• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單層和雙層二硫化鉬化學(xué)氣相沉積生長(zhǎng)的動(dòng)力學(xué)蒙特卡羅模擬研究

    2019-10-14 07:56:48陳帥高峻峰SRINIVASANBharathi張永偉
    物理化學(xué)學(xué)報(bào) 2019年10期
    關(guān)鍵詞:二硫化鉬蒙特卡羅單層

    陳帥,高峻峰,SRINIVASAN Bharathi M.,張永偉

    新加坡科技研究局高性能計(jì)算研究院,新加坡 138632

    1 Introduction

    Two-dimensional (2D) materials, such as graphene,phosphorene, transition metal dichalcogenides (TMDs), have attracted a great deal of attention due to their fascinating lattice structures and unusual physical properties1-4. 2D MoS2, a member in the TMD family, is a semiconductor with a large band gap, high on/off ratio and high mobility5-7, promising for many interesting electronic and energy applications. However, layer number of 2D MoS2can drastically change its physical properties. For example, monolayer MoS2 is a direct band gap semiconductor with a band gap of ~1.9 eV8; while bi-layer MoS2is an indirect band gap semiconductor with a reduced band gap of ~1.6 eV8. In addition, the change in layer number may also tune the charge mobility and photoelectric properties.Nowadays, monolayer and multilayer MoS2have been grown via chemical vapor deposition (CVD) experimentally9, but how to accurately and robustly control the number of layers remains a challenge. Clearly, addressing this issue would enable robust control of their physical properties and thus facilitate their applications9.

    Fabrication techniques, such as mechanical exfoliation9-11and liquid exfoliation12-14, have been frequently used to produce layered MoS2samples. However, these fabrication techniques are limited by their scalability and lack of precise control of layer number. CVD has the advantage of the controllable synthesis of large-area 2D MoS215-20, and is widely recognized as a superior synthesis technique. However, CVD is well-known for its notorious difficulty in extending across reactors in different laboratories. Often, subtle changes in reactor parameters and growth conditions may confound reproducibility. To address this challenge, it is highly desirable to develop a theoretical tool that is able to make insightful predictions on the growth of MoS2and provide useful guidelines to control CVD synthesis.

    We note that significant theoretical efforts have been made to understand the CVD growth of graphene21-34. However, only a few studies have been performed to model TMDs growth due to their more complex compound structures35-40. Recently, Ye et al.37established an analytic thermodynamic criterion for the vertical growth (bilayer) versus in-plane lateral growth(monolayer) of MoS2 with regard to the sizes of both layers, van der Waals (vdW) interaction energies, and edge energies of 2D layers, which provided useful guidelines for the growth of bilayer MoS2. However, the conditions to permit or prohibit the growth of bilayer MoS2remain unclear. Hence, it is highly desirable to develop a phase diagram which is able to delineate the permitted or prohibited growth regime of bilayer MoS2 in terms of growth temperature and adatom flux.

    Usually, the second layer of MoS2starts to nucleate when the first layer is sufficient large. Therefore, there is a need to develop a computational method that is able to reproduce the growth kinetics in large scale. It is well-known that kinetic Mote Carlo(kMC) method has the advantage of much longer time scale and larger length scale. Moreover, kMC simulations can be directly correlated with experimental growth conditions, such as growth temperature and adatom flux, to understand underlying growth mechanisms and predict growth phase diagrams. Hence, kMC simulations have been used to reproduce the experimental growth behaviors and further reveal the growth mechanism of 2D materials under different conditions, for example, the growth of monolayer graphene and monolayer TMDs38-40. However, a detailed kMC model that is able to describe the mono- and bilayer growth of MoS2, currently, is still unavailable.

    In this work, we aim to develop a kMC model to make insightful predictions on the mono- and bi-layer growth of MoS2.First, we proposed and formulated our kMC model of bilayer MoS2growth, and then employed the analytic thermodynamic criterion37to calibrate the kMC model. With the calibrated model, the size and morphology evolutions of bilayer MoS2at different growth temperatures and adatom fluxes were analyzed.Then, the conditions for the permitted or prohibited growth of the bilayer MoS2in terms of growth temperature and adatom flux were revealed, which match well with the experimental observations. Lastly, a phase diagram on the permitted or prohibited growth of the bilayer MoS2was predicted. The present study not only unveils the growth conditions for monoand bi-layer MoS2 growth, but also provides guidelines for controllable growth of MoS2with desired number of layers.

    2 Method

    Fig. 1 Schematic illustration of (a) the bilayer MoS2 model and (b)growth procedures at MoS2 edge.The growth starts from a kink nucleation at the zigzag edge and proceeds with kink propagation in kMC simulation. Mo atoms at layer 1, Mo atoms at layer 2, and all S atoms are represented by the orange, purple and white spheres,respectively. Color online.

    Our kMC simulation model is illustrated in Fig. 1a, in which hexagonal MoS2lattice (lattice constant a = 0.318 nm) with bilayer structures grown on a substrate is used41. An initial triangular domain of the first layer (layer 1) with an edge length of L1and a smaller triangular domain of the second layer (layer 2) with an edge length of L2are introduced at the center of the substrate surface. Starting from the bilayer nucleus, the growth of MoS2is made by the attachments of molybdenum and sulfur adatoms to the edges of both the layer 1 and layer 2. To form the triangular MoS2 with S-terminated zigzag edge15,18, in our simulation, we assume sulfur source is sufficient. Once the molybdenum adatom is attached to the edge, its neighboring sulfur sites are quickly filled. Our model is also applicable to simulate the conditions when molybdenum source is sufficient.In that case, once the sulfur adatom is attached to the edge, its neighboring molybdenum sites are quickly filled.

    Ye et al.37reported that the growth of the MoS2is governed by the distribution of the adatom concentration. The growth of layer 1 is permitted when the adatom concentration on the substrate far from the edge of layer 1 (C0) is larger than that at the edge of layer 1 (C1-). However, if C0 is not larger than C1-,the growth of layer 1 is prohibited due to the lack of feeding stock. Similarly, the growth of layer 2 is permitted when the adatom concentration on layer 1 far from the edge of layer 2(C1+) is larger than that at the edge of layer 2 (C2). Otherwise,the growth of layer 2 is prohibited. In our simulations, we assume that the Schwoebel barrier is absent. Therefore, the adatom concentration at the edge of layer 1 (C1-) is equal to the adatom concentration on layer 1 far from the edge of layer 2(C1+), i.e., C1-= C1+= C1. Meanwhile, the occurrence for attachment to the edge is also determined by the energy barrier,whose rate can be calculated by the transition state theory.Therefore, we proposed the following occurrence rate for the growth of layer 1 when C0 > C1 and layer 2 when C1 > C2.

    The subscript n = 1, 2 refers to the layer 1 and layer 2,respectively. If the adatom concentration Cn-1≤ Cn, the occurrence rate Pn= 0. v is the order of the frequency of atomic vibration (1012s-1). En is the energy barrier for the attachment to the edge of layer n. It has been reported that the attachment of W adatom is mainly determined by the bond energy of W-Se (2.38 eV), which is used to simulate the growth of WSe2on different substrates38. Therefore, in our simulations, we assume E1= E2.kbis the Boltzmann constant, and T is the temperature.

    Based on Ye et al.’s work37, the adatom concentrations on the edge of layer 1 and layer 2 can be expressed as

    Crefis the reference adatom concentration, which is taken to be Cref= F × Ω × τ. F is the rate of adatom supply that accounts for the precursor decomposition and adsorption rate. It is a dimensionless number, often called adatom flux. Ω is the concentration of atomic sites in the 2D layer (1020m-2), and τ is the effective lifetime of adatoms due to desorption.ε1and ε2are the binding energies per unit area of monolayer and bilayer,respectively, accounting for both in-plane bonding within the formed layers and across-layer vdW interactions. γnis the edge energy per unit length, and η is the structural parameter determined by the shape of the domain. L1 and L2 are the edge lengths of layer 1 and layer 2, respectively.

    Based on the adatom concentration at the edge of layer 1, we proposed the adatom concentration on the substrate far from the edge of layer 1 to be

    kFis a parameter which is determined by the system and kF< 1(more detailed discussion on this is given in Sections 3.1 and 3.3). L0is the edge length of the nucleus. Here, the adatom concentration on the substrate far from the edge of layer 1 should be lower than that required to induce new nucleation. If there exists a Schwoebel barrier at the edge of layer 1, the adatom concentration at the edge of layer 1 on substrate (C1-) will be not equal to the adatom concentration on layer 1 far from the edge of layer 2 (C1+), i.e. C1-> C1+or C1-< C1+. In calibrating our kMC model with the analytic thermodynamic criterion, the parameter kFcould be tuned to change the value of C0to maintain the relative dominance between the adatom concentration differences for layer 1 and layer 2, i.e. C0- C1-and C1+- C2.Therefore, the assumption that the Schwoebel barrier is absent will only change the value of kF but will not affect the conclusions.

    It has been reported that the morphology of MoS2 domain in experiments always maintains a triangular shape with compact edges15-17. The underlying mechanism to achieve compact edges has been unveiled as fast kink propagation after kink nucleation28. Based on the above analyses, we proposed the following growth process of a triangular shape with compact edges in our simulations: the growth starts from a kink nucleation at the zigzag edge and proceeds with kink propagation (cf. Fig. 1b). The kink is nucleated by the initial attachments of adatoms to the zigzag edge, while the kink is propagated by the further attachments of adatoms to the active armchair site near the kink. It was previously reported that the difference in the energy barriers for the attachment to the zigzag edge and the armchair edge was ~0.3 eV for graphene by firstprinciples calculations42. In addition, the difference in the energy barriers for the attachment to the zigzag edge and the armchair edge was 0.23 eV for WSe2by first-principles calculations43. Therefore, in our kMC simulations, the difference in the energy barrier between the kink nucleation EK-Nand the kink propagation EK-Pis chosen as EK-N- EK-P= 0.3 eV. Thus, the overall growth rates are determined by the kink nucleation EK-N. The value of EK-Ncan be deduced from the experimental growth rate (more detailed discussion on this is given in Section 3.1). Because the energy barrier for the attachment of adatoms to the armchair edge is 0.2-0.3 eV lower than that to the zigzag edge42,43, the fast growing armchair edges will lose out to the slow growing zigzag edges. The compact triangular MoS2domains observed in experiments also indicate that the zigzag edge is dominated15-17. In addition, many experimental and simulation studies have indicated that S source is always sufficient, resulting in the formation of S-terminated zigzag edge15,18. Therefore, in our simulation, S-terminated zigzag edge is used. This kMC model can also be applied to other edges, such as Mo-terminated zigzag edge or armchair edge. In this scenario, the energy barrier of the kink nucleation should be chosen according to the edge type and edge structure.

    3 Results and discussion

    3.1 KMC model formulation and calibration based on analytic thermodynamic criterion

    In Section 2, we proposed the occurrence rate for the growth of layer 1 and layer 2 in our kMC model. In this section, we made efforts to obtain the values of parameters in Eqs. 1 to 4.Fortunately, Ye et al.’s37reported the values of most parameters in our kMC model when proposing their analytic thermodynamic criterion, such as the adatom flux (F = 1.0 × 10-3),concentration of atomic sites Ω = 1020m-2, effective lifetime of adatoms (τ = 10 s), growth temperature (T = 1000 K), binding energies (Δε = 500 meV·nm-2, ε1 = 20Δε, ε2 = 2ε1 + Δε),structural parameter (η = 2 3 for an equilateral triangle), and edge energy (γ1= γ2= 10 eV·nm-1). Up to now, the unknown parameters in our kMC model are the edge length of nucleus(L0), initial edge lengths of layer 1 and layer 2 (L1and L2), energy barrier of kink nucleation (EK-N) and system parameter (kF).

    Xue et al.44studied the initial nucleation of MoxSy clusters on the Au(111) surface by using first-principles calculations, and reported that the 2D three-atom-thick layer structures could be stabilized only after the number of Mo atoms exceeded 12. Since the edge length of MoS2flake is ~2 nm when the number of Mo atoms is 12, in our kMC simulation, the value of L0is set to be 2 nm. In Ye et al.’s37study, the initial edge length of layer 2 was fixed to be 50 nm and layer 1 was changed from 80 to 130 nm(cf. Fig. 2d). To calibrate our kMC Model based on Ye et al.’s analytic thermodynamic criterion37, the initial edge length of layer 2 in our kMC model was also set to be 50 nm and layer 1 was varied from 80 to 130 nm (cf. Fig. 2a to 2c).

    As above analyses, the growth occurs at layer 1 or layer 2 is governed by the adatom concentration difference (C0-C1versus C1-C2) and energy barrier of kink nucleation (EK-N), which can be described by Eq. 1 in our kMC model. When the above energetic data (binding energy, edge energy, etc.) and structure parameters (edge lengths of nucleus, layer 1 and layer 2) are chosen, the growths of layer 1 and layer 2 are determined by the parameter (kF) and the energy barrier (EK-N). With these in hands,we carried out a series of kMC simulations by tuning the values of kFand EK-Nto compare the size evolutions in our simulations with those from Ye et al.’s calculations37.

    Fig. 2 Size evolution of layer 2 (L2) with different initial sizes of layer 1 (L1 = 80 nm, 90 nm, 100 nm, 110 nm, 120 nm and 130 nm) when(a) kF = 0.145, (b) kF = 0.155, and (c) kF = 0.165. (d) Size evolution of layer 2 with different initial sizes of layer 1 in Ye et al.’s 37 calculations based on analytic thermodynamic criterion. Copyright from Ref. 37.

    The results show that when the value of kFis 0.155 and the value of EK-N is 1.7 eV, the domain evolutions of layer 2 (cf. Fig.2b) with different initial sizes of layer 1 (L1= 80, 90, 100, 110,120, 130 nm) match well with those in Ye et al.’s calculations37(cf. Fig. 2d). This signifies that our kMC model with this set of parameters is capable to reproduce the growth of bilayer MoS2.When the initial edge length of layer 1 is 80 to 100 nm, the growth of layer 2 is permitted and its domain continuously increases from 50 to 80 nm. When the initial edge length of layer 1 is from 110 to 130 nm, however, the growth of layer 2 is prohibited after initial growth. This indicates that the growth rate of layer 2 strongly depends on the size of layer 1 (L1) for a given size of layer 2 (L2). The growth of layer 2 monotonically decreases with increasing the size of layer 1 (L1), and may even become prohibited at a maximum value of L1.

    In our kMC simulations, the growth of layer 2 is determined by the competition between the adatom concentration difference of layer 1 and layer 2 (C0-C1versus C1-C2). When the value of kF decreases to 0.145, the adatom concentration difference of layer 1 (C0-C1) is reduced because the value of C0 decreases (cf.Eq. 4). Therefore, the adatom concentration difference of layer 2(C1-C2) is relatively superior to that of layer 1 (C0-C1), leading to the acceleration on the growth of layer 2. Layer 2 continuously grows when the initial edge length of layer 1 is 80 to 130 nm (cf.Fig. 2a). When the value of kF increases to 0.165, the adatom concentration gradient of layer 1 is increased because the value of C0increases (cf. Eq. 4). In this case, the adatom concentration difference of layer 2 (C1-C2) is relatively inferior to that of layer 1 (C0-C1), resulting in the prohibition of the growth of layer 2.The growth of layer 2 is prohibited when the initial edge length of layer 1 is from 90 to 130 nm (cf. Fig. 2c).

    Clearly, the growth competition between layer 1 and layer 2 is determined by the parameter (kF), not the energy barrier of kink nucleation (EK-N). The value of EK-Nonly changes the overall time line, and thus does not affect the conclusion on whether the growth occurs at layer 1 or layer 2. The overall growth time increased with increasing the value of EK-N. In our kMC simulations, the time line when EK-Nis 1.7 eV (cf. Fig. 2b) agrees well with that of Ye et al.’s calculations37(cf. Fig. 2d).Therefore, in the following simulations, the value of EK-Nis fixed at 1.7 eV and the value of kFis set to 0.155 when the adatom flux is 1.0 × 10-3.

    3.2 Morphology evolution of bilayer MoS2 in growth process

    In Section 3.1, the size evolutions of layer 2 (L2) with different initial sizes of layer 1 (L1 = 80 nm, 90 nm, 100 nm, 110 nm, 120 nm and 130 nm) were analyzed and calibrated by Ye et al.’s calculations37. As a result, our kMC model with this set of parameters is capable to reproduce the growth of bilayer MoS2.In this section, more detailed analyses on the morphology evolutions of both layer 1 and layer 2 were carried out. The morphology evolutions of the bilayer MoS2, when the initial size of layer 1 is 80 nm and 130 nm, are shown in Fig. 3a, b,separately. In the whole growth processes of bilayer MoS2, the morphologies of layer 1 and layer 2 maintain triangular shapes with compact edges, which is consistent with the kinknucleation-propagation mechanism in our kMC model. The evolutions on the sizes of the triangles marked in Fig. 3a, b indicate the effect of the initial sizes on the growth of bilayer MoS2.

    Fig. 3 Size and morphology evolutions of bilayer MoS2 growth processes when the initial size of layer 2 is 50 nm and that of layer 1 is (a) 80 nm and (b) 130 nm.Orange and purple domains represent layer 1 and layer 2, respectively. Color online.

    Fig. 3a shows that layer 1 grows dramatically from 80 to 259 nm with increasing the time from 0 to 2.4 s. Together with the growth of layer 1, layer 2 continuously increases from 50 nm to 80 nm, which indicates that the growth of layer 2 is permitted.This is corresponding to the experimental fabrication of bilayer MoS2. When the initial size of layer 1 is 130 nm, however, it exhibits an opposite trend for layer 2. When layer 1 increases from 130 to 259 nm with the time increasing from 0 to 1.6 s,layer 2 grows only slightly, from 50 to 51 nm initially from 0 to 0.4 s and then ceased to grow after 0.4 s. This is corresponding to the experimental synthesis of monolayer MoS2.

    3.3 Permitted or prohibited growth affected by growth temperature and adatom flux

    For the CVD synthesis method, subtle changes in the growth conditions may cause a huge difference in the growth of MoS2 domain. To verify the robustness of our kMC model, more simulations with varying growth temperatures and adatom fluxes were carried out. The size evolutions of layer 2 at different growth temperatures (950, 975, 1000, 1025 and 1050 K) with initial layer 1 of 100 nm are shown in Fig. 4a. The results indicate that an increase in growth temperature promotes the growth of layer 2. The growth of layer 2 is permitted when the growth temperature is high (from 1000 to 1050 K), while the growth of layer 2 is prohibited when the growth temperature is low (from 950 to 975 K). These simulation results match well with Ye et al.’s experimental observations37, where only monolayer MoS2 was synthesized at the growth temperature of 973 K (cf. Fig. 4c); second layer of MoS2was formed at some places on top of the first layer when the growth temperature increased to 1023 K; and a complete bilayer MoS2was fabricated when the growth temperature further increased to 1073 K.

    Experimental results37shown in Fig. 4d indicate that the adatom flux has larger influence on the adatom concentration gradient of layer 1 than that of layer 2. With decreasing the adatom flux, the adatom concentration gradient of layer 1 decreases more dramatically than that of layer 2. Therefore, in our simulations, the value of kFis tuned to simulate the variation of the relative dominance between the adatom concentration gradient of layer 1 and that of layer 2 with the adatom flux. In the following simulations, the adatom flux F decreases from 1.8 ×10-3to 0.6 × 10-3, and the value of kFis assumed to linearly decrease with decreasing the flux F (kF = 0.145 + k × F, k = 10).The size evolutions of layer 2 at different adatom fluxes (0.6 ×10-3, 1.0 × 10-3, 1.4 × 10-3and 1.8 × 10-3) when the initial size of layer 1 is 100 nm are shown in Fig. 4b. The simulation results indicate that the decrease of the adatom flux accelerates the growth of layer 2. The growth of layer 2 is prohibited when the adatom flux is high (1.4 × 10-3to 1.8 × 10-3), while the growth of layer 2 is permitted when the adatom flux is low (0.6 × 10-3to 1.0 × 10-3). These simulation results also match well with Ye et al.’s experimental observations37. They discovered that at the Ar gas flow rate of 150 standard cubic centimeter per minute(sccm), only monolayer MoS2was synthesized (cf. Fig. 4d).When the Ar gas flow rate decreased to 70 sccm, however, layer 2 was formed at some positions on top of layer 1. When the Ar flow rate further decreased to 20 sccm, a complete bilayer MoS2was fabricated. These comparisons between our simulation results and Ye et al.’s experiments37further verify that our kMC model is capable to reproduce the CVD growth of monolayer and bilayer MoS2.

    3.4 Phase diagram on permitted or prohibited growth of bilayer MoS2

    Fig. 4 Size evolution of layer 2 at (a) different growth temperatures (950, 975, 1000, 1025 and 1050 K) and(b) different adatom fluxes (0.6 × 10-3, 1.0 × 10-3, 1.4 × 10-3 and 1.8 × 10-3). Experimental observations of MoS2 layers at (c) different growth temperatures (973, 1023 and 1073 K) and (d) different flow rates of Ar gas (150, 70 and 20 sccm).Copyright from Ref. 37.

    Fig. 5 Phase diagram on permitted or prohibited growth of bilayer MoS2 with varying growth temperature (950, 975,1000, 1025 and 1050 K) and adatom flux (0.2 × 10-3,0.6 × 10-3, 1.0 × 10-3, 1.4 × 10-3 and 1.8 × 10-3).

    To further provide guideline to the experimental synthesis of MoS2with desired number of layers, a phase diagram with varying growth temperatures and adatom fluxes is produced in Fig. 5. The red symbol “×” denotes the prohibited growth of layer 2 at the corresponding growth temperature and adatom flux, while the green symbol “○” denotes the permitted growth of layer 2 at the corresponding experimental condition. For example, at the growth temperature of 950 K, MoS2 always grows as monolayer. When the growth temperature increases to 1000 K, either monolayer or bilayer MoS2can be synthesized by controlling the adatom flux (monolayer: 1.4 × 10-3to 1.8 × 10-3,bilayer: 0.2 × 10-3to 1.0 × 10-3). If the growth temperature is even higher (1025 or 1050 K), MoS2 always grows in bilayer form without the need to adjust the adatom flux.

    To unveil the underlying mechanism that the growth of bilayer MoS2is promoted by the increase of growth temperature or the decrease of adatom flux, variations of the adatom concentrations C1and C2with time at different growth temperatures (975 and 1000 K) and different adatom fluxes (1.0 × 10-3and 0.6 × 10-3)were further analyzed and plotted in Fig. 6. Fig. 6a indicates that the adatom concentration C1is larger than C2initially at both 975 K and 1000 K, promoting the growth of bilayer MoS2. Then,both the adatom concentration C1and C2decreased as the bilayer MoS2grew. The difference between the adatom concentration C1 (blue rhombus) and C2 (blue triangle) decreased drastically to zero at the growth temperature of 975 K, prohibiting the growth of bilayer MoS2. When the temperature increased to 1000 K,however, the difference between the adatom concentration C1(red rhombus) and C2(red triangle) maintained constant after 1 s, permitting the growth of bilayer MoS2. Hence, the increase of temperature enables the adatom concentration C2to decrease accordingly with the adatom concentration C1, resulting in a consistent difference in adatom concentration to promote the growth of bilayer MoS2. This is the underlying mechanism that the growth of bilayer MoS2can be promoted by the increase of temperature. Similarly, the decrease of adatom flux from 1.0 ×10-3(blue curves in Fig. 6a) to 0.6 × 10-3(blue curve in Fig. 6b)lowers the value of kF, resulting in the decrease of C0. Then, the decrease of C0 lowers the concentration gradient of layer 1,decelerating the growth of layer 1. Furthermore, the decelerated growth of layer 1 reduces the difference between the adatom concentration C1(blue rhombus) and C2(blue triangle) to zero,permitting the growth of bilayer MoS2.

    Fig. 6 Variations of adatom concentrations C1 and C2 with time (a) when the growth temperature is 975 K and 1000 K and the adatom flux is 1.0 × 10-3, and (b) when the growth temperatures is 975 K and the adatom flux is 0.6 × 10-3. Color online.

    Compared with Ye et al.’s research37, our work has the following contributions: We presented a new kinetical Monte Carlo model for the CVD growth of MoS2 and calibrated the model by using existing thermodynamic models and experimental results. We revealed the underlying mechanism that the growth of bilayer MoS2can be promoted by the increase of growth temperature or the decrease of adatom flux.Specifically, the growth temperature enables the adatom concentration C2 to decrease with the adatom concentration C1,resulting in a consistent adatom concentration difference to promote the growth of bilayer MoS2; while the decrease of adatom flux decelerated the difference between the adatom concentration C1and C2to zero, permitting the growth of bilayer MoS2. Importantly, we presented a phase diagram (cf. Fig. 5) in the growth temperature and adatom flux space to predict the growth of bilayer MoS2, which may guide the experimental CVD fabrication of mono- and bi-layer MoS2.

    4 Conclusions

    In this work, we developed a kMC model to study the CVD growth kinetics and underlying mechanisms of mono- and bilayer MoS2. First, we formulated and calibrated our kMC model by an analytic thermodynamic criterion37. With the calibrated model, we successfully reproduced the mono- and bi-layer growth of MoS2under different growth conditions. We found that the growth rate of layer 2 strongly depends on the size of layer 1 and monotonically decreases with increasing the size of layer 1, and may even become prohibited at a maximum size of layer 1. Then, the size and morphology evolutions of the bilayer MoS2growth processes were analyzed. In the whole growth processes of bilayer MoS2, the morphologies of layer 1 and layer 2 maintained triangular shapes with compact edges.Furthermore, the permitted or prohibited growth of bilayer MoS2 in terms of growth temperature and adatom flux was analyzed.The increase of the growth temperature or the decrease of the adatom flux promotes the growth of layer 2, which agrees well with experimental observation37. Lastly, a phase diagram on permitted or prohibited growth of bilayer MoS2in terms of growth temperature and adatom flux was predicted. The underlying mechanism that the growth of bilayer MoS2can be promoted by the increase of growth temperature or the decrease of adatom flux was further revealed. Hence, our study here not only unveils the conditions of the mono- and bi-layer growth of MoS2, but also provides guidelines for the controllable growth of MoS2with desired number of layers.

    猜你喜歡
    二硫化鉬蒙特卡羅單層
    二維四角TiC單層片上的析氫反應(yīng)研究
    分子催化(2022年1期)2022-11-02 07:10:16
    二硫化鉬基異質(zhì)結(jié)催化劑可見(jiàn)光降解有機(jī)污染物的研究進(jìn)展
    熱壓法制備二硫化鉬陶瓷靶材工藝研究
    基于PLC控制的立式單層包帶機(jī)的應(yīng)用
    電子制作(2019年15期)2019-08-27 01:12:04
    利用蒙特卡羅方法求解二重積分
    二硫化鉬改性鋁合金活塞微弧氧化膜層的研究
    單層小波分解下圖像行列壓縮感知選擇算法
    新型單層布置汽輪發(fā)電機(jī)的研制
    鋁合金微弧氧化制備含二硫化鉬的減磨膜層
    探討蒙特卡羅方法在解微分方程邊值問(wèn)題中的應(yīng)用
    国内毛片毛片毛片毛片毛片| 老熟妇乱子伦视频在线观看| 国产成人啪精品午夜网站| 中文欧美无线码| 性高湖久久久久久久久免费观看| 18禁国产床啪视频网站| 亚洲 国产 在线| 久热爱精品视频在线9| 久久久久网色| 我要看黄色一级片免费的| 真人做人爱边吃奶动态| www.精华液| 日韩有码中文字幕| 日韩熟女老妇一区二区性免费视频| 午夜福利,免费看| 亚洲 国产 在线| 国产精品久久久久久精品古装| 欧美日韩国产mv在线观看视频| 我的亚洲天堂| 亚洲情色 制服丝袜| 国产精品一区二区在线不卡| 在线播放国产精品三级| 国产精品美女特级片免费视频播放器 | 国产日韩一区二区三区精品不卡| 女警被强在线播放| 后天国语完整版免费观看| 别揉我奶头~嗯~啊~动态视频| 亚洲精品中文字幕一二三四区 | 亚洲免费av在线视频| 最近最新免费中文字幕在线| 日韩欧美免费精品| 国产免费现黄频在线看| 日本黄色日本黄色录像| a级片在线免费高清观看视频| 国产淫语在线视频| 好男人电影高清在线观看| 丰满饥渴人妻一区二区三| 亚洲自偷自拍图片 自拍| 久久精品亚洲精品国产色婷小说| 国产高清国产精品国产三级| 亚洲精品国产一区二区精华液| 菩萨蛮人人尽说江南好唐韦庄| 精品国产一区二区久久| 久久性视频一级片| 91国产中文字幕| 亚洲黑人精品在线| 国产福利在线免费观看视频| 少妇被粗大的猛进出69影院| 999久久久精品免费观看国产| 亚洲专区国产一区二区| 在线十欧美十亚洲十日本专区| 日本av手机在线免费观看| 狂野欧美激情性xxxx| 国产精品秋霞免费鲁丝片| 精品国产乱码久久久久久小说| 女性生殖器流出的白浆| 午夜福利视频在线观看免费| 欧美成人午夜精品| 在线观看免费视频日本深夜| 国产成人啪精品午夜网站| 色综合欧美亚洲国产小说| 精品午夜福利视频在线观看一区 | aaaaa片日本免费| 免费观看a级毛片全部| 精品国产乱码久久久久久小说| 久久久久久久精品吃奶| 另类亚洲欧美激情| 国产日韩欧美亚洲二区| 国产无遮挡羞羞视频在线观看| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| 精品人妻1区二区| 激情视频va一区二区三区| 色播在线永久视频| 亚洲欧洲精品一区二区精品久久久| 久久久国产成人免费| 免费观看a级毛片全部| 欧美精品一区二区免费开放| 亚洲国产精品一区二区三区在线| 精品久久久久久久毛片微露脸| 欧美午夜高清在线| 日韩成人在线观看一区二区三区| 悠悠久久av| 老熟妇仑乱视频hdxx| 麻豆乱淫一区二区| 久久国产精品影院| 免费日韩欧美在线观看| 色播在线永久视频| 午夜福利视频精品| 日日夜夜操网爽| 高清在线国产一区| 亚洲精品乱久久久久久| 99热网站在线观看| 男人操女人黄网站| 一级,二级,三级黄色视频| 黄色视频,在线免费观看| 日韩熟女老妇一区二区性免费视频| 99国产综合亚洲精品| 亚洲国产精品一区二区三区在线| 久久中文字幕人妻熟女| 黑丝袜美女国产一区| 91成年电影在线观看| 十八禁网站网址无遮挡| 99在线人妻在线中文字幕 | 咕卡用的链子| 国产精品电影一区二区三区 | 亚洲成国产人片在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美乱妇无乱码| 1024视频免费在线观看| 免费观看人在逋| cao死你这个sao货| 在线看a的网站| 一本色道久久久久久精品综合| 不卡av一区二区三区| aaaaa片日本免费| 亚洲人成电影免费在线| 电影成人av| 日韩中文字幕视频在线看片| 国产av一区二区精品久久| 亚洲第一青青草原| 亚洲色图 男人天堂 中文字幕| 超碰97精品在线观看| 久久九九热精品免费| 色综合欧美亚洲国产小说| 黄色视频,在线免费观看| 麻豆国产av国片精品| 久久精品国产综合久久久| 午夜福利在线观看吧| 深夜精品福利| 国产高清激情床上av| 久久人人97超碰香蕉20202| 亚洲成人免费电影在线观看| 大香蕉久久成人网| 日韩一区二区三区影片| 国产人伦9x9x在线观看| 国产国语露脸激情在线看| 99国产精品一区二区蜜桃av | 欧美国产精品一级二级三级| 国产不卡av网站在线观看| 性高湖久久久久久久久免费观看| 国产精品99久久99久久久不卡| e午夜精品久久久久久久| 十八禁网站免费在线| 美女国产高潮福利片在线看| 国产av精品麻豆| 精品欧美一区二区三区在线| 一级毛片电影观看| 精品人妻1区二区| 久久ye,这里只有精品| 乱人伦中国视频| 国产一区二区 视频在线| 亚洲熟女精品中文字幕| cao死你这个sao货| 99香蕉大伊视频| 亚洲精品久久午夜乱码| 亚洲少妇的诱惑av| 天天操日日干夜夜撸| 国产精品欧美亚洲77777| 黑人巨大精品欧美一区二区mp4| 精品乱码久久久久久99久播| bbb黄色大片| 午夜福利视频精品| 99re在线观看精品视频| 久久精品亚洲av国产电影网| 丝袜美足系列| 一区二区日韩欧美中文字幕| 制服诱惑二区| 日韩免费高清中文字幕av| 极品人妻少妇av视频| 日韩一区二区三区影片| 黄色成人免费大全| 建设人人有责人人尽责人人享有的| 亚洲av成人一区二区三| 精品少妇久久久久久888优播| svipshipincom国产片| 亚洲欧洲日产国产| 国产日韩一区二区三区精品不卡| xxxhd国产人妻xxx| 最新美女视频免费是黄的| 欧美黄色淫秽网站| 国产黄频视频在线观看| 夜夜爽天天搞| 久久久久国内视频| 人人妻人人澡人人爽人人夜夜| 人妻 亚洲 视频| 久久狼人影院| 亚洲专区中文字幕在线| 9热在线视频观看99| 黄片播放在线免费| 久久人妻福利社区极品人妻图片| a级片在线免费高清观看视频| 亚洲成人国产一区在线观看| 日本黄色日本黄色录像| 老汉色av国产亚洲站长工具| 成在线人永久免费视频| 亚洲精品粉嫩美女一区| 国产欧美日韩综合在线一区二区| 免费日韩欧美在线观看| 99re6热这里在线精品视频| 亚洲人成电影观看| 丝袜美足系列| 日韩欧美一区二区三区在线观看 | 日韩熟女老妇一区二区性免费视频| 国产精品秋霞免费鲁丝片| 国产精品熟女久久久久浪| 男女无遮挡免费网站观看| a级毛片在线看网站| 正在播放国产对白刺激| 人人妻,人人澡人人爽秒播| 黄色视频,在线免费观看| 国产精品免费大片| 大型黄色视频在线免费观看| 又大又爽又粗| 精品久久久精品久久久| 国产精品免费一区二区三区在线 | 99热国产这里只有精品6| 99久久99久久久精品蜜桃| 国产精品久久久av美女十八| 十八禁人妻一区二区| 久久青草综合色| 天天影视国产精品| 久久久国产一区二区| 国产精品久久久久久人妻精品电影 | 久久 成人 亚洲| 国产免费视频播放在线视频| 亚洲色图综合在线观看| 亚洲专区字幕在线| 另类亚洲欧美激情| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费电影在线观看| 男女之事视频高清在线观看| 久久99热这里只频精品6学生| 极品少妇高潮喷水抽搐| 国产精品偷伦视频观看了| 国产aⅴ精品一区二区三区波| 久久久久久久国产电影| 天天操日日干夜夜撸| 黄色丝袜av网址大全| 男人舔女人的私密视频| 亚洲熟女毛片儿| 亚洲一码二码三码区别大吗| 日韩视频一区二区在线观看| 久久精品国产亚洲av高清一级| 精品亚洲成a人片在线观看| 十八禁网站免费在线| 99国产综合亚洲精品| 成人黄色视频免费在线看| 国产亚洲午夜精品一区二区久久| av电影中文网址| 热re99久久精品国产66热6| 18禁观看日本| 国产日韩欧美亚洲二区| 在线观看66精品国产| 久久久久久人人人人人| 亚洲视频免费观看视频| av网站免费在线观看视频| 18禁美女被吸乳视频| 亚洲av欧美aⅴ国产| av超薄肉色丝袜交足视频| 欧美日韩成人在线一区二区| √禁漫天堂资源中文www| 成人永久免费在线观看视频 | 91精品三级在线观看| 天堂中文最新版在线下载| 青草久久国产| 后天国语完整版免费观看| av有码第一页| 十八禁人妻一区二区| av又黄又爽大尺度在线免费看| 搡老乐熟女国产| 丝袜美足系列| 女同久久另类99精品国产91| 久久精品亚洲熟妇少妇任你| 97在线人人人人妻| 老汉色av国产亚洲站长工具| 精品熟女少妇八av免费久了| 久久久久精品国产欧美久久久| 国产日韩欧美视频二区| 精品国产超薄肉色丝袜足j| 亚洲第一青青草原| 免费在线观看黄色视频的| 人人澡人人妻人| av线在线观看网站| 99精品欧美一区二区三区四区| 一级,二级,三级黄色视频| 亚洲欧洲精品一区二区精品久久久| 手机成人av网站| 精品亚洲成国产av| 中文字幕人妻丝袜制服| 日韩一卡2卡3卡4卡2021年| 精品国产国语对白av| h视频一区二区三区| 中亚洲国语对白在线视频| 日本av手机在线免费观看| 999久久久国产精品视频| 亚洲成av片中文字幕在线观看| 国产精品美女特级片免费视频播放器 | 狠狠婷婷综合久久久久久88av| 久久久久视频综合| 国产亚洲av高清不卡| 性高湖久久久久久久久免费观看| 欧美成狂野欧美在线观看| 日日摸夜夜添夜夜添小说| 色在线成人网| 欧美乱妇无乱码| 亚洲成人手机| 乱人伦中国视频| 黄色视频,在线免费观看| 黄色丝袜av网址大全| 丰满饥渴人妻一区二区三| 99re6热这里在线精品视频| 国产成人精品无人区| 国产男女内射视频| 老司机亚洲免费影院| 丁香欧美五月| 黄色视频,在线免费观看| 一本色道久久久久久精品综合| 在线观看舔阴道视频| 韩国精品一区二区三区| 国产一区二区三区在线臀色熟女 | 亚洲精品久久成人aⅴ小说| 美女主播在线视频| 婷婷成人精品国产| 国产黄色免费在线视频| 手机成人av网站| 精品国产乱码久久久久久男人| 久久 成人 亚洲| 国产精品免费一区二区三区在线 | 制服人妻中文乱码| 国产不卡一卡二| aaaaa片日本免费| 成人特级黄色片久久久久久久 | 久久精品亚洲精品国产色婷小说| 99精国产麻豆久久婷婷| 黄片播放在线免费| 免费黄频网站在线观看国产| 麻豆国产av国片精品| 国产免费av片在线观看野外av| 精品免费久久久久久久清纯 | 亚洲成人免费av在线播放| 亚洲久久久国产精品| 免费看十八禁软件| 国产日韩一区二区三区精品不卡| 久久久久久人人人人人| 国产精品av久久久久免费| 国产国语露脸激情在线看| 啦啦啦在线免费观看视频4| 亚洲av成人不卡在线观看播放网| av超薄肉色丝袜交足视频| 757午夜福利合集在线观看| 成在线人永久免费视频| 国产成+人综合+亚洲专区| 久久精品人人爽人人爽视色| 一级毛片精品| 99在线人妻在线中文字幕 | 在线 av 中文字幕| 久久人妻福利社区极品人妻图片| 夜夜骑夜夜射夜夜干| 成人免费观看视频高清| 看免费av毛片| 18禁国产床啪视频网站| 中文字幕最新亚洲高清| 国产精品久久久人人做人人爽| 中文字幕色久视频| 国产亚洲精品第一综合不卡| 两人在一起打扑克的视频| 中文字幕制服av| 欧美乱妇无乱码| 一边摸一边做爽爽视频免费| 大香蕉久久成人网| 亚洲精品在线美女| 久久九九热精品免费| 精品少妇一区二区三区视频日本电影| 色精品久久人妻99蜜桃| 下体分泌物呈黄色| 男女下面插进去视频免费观看| 丝袜美足系列| 免费高清在线观看日韩| 咕卡用的链子| 香蕉丝袜av| 99九九在线精品视频| 19禁男女啪啪无遮挡网站| 欧美久久黑人一区二区| 欧美激情 高清一区二区三区| 欧美精品av麻豆av| 国产91精品成人一区二区三区 | 三上悠亚av全集在线观看| 国产成人影院久久av| 岛国在线观看网站| 男女下面插进去视频免费观看| 超碰成人久久| 女人久久www免费人成看片| 91精品国产国语对白视频| 99精品欧美一区二区三区四区| 黄片播放在线免费| 捣出白浆h1v1| 国产1区2区3区精品| 成年人免费黄色播放视频| 9色porny在线观看| av视频免费观看在线观看| 亚洲精品国产一区二区精华液| 亚洲第一av免费看| 午夜激情久久久久久久| 日韩 欧美 亚洲 中文字幕| 老司机福利观看| 丁香欧美五月| 亚洲avbb在线观看| 他把我摸到了高潮在线观看 | 国产免费现黄频在线看| 午夜91福利影院| 精品久久久久久久毛片微露脸| 亚洲av片天天在线观看| 黑丝袜美女国产一区| 国产1区2区3区精品| 91成年电影在线观看| 99国产精品99久久久久| 国产精品.久久久| 热re99久久国产66热| 亚洲性夜色夜夜综合| 国产在视频线精品| 18禁美女被吸乳视频| 在线 av 中文字幕| 99riav亚洲国产免费| 动漫黄色视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人巨大精品欧美一区二区蜜桃| 国产极品粉嫩免费观看在线| 欧美 日韩 精品 国产| bbb黄色大片| 精品亚洲乱码少妇综合久久| 精品午夜福利视频在线观看一区 | 亚洲国产欧美一区二区综合| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 欧美日韩精品网址| 51午夜福利影视在线观看| 欧美国产精品va在线观看不卡| 亚洲av第一区精品v没综合| av不卡在线播放| 69av精品久久久久久 | 久久精品亚洲av国产电影网| 成人av一区二区三区在线看| 99香蕉大伊视频| 男人舔女人的私密视频| 精品国产一区二区久久| 自线自在国产av| 日本撒尿小便嘘嘘汇集6| 新久久久久国产一级毛片| 欧美成人免费av一区二区三区 | 捣出白浆h1v1| 搡老熟女国产l中国老女人| 五月开心婷婷网| 精品第一国产精品| 国产高清激情床上av| 亚洲精品美女久久久久99蜜臀| 免费观看人在逋| 免费在线观看视频国产中文字幕亚洲| 性高湖久久久久久久久免费观看| 亚洲综合色网址| 久久久精品94久久精品| 波多野结衣av一区二区av| 一区二区av电影网| 三上悠亚av全集在线观看| 免费观看a级毛片全部| 精品一区二区三区视频在线观看免费 | 欧美老熟妇乱子伦牲交| 欧美中文综合在线视频| 亚洲精品中文字幕在线视频| 男女免费视频国产| 99久久99久久久精品蜜桃| 在线天堂中文资源库| 亚洲欧洲精品一区二区精品久久久| 免费少妇av软件| 国产麻豆69| 久久久久久久大尺度免费视频| 一区二区三区精品91| 日韩免费高清中文字幕av| 亚洲精品美女久久久久99蜜臀| 成人18禁高潮啪啪吃奶动态图| 一区福利在线观看| 午夜激情久久久久久久| 日韩欧美三级三区| 9191精品国产免费久久| 纵有疾风起免费观看全集完整版| 亚洲专区国产一区二区| 99热国产这里只有精品6| videos熟女内射| 亚洲欧洲日产国产| 久久久久精品人妻al黑| 我要看黄色一级片免费的| 1024视频免费在线观看| 亚洲成人免费电影在线观看| 国产三级黄色录像| 热99re8久久精品国产| 水蜜桃什么品种好| 90打野战视频偷拍视频| 亚洲色图综合在线观看| 午夜福利,免费看| 黑人猛操日本美女一级片| 久久国产精品男人的天堂亚洲| 欧美乱妇无乱码| 在线观看免费高清a一片| 日韩三级视频一区二区三区| 最近最新中文字幕大全电影3 | 韩国精品一区二区三区| 欧美精品一区二区免费开放| 亚洲精品成人av观看孕妇| av网站免费在线观看视频| 手机成人av网站| 日韩人妻精品一区2区三区| 免费在线观看视频国产中文字幕亚洲| 久久久国产精品麻豆| 国产成人av激情在线播放| 日韩欧美一区视频在线观看| 日韩大片免费观看网站| videos熟女内射| 精品久久久久久电影网| 三上悠亚av全集在线观看| 久久香蕉激情| 免费在线观看影片大全网站| 欧美乱妇无乱码| 欧美亚洲日本最大视频资源| 久9热在线精品视频| 丁香六月天网| 国产高清国产精品国产三级| 亚洲av日韩精品久久久久久密| a级毛片黄视频| 69精品国产乱码久久久| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线不卡| 成在线人永久免费视频| 中文亚洲av片在线观看爽 | 久久99热这里只频精品6学生| 欧美激情高清一区二区三区| 又紧又爽又黄一区二区| 99热国产这里只有精品6| 久久精品熟女亚洲av麻豆精品| av国产精品久久久久影院| 久久99一区二区三区| av免费在线观看网站| 精品熟女少妇八av免费久了| 国产精品香港三级国产av潘金莲| √禁漫天堂资源中文www| 亚洲中文av在线| 国产成+人综合+亚洲专区| 最近最新中文字幕大全免费视频| 水蜜桃什么品种好| 别揉我奶头~嗯~啊~动态视频| 国产成人系列免费观看| 9色porny在线观看| 免费观看人在逋| 一边摸一边做爽爽视频免费| 亚洲国产av新网站| 精品亚洲成a人片在线观看| 18禁裸乳无遮挡动漫免费视频| 日韩欧美一区二区三区在线观看 | 丰满人妻熟妇乱又伦精品不卡| 宅男免费午夜| 夜夜骑夜夜射夜夜干| 欧美精品一区二区免费开放| 国产又爽黄色视频| 亚洲 欧美一区二区三区| 在线看a的网站| 老汉色∧v一级毛片| 久久精品国产99精品国产亚洲性色 | 捣出白浆h1v1| 一边摸一边抽搐一进一出视频| 日本一区二区免费在线视频| 另类亚洲欧美激情| 99九九在线精品视频| 亚洲五月婷婷丁香| 91成人精品电影| 午夜成年电影在线免费观看| 国产精品一区二区在线观看99| 日韩一区二区三区影片| 桃花免费在线播放| 国产91精品成人一区二区三区 | 亚洲一区二区三区欧美精品| 黑人巨大精品欧美一区二区蜜桃| 搡老乐熟女国产| 中文字幕另类日韩欧美亚洲嫩草| 国产无遮挡羞羞视频在线观看| 国产成人欧美在线观看 | 国产黄频视频在线观看| 少妇精品久久久久久久| av国产精品久久久久影院| 人成视频在线观看免费观看| 国产欧美日韩一区二区三区在线| av一本久久久久| 国产男女超爽视频在线观看| 久久久久久免费高清国产稀缺| 夜夜夜夜夜久久久久| 精品少妇黑人巨大在线播放| 老司机亚洲免费影院| 国产精品美女特级片免费视频播放器 | 日韩一卡2卡3卡4卡2021年| 亚洲成人国产一区在线观看| 欧美 亚洲 国产 日韩一| 99香蕉大伊视频| 久久天堂一区二区三区四区| 一区二区三区乱码不卡18| 在线观看免费日韩欧美大片| 丝袜喷水一区| 啦啦啦在线免费观看视频4| 1024视频免费在线观看| 久久久国产欧美日韩av| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区黑人| 亚洲国产成人一精品久久久| 丰满人妻熟妇乱又伦精品不卡| 国内毛片毛片毛片毛片毛片| 国产日韩欧美视频二区| 欧美一级毛片孕妇| 欧美激情极品国产一区二区三区|