the bathochromic shift in emission was further increased by 30 nm associated with sharply decreased brightness(Fig.10 and Table 1,compounds 90-95) [46,50].For example,compound 90 showed λmax/λem=581 nm/608 nm and ε=4.4×104L mol-1cm-1,but a relatively low φ=0.01 in methanol.Unlike other dyes,Serhodamine had a high yield for singlet oxygen generation,which could be applied as an efficient photosensitizer [49].

    5.3.Tellurium-rhodamines (Te-rhodamine)

    Te-rhodamines were reported with very weak fluorescence(φ <0.001) due to the heavy-atom effect (Fig.11 and Table 1,compounds 96-104)[50,52,53].For Te-rhodamines,Te atom could be easily oxidized by reactive oxygen species (Fig.11 and Table 1,compounds 105-107).The corresponding telluroxide rhodamines exhibited a large red shift compared to Te-rhodamine and showed strong fluorescence.Taking compound 96 as an example,it could be oxidized to compound 105 by reactive oxygen species and exhibited maximum fluorescence emission around 686 nm with φ=0.18 [52].These results indicated that the heavy-atom effect could be weakened by binding of oxygen atom.

    6.Conclusions and perspectives

    Rhodamine is a type of widely used fluorophore.The bridge modification atom at 10 position enriches the color palette of rhodamines.So far,most of the possible element have been applied to build heteroatom-substituted rhodamine.Changing the functional group of the same element at 10 position seems a promising method to further extend the heteroatom-substituted rhodamines in the further.For example,sulfur-rhodamine and sulfonerhodamine share the same element at 10 position but have totally different photophysical properties.Besides,most of the researches in this field are focusing on group 14 elements,especially silicon.A number of methods have been proposed to improve the brightness,photostability and fluorogenicity of rhodamine,C-rhodamine and Si-rhodamine.Among these methods,incorporation of fourmembered azetidine rings into the fluorophore is one of the most attractive.However,these methods have rarely been applied in other element replaced rhodamines so far.We hope that this review paper can draw much more attention on the structural modification of rhodamines.A new way of thinking can be found through the comparison of fluorescence structure-activity relationships.We hope that the structure-activity relationship summarized here,as shown in Table 1,will help to achieve the goal of creating more dyes with high brightness and photostability.

    Fig.4.Structures of Si-rhodamines.

    Fig.5.Structures of Ge-rhodamines.

    Fig.6.Structures of tin-substituted rhodamines.

    Fig.7.Structures of N-rhodamines.

    Fig.8.Structures of P-rhodamines.

    Fig.9.Structures of S-rhodamines and sulfone-rhodamines.

    Fig.10.Structures of Se-rhodamines.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation China (No.21878286) and DICP (Nos.DMTO201603,TMSR201601).

    Fig.11.Structures of Te-rhodamines.

    国产探花在线观看一区二区| 午夜a级毛片| 成年女人毛片免费观看观看9| 亚洲国产精品成人综合色| 亚洲男人天堂网一区| 脱女人内裤的视频| 国产又黄又爽又无遮挡在线| 欧美丝袜亚洲另类 | av视频在线观看入口| 久久婷婷成人综合色麻豆| 在线观看免费视频日本深夜| 亚洲午夜理论影院| aaaaa片日本免费| 日本 av在线| 久久久久国产精品人妻aⅴ院| 蜜桃久久精品国产亚洲av| 精品久久蜜臀av无| 欧美成狂野欧美在线观看| 国产精品久久视频播放| 免费人成视频x8x8入口观看| 国产成人精品久久二区二区91| 2021天堂中文幕一二区在线观| 亚洲午夜理论影院| 可以在线观看毛片的网站| 成人国语在线视频| 亚洲av第一区精品v没综合| 少妇被粗大的猛进出69影院| 人人妻,人人澡人人爽秒播| 一二三四在线观看免费中文在| 一区二区三区国产精品乱码| 美女扒开内裤让男人捅视频| 熟女电影av网| 久久人妻福利社区极品人妻图片| 男女床上黄色一级片免费看| 日本a在线网址| 午夜福利免费观看在线| 国产欧美日韩一区二区三| 欧美黑人精品巨大| 18禁观看日本| 日韩大尺度精品在线看网址| 99久久综合精品五月天人人| 国产真实乱freesex| 最近最新中文字幕大全免费视频| 91麻豆精品激情在线观看国产| 日本黄色视频三级网站网址| 高清在线国产一区| 精品日产1卡2卡| 久99久视频精品免费| 久久午夜亚洲精品久久| 久久久久九九精品影院| 丝袜人妻中文字幕| 啪啪无遮挡十八禁网站| 亚洲欧美一区二区三区黑人| 精品国产乱码久久久久久男人| 18禁国产床啪视频网站| 在线a可以看的网站| 中文字幕久久专区| 国产人伦9x9x在线观看| 99久久无色码亚洲精品果冻| 日韩av在线大香蕉| 国产av不卡久久| 五月玫瑰六月丁香| 久久精品国产亚洲av香蕉五月| ponron亚洲| 老司机深夜福利视频在线观看| 亚洲一区二区三区不卡视频| 亚洲国产欧美网| 99久久99久久久精品蜜桃| 色av中文字幕| 欧美成狂野欧美在线观看| 欧美日韩福利视频一区二区| 国产亚洲精品久久久久5区| 亚洲精品色激情综合| 在线观看一区二区三区| 少妇人妻一区二区三区视频| 97碰自拍视频| 男男h啪啪无遮挡| 国产激情欧美一区二区| 在线观看舔阴道视频| 99久久99久久久精品蜜桃| 日韩欧美国产在线观看| 欧美一区二区国产精品久久精品 | 亚洲九九香蕉| 777久久人妻少妇嫩草av网站| 亚洲国产高清在线一区二区三| 91字幕亚洲| 国内揄拍国产精品人妻在线| 他把我摸到了高潮在线观看| 日韩欧美免费精品| 狠狠狠狠99中文字幕| 后天国语完整版免费观看| 男女床上黄色一级片免费看| 日本精品一区二区三区蜜桃| 美女黄网站色视频| 亚洲精品一区av在线观看| 亚洲乱码一区二区免费版| av中文乱码字幕在线| av国产免费在线观看| 一级a爱片免费观看的视频| 国产成人系列免费观看| 国产野战对白在线观看| 国产成人系列免费观看| 男女床上黄色一级片免费看| 视频区欧美日本亚洲| 国产亚洲精品久久久久5区| 国产精品精品国产色婷婷| 制服丝袜大香蕉在线| 老鸭窝网址在线观看| 一本一本综合久久| cao死你这个sao货| 国产av又大| 日韩有码中文字幕| 久久九九热精品免费| 日韩欧美免费精品| av超薄肉色丝袜交足视频| 听说在线观看完整版免费高清| 天堂动漫精品| 此物有八面人人有两片| 老熟妇仑乱视频hdxx| 身体一侧抽搐| 久久人人精品亚洲av| 欧美日韩黄片免| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品sss在线观看| 国产精品香港三级国产av潘金莲| 久久中文看片网| 可以免费在线观看a视频的电影网站| 亚洲免费av在线视频| 国产成人欧美在线观看| 天堂影院成人在线观看| 久久 成人 亚洲| 欧美日韩瑟瑟在线播放| 岛国在线观看网站| 国产亚洲av高清不卡| 国内少妇人妻偷人精品xxx网站 | 在线观看美女被高潮喷水网站 | √禁漫天堂资源中文www| 亚洲国产精品999在线| 亚洲专区国产一区二区| ponron亚洲| 一a级毛片在线观看| 久久天堂一区二区三区四区| 久久久水蜜桃国产精品网| 1024视频免费在线观看| 亚洲欧美激情综合另类| 50天的宝宝边吃奶边哭怎么回事| 精品福利观看| 99re在线观看精品视频| 亚洲av日韩精品久久久久久密| 久久精品成人免费网站| 欧美中文日本在线观看视频| 波多野结衣巨乳人妻| 999久久久精品免费观看国产| 午夜a级毛片| 欧美性猛交╳xxx乱大交人| 国产成人aa在线观看| 九色国产91popny在线| 国产乱人伦免费视频| 一区福利在线观看| 午夜亚洲福利在线播放| 最新在线观看一区二区三区| 免费一级毛片在线播放高清视频| 熟女电影av网| 亚洲国产精品sss在线观看| 90打野战视频偷拍视频| 可以在线观看的亚洲视频| 国产在线精品亚洲第一网站| 国语自产精品视频在线第100页| 最好的美女福利视频网| 亚洲国产欧洲综合997久久,| 亚洲五月天丁香| 久久精品91无色码中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 看免费av毛片| 久久精品国产综合久久久| 亚洲色图av天堂| 精品国产超薄肉色丝袜足j| 国产伦一二天堂av在线观看| 变态另类成人亚洲欧美熟女| 中文亚洲av片在线观看爽| 神马国产精品三级电影在线观看 | 国语自产精品视频在线第100页| 成人av一区二区三区在线看| 日本免费一区二区三区高清不卡| 悠悠久久av| 欧美在线黄色| 久久香蕉国产精品| 久久精品91无色码中文字幕| 亚洲成人中文字幕在线播放| 久久久久久久久久黄片| 宅男免费午夜| 长腿黑丝高跟| 国产精品久久久久久人妻精品电影| 日本a在线网址| 欧美性猛交黑人性爽| 中文字幕人成人乱码亚洲影| 国产蜜桃级精品一区二区三区| 舔av片在线| 亚洲精品一区av在线观看| 美女免费视频网站| 亚洲精品一区av在线观看| 欧美在线黄色| 老汉色av国产亚洲站长工具| 亚洲片人在线观看| 黄色女人牲交| 丝袜美腿诱惑在线| АⅤ资源中文在线天堂| 18禁观看日本| 亚洲国产看品久久| 宅男免费午夜| 久久中文字幕人妻熟女| 99国产精品一区二区蜜桃av| 丝袜人妻中文字幕| 成人国语在线视频| 成人欧美大片| 国产黄片美女视频| 2021天堂中文幕一二区在线观| 国产三级在线视频| 黄色女人牲交| 亚洲美女视频黄频| 亚洲精品国产精品久久久不卡| 18禁美女被吸乳视频| 99国产精品一区二区蜜桃av| 99精品久久久久人妻精品| 欧美性长视频在线观看| 手机成人av网站| 不卡一级毛片| 亚洲人成网站在线播放欧美日韩| 一边摸一边做爽爽视频免费| 久久人妻福利社区极品人妻图片| 国产一区二区三区在线臀色熟女| 国产97色在线日韩免费| 欧美乱色亚洲激情| 国产精品久久久久久亚洲av鲁大| 国产精品九九99| 最近最新中文字幕大全免费视频| 人人妻人人澡欧美一区二区| 久久久国产精品麻豆| 在线观看免费日韩欧美大片| 91大片在线观看| 日本黄大片高清| 亚洲国产高清在线一区二区三| 日韩中文字幕欧美一区二区| 1024香蕉在线观看| av超薄肉色丝袜交足视频| 日韩欧美国产在线观看| 熟女电影av网| 男女床上黄色一级片免费看| 香蕉国产在线看| 一级毛片精品| 国产野战对白在线观看| 啪啪无遮挡十八禁网站| 观看免费一级毛片| 国产一区二区三区视频了| 国产亚洲欧美在线一区二区| 两人在一起打扑克的视频| 国产伦一二天堂av在线观看| 亚洲成人中文字幕在线播放| a级毛片在线看网站| 欧美中文综合在线视频| 国产精品久久久久久久电影 | 桃色一区二区三区在线观看| 在线十欧美十亚洲十日本专区| 国产免费av片在线观看野外av| 成年人黄色毛片网站| 成人精品一区二区免费| 2021天堂中文幕一二区在线观| 欧美zozozo另类| 亚洲欧洲精品一区二区精品久久久| 在线观看www视频免费| 一个人免费在线观看的高清视频| 成人国语在线视频| 变态另类成人亚洲欧美熟女| 色综合亚洲欧美另类图片| 国产熟女午夜一区二区三区| 搡老熟女国产l中国老女人| 午夜福利欧美成人| www.www免费av| 免费观看精品视频网站| 亚洲成人精品中文字幕电影| 欧美zozozo另类| 久久久精品大字幕| 久久国产乱子伦精品免费另类| a级毛片在线看网站| 亚洲在线自拍视频| 天天躁夜夜躁狠狠躁躁| 日韩欧美免费精品| 亚洲第一电影网av| 亚洲一区二区三区色噜噜| 国产亚洲欧美在线一区二区| www国产在线视频色| 免费无遮挡裸体视频| 亚洲av成人av| 黄色片一级片一级黄色片| 搞女人的毛片| 国产精品久久久久久精品电影| 男人的好看免费观看在线视频 | 1024香蕉在线观看| 精品久久久久久久毛片微露脸| 亚洲成a人片在线一区二区| 成人一区二区视频在线观看| 999久久久精品免费观看国产| 久久久精品欧美日韩精品| 精品日产1卡2卡| 一边摸一边做爽爽视频免费| 国产精品,欧美在线| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻人人看人人澡| 少妇人妻一区二区三区视频| 久久久久九九精品影院| 色综合婷婷激情| 美女大奶头视频| 一本一本综合久久| 又黄又粗又硬又大视频| 午夜a级毛片| 后天国语完整版免费观看| 国产成+人综合+亚洲专区| 久久精品aⅴ一区二区三区四区| 18禁黄网站禁片午夜丰满| 色老头精品视频在线观看| 亚洲av成人av| 特大巨黑吊av在线直播| 在线观看66精品国产| 女生性感内裤真人,穿戴方法视频| 欧美丝袜亚洲另类 | 一级毛片精品| 午夜福利欧美成人| 国产真实乱freesex| 成人国产综合亚洲| 变态另类丝袜制服| 国产成人av教育| av福利片在线观看| 亚洲av成人av| 99久久综合精品五月天人人| 人妻夜夜爽99麻豆av| 久久久久久久精品吃奶| 日韩大尺度精品在线看网址| 国产又色又爽无遮挡免费看| 好男人在线观看高清免费视频| 天天一区二区日本电影三级| 岛国视频午夜一区免费看| 97超级碰碰碰精品色视频在线观看| 精品不卡国产一区二区三区| a级毛片a级免费在线| 高清在线国产一区| 亚洲真实伦在线观看| 在线观看午夜福利视频| 国产亚洲精品av在线| 亚洲,欧美精品.| 免费看日本二区| 国产成人系列免费观看| 一本久久中文字幕| 中文资源天堂在线| 久久精品国产亚洲av香蕉五月| 一进一出抽搐动态| 一二三四在线观看免费中文在| 亚洲人成77777在线视频| 亚洲欧洲精品一区二区精品久久久| 成人国产一区最新在线观看| 午夜福利在线观看吧| 人人妻人人看人人澡| 国产免费av片在线观看野外av| 免费在线观看成人毛片| 欧美成人午夜精品| 亚洲狠狠婷婷综合久久图片| 国产片内射在线| 欧美+亚洲+日韩+国产| 国产精品 国内视频| 日日夜夜操网爽| 中文字幕人成人乱码亚洲影| 香蕉国产在线看| 在线十欧美十亚洲十日本专区| 亚洲精品国产精品久久久不卡| 美女扒开内裤让男人捅视频| 国产99白浆流出| 亚洲黑人精品在线| 一级毛片女人18水好多| 亚洲国产看品久久| 国产成人一区二区三区免费视频网站| 一二三四在线观看免费中文在| 中文字幕熟女人妻在线| 伦理电影免费视频| 亚洲美女黄片视频| 给我免费播放毛片高清在线观看| 久久久久免费精品人妻一区二区| 中文字幕人妻丝袜一区二区| 成人亚洲精品av一区二区| 大型黄色视频在线免费观看| 色精品久久人妻99蜜桃| 国产精品野战在线观看| 国产精品av视频在线免费观看| 三级毛片av免费| 日本成人三级电影网站| 欧美性猛交黑人性爽| 久久人妻av系列| 国产又色又爽无遮挡免费看| 热99re8久久精品国产| 亚洲熟女毛片儿| av视频在线观看入口| 亚洲av中文字字幕乱码综合| 国产精品久久久人人做人人爽| x7x7x7水蜜桃| 夜夜看夜夜爽夜夜摸| 欧美性猛交╳xxx乱大交人| www.熟女人妻精品国产| 波多野结衣高清无吗| 日本一二三区视频观看| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色毛片三级朝国网站| 美女午夜性视频免费| 最近在线观看免费完整版| 欧美日韩精品网址| 午夜福利免费观看在线| 法律面前人人平等表现在哪些方面| 国产高清视频在线播放一区| 免费看美女性在线毛片视频| 国产精品一区二区免费欧美| 日韩 欧美 亚洲 中文字幕| 国产熟女午夜一区二区三区| 白带黄色成豆腐渣| 亚洲av日韩精品久久久久久密| 正在播放国产对白刺激| 2021天堂中文幕一二区在线观| 最近在线观看免费完整版| 亚洲av五月六月丁香网| or卡值多少钱| 99热这里只有是精品50| 欧美黑人精品巨大| 欧美中文日本在线观看视频| 亚洲精品中文字幕在线视频| 国产精品久久久久久人妻精品电影| 精品第一国产精品| 男女下面进入的视频免费午夜| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲一级av第二区| 91av网站免费观看| 国内精品久久久久精免费| 久久久久久人人人人人| 一个人观看的视频www高清免费观看 | 国产一区二区在线av高清观看| 在线观看免费午夜福利视频| 国产精品一区二区精品视频观看| 叶爱在线成人免费视频播放| 久久人妻av系列| 18禁观看日本| or卡值多少钱| 桃红色精品国产亚洲av| 欧美 亚洲 国产 日韩一| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 变态另类成人亚洲欧美熟女| 我要搜黄色片| 天堂av国产一区二区熟女人妻 | 给我免费播放毛片高清在线观看| 日韩欧美在线乱码| 亚洲激情在线av| 午夜成年电影在线免费观看| 美女大奶头视频| 很黄的视频免费| 国产亚洲av高清不卡| 亚洲片人在线观看| 桃红色精品国产亚洲av| 不卡av一区二区三区| 深夜精品福利| 精品欧美一区二区三区在线| 每晚都被弄得嗷嗷叫到高潮| 老鸭窝网址在线观看| 看黄色毛片网站| 香蕉av资源在线| 免费看日本二区| 中文亚洲av片在线观看爽| 在线观看美女被高潮喷水网站 | 色综合亚洲欧美另类图片| 午夜激情福利司机影院| 国产精品99久久99久久久不卡| 午夜福利免费观看在线| 日本三级黄在线观看| 人人妻人人澡欧美一区二区| 国模一区二区三区四区视频 | 啦啦啦观看免费观看视频高清| 精品电影一区二区在线| 1024视频免费在线观看| 欧美日韩国产亚洲二区| 中文字幕久久专区| 国产真人三级小视频在线观看| 毛片女人毛片| 免费在线观看视频国产中文字幕亚洲| 国产精品一及| 精品欧美一区二区三区在线| 大型黄色视频在线免费观看| 十八禁人妻一区二区| 三级男女做爰猛烈吃奶摸视频| 亚洲五月天丁香| 日本熟妇午夜| 岛国在线免费视频观看| 天天一区二区日本电影三级| 99国产综合亚洲精品| 国产伦在线观看视频一区| 我要搜黄色片| 亚洲va日本ⅴa欧美va伊人久久| 18禁美女被吸乳视频| 久久精品亚洲精品国产色婷小说| 精品国产乱码久久久久久男人| 亚洲国产日韩欧美精品在线观看 | 精品国产超薄肉色丝袜足j| 国产成人影院久久av| 亚洲av五月六月丁香网| 亚洲黑人精品在线| 欧美日韩精品网址| 麻豆av在线久日| av免费在线观看网站| 欧美成人性av电影在线观看| 久久精品亚洲精品国产色婷小说| 制服丝袜大香蕉在线| 亚洲最大成人中文| 51午夜福利影视在线观看| 国内精品一区二区在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av熟女| 欧美精品啪啪一区二区三区| 亚洲国产精品成人综合色| 激情在线观看视频在线高清| 男女视频在线观看网站免费 | 18美女黄网站色大片免费观看| 久久国产精品影院| av超薄肉色丝袜交足视频| 日本成人三级电影网站| 这个男人来自地球电影免费观看| 午夜激情av网站| 色精品久久人妻99蜜桃| 日本成人三级电影网站| 嫁个100分男人电影在线观看| 亚洲熟女毛片儿| 久9热在线精品视频| 97碰自拍视频| 国产熟女午夜一区二区三区| 久久久久久人人人人人| 亚洲人与动物交配视频| 男人舔奶头视频| 免费在线观看亚洲国产| 久久精品人妻少妇| 99久久精品国产亚洲精品| 亚洲国产精品999在线| 很黄的视频免费| 亚洲精品在线观看二区| 老司机午夜十八禁免费视频| 亚洲精品一区av在线观看| 免费看日本二区| 2021天堂中文幕一二区在线观| 老司机午夜福利在线观看视频| 中文字幕人成人乱码亚洲影| 久久久久久亚洲精品国产蜜桃av| 日韩欧美精品v在线| 蜜桃久久精品国产亚洲av| 色综合亚洲欧美另类图片| 91大片在线观看| 亚洲av成人av| 脱女人内裤的视频| 黄色视频不卡| 男男h啪啪无遮挡| videosex国产| 久久精品亚洲精品国产色婷小说| а√天堂www在线а√下载| 国语自产精品视频在线第100页| 又大又爽又粗| 99热6这里只有精品| 91字幕亚洲| 最新在线观看一区二区三区| 国产一区二区在线观看日韩 | 久久人人精品亚洲av| 人妻久久中文字幕网| 宅男免费午夜| 国产精品野战在线观看| 国内毛片毛片毛片毛片毛片| 国产亚洲精品av在线| 亚洲国产精品成人综合色| 国产精品免费视频内射| 亚洲五月婷婷丁香| 成人av一区二区三区在线看| 日本撒尿小便嘘嘘汇集6| 一a级毛片在线观看| 午夜久久久久精精品| 天堂动漫精品| 韩国av一区二区三区四区| 黄频高清免费视频| 久久国产精品影院| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁观看日本| 欧美黄色淫秽网站| 国产av一区二区精品久久| 人妻丰满熟妇av一区二区三区| 亚洲精品美女久久av网站| 一区二区三区国产精品乱码| 91av网站免费观看| 777久久人妻少妇嫩草av网站| 禁无遮挡网站| 欧美+亚洲+日韩+国产| 婷婷丁香在线五月| 免费电影在线观看免费观看| 淫妇啪啪啪对白视频| 亚洲熟妇中文字幕五十中出| netflix在线观看网站| 免费人成视频x8x8入口观看| 动漫黄色视频在线观看| 中文字幕精品亚洲无线码一区| 国产一区二区在线观看日韩 | 久久精品夜夜夜夜夜久久蜜豆 | 老司机在亚洲福利影院| 国产精华一区二区三区| 此物有八面人人有两片| 色综合欧美亚洲国产小说| 日韩欧美三级三区| 午夜日韩欧美国产| 亚洲黑人精品在线| 久久婷婷成人综合色麻豆|