• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      復(fù)合益生菌發(fā)酵液的功能特性及對(duì)對(duì)蝦誘食效果

      2019-10-10 02:42:54馬青山
      關(guān)鍵詞:硝態(tài)發(fā)酵液酵母菌

      李 艷,馬青山

      復(fù)合益生菌發(fā)酵液的功能特性及對(duì)對(duì)蝦誘食效果

      李 艷1,馬青山2※

      (1. 中國(guó)海洋大學(xué)海水養(yǎng)殖教育部重點(diǎn)實(shí)驗(yàn)室,青島 266003;2. 中國(guó)海洋大學(xué)醫(yī)藥學(xué)院,青島 266003)

      為探求復(fù)合菌發(fā)酵液的多種功能,該試驗(yàn)選擇具有脫氮、產(chǎn)酶、抑菌等優(yōu)良性能的酵母菌、乳酸菌及芽孢桿菌各1株,利用已優(yōu)化的HJ培養(yǎng)基進(jìn)行共培養(yǎng),實(shí)時(shí)監(jiān)測(cè)發(fā)酵過程,分時(shí)段取樣,對(duì)復(fù)合菌發(fā)酵液的脫氮、產(chǎn)酶、抑菌、培藻及誘食等功能進(jìn)行研究。結(jié)果表明,釀酒酵母菌NJ-02、屎腸球菌SC-01及枯草芽孢桿菌M7-1能夠在HJ培養(yǎng)基中進(jìn)行共發(fā)酵,連續(xù)培養(yǎng)24 h后3株微生物活菌數(shù)量分別達(dá)到3.88×108、2.41×1010、5.38×109CFU/mL。復(fù)合菌發(fā)酵液的脫氮、培藻性能同復(fù)合菌中枯草芽孢桿菌M7-1的活菌數(shù)相關(guān)較大,發(fā)酵至16 h其降解亞硝態(tài)氮和培藻性能最為理想,亞硝態(tài)氮降解率為89%,并使小球藻葉綠素a質(zhì)量分?jǐn)?shù)提升49.6%。復(fù)合菌發(fā)酵液具有同枯草芽孢桿菌M7-1相當(dāng)?shù)漠a(chǎn)酶(蛋白酶、淀粉酶、纖維素酶)活性及同屎腸球菌SC-01相當(dāng)?shù)囊志ǜ比苎【┗钚?。?fù)合菌發(fā)酵液飼喂對(duì)蝦,誘食效果明顯好于對(duì)照組(<0.05),同化學(xué)誘食劑二甲基--丙酸噻亭(dimethyl-beta-propiothetin hydrochloride, DMPT)差異不顯著,其腸道中乳酸菌、酵母菌數(shù)目顯著高于對(duì)照組及化學(xué)誘食劑組(<0.05)。該研究所制備的脫氮、培藻、抑菌及誘食功能復(fù)合菌發(fā)酵液,為可持續(xù)生態(tài)水產(chǎn)養(yǎng)殖提供了新的微生物資源和技術(shù)方法。

      發(fā)酵;脫氮性能;產(chǎn)酶性能;抑菌性能;誘食效果

      0 引 言

      中國(guó)是全球最大的水產(chǎn)養(yǎng)殖國(guó)家,養(yǎng)殖水產(chǎn)品總量逐年遞增。據(jù)統(tǒng)計(jì),2018年總量已達(dá)4 906萬t,超過世界養(yǎng)殖水產(chǎn)品總量的70%[1]。水產(chǎn)養(yǎng)殖為中國(guó)優(yōu)質(zhì)蛋白質(zhì)的供給與農(nóng)業(yè)經(jīng)濟(jì)的發(fā)展及國(guó)家的糧食安全做出了巨大貢獻(xiàn)。

      目前,高密度、集約化已成為中國(guó)水產(chǎn)養(yǎng)殖的主要模式,這種模式以超量飼喂、人工增氧及抗生素的應(yīng)用為主要維持手段[2],然而,養(yǎng)殖密度的不斷提高極易打破池塘原有的生態(tài)平衡,過多的殘餌、糞便無法被池塘中的微生物分解利用,導(dǎo)致氨氮、亞硝態(tài)氮等有害物質(zhì)積累,影響?zhàn)B殖動(dòng)物的健康[3];其次,化藥及抗生素的應(yīng)用,導(dǎo)致有害耐藥細(xì)菌及有害藻類大量繁殖,同時(shí),藥殘問題也無時(shí)不刻的影響著養(yǎng)殖動(dòng)物的品質(zhì)及安全[4]。因此,重建養(yǎng)殖池塘生態(tài)平衡,恢復(fù)環(huán)境中的正常菌相、藻相,通過生物手段降低抗生素及化藥的應(yīng)用,乃是解決這一矛盾的主要辦法[5-6]。益生菌的應(yīng)用能夠促進(jìn)藻類繁殖、穩(wěn)定池塘生態(tài)系統(tǒng),降解池塘氨氮、亞硝態(tài)氮等有害物質(zhì),并且能夠提升水產(chǎn)動(dòng)物攝食量、維持腸道正常菌群、保障動(dòng)物腸道健康[7],可大幅度降低抗生素及化學(xué)藥物等的應(yīng)用。

      以往研究的益生菌主要側(cè)重于某一方面的功能或?qū)⒐δ苄跃圻M(jìn)行簡(jiǎn)單復(fù)配[8-10],研究結(jié)果表明,復(fù)配后益生菌功效會(huì)得到提升。Hao等[11]在對(duì)蝦飼料中按2:1:1比例添加混合益生菌D4、D7 及D15,劑量為 107CFU/g,同應(yīng)用單一益生菌相比,應(yīng)用復(fù)合益生菌后明顯提升了對(duì)蝦的生長(zhǎng)性能及抗病能力。但將上述脫氮、產(chǎn)酶、抑菌等功能的微生物進(jìn)行混合發(fā)酵,賦予一種發(fā)酵液多種功能,并進(jìn)一步研究復(fù)合發(fā)酵液的培養(yǎng)方法和用途的研究報(bào)道相對(duì)較少。多功能復(fù)合菌發(fā)酵可大幅度降低生產(chǎn)成本、簡(jiǎn)化應(yīng)用流程、拓寬應(yīng)用范圍[7],具有潛在的應(yīng)用價(jià)值,值得深入研究,益生菌的混合發(fā)酵涉及到功能性菌株活菌數(shù)的保障,菌株間的功效協(xié)作及協(xié)同效應(yīng)的驗(yàn)證等多方面內(nèi)容。本試驗(yàn)對(duì)復(fù)合菌發(fā)酵液的制備及其脫氮、培藻、抑菌及對(duì)蝦誘食、腸道菌群調(diào)控等方面進(jìn)行了研究,取得了較為滿意的結(jié)果。

      1 材料與方法

      1.1 備選菌種和培養(yǎng)基

      1.1.1 菌 種

      選取實(shí)驗(yàn)室保藏的脫氮、產(chǎn)酶、抑菌等性能優(yōu)良的酵母菌、乳酸菌及芽孢桿菌各1株(表1),初始發(fā)酵的菌株接種比例為1:1:1(活菌數(shù)均為107CFU/mL)。

      表1 復(fù)合菌發(fā)酵菌種信息

      復(fù)合菌發(fā)酵HJ培養(yǎng)基:可溶性淀粉10 g/L、蛋白胨10 g/L、葡萄糖10 g/L、磷酸二氫鉀2 g/L、氯化鈉1 g/L,蒸餾水1 000 mL。

      亞硝態(tài)氮降解培養(yǎng)基:丁二酸鈉4.72 g、亞硝酸鈉2.5 mg、磷酸二氫鉀1 g、七水硫酸鐵0.05 g、無水氯化鈣0.2 g、七水硫酸鎂1 g、蒸餾水1 000 mL。

      氨氮降解培養(yǎng)基:丁二酸鈉4.72 g、氯化銨2.5 mg、磷酸二氫鉀1 g、七水硫酸鐵0.05 g、無水氯化鈣0.2 g、七水硫酸鎂1 g、蒸餾水1 000 mL。

      小球藻培養(yǎng)基:糖蜜78%、硝酸銨5%、腐植酸鈉7%、硅酸鈉5%、過磷酸鈣3%、磷酸二氫鉀0.2%、硫酸錳0.6% 、硫酸銅0.25%、七水硫酸亞鐵0.5%、鉬酸銨0.1%、硼酸0.1%、硫酸鋅0.25%。

      LB肉湯培養(yǎng)基(Luria-Bertani Broth,LB)、乳酸細(xì)菌培養(yǎng)基(man rogosa sharpe medium,MRS)、酵母膏胨葡萄糖培養(yǎng)基(yeast extract peptone dextrose medium,YPD)、硫代硫酸鹽檸檬酸鹽膽鹽蔗糖瓊脂培養(yǎng)基(thiosulfate citrate bile salts sucrose agar culture medium,TCBS)購(gòu)于北京陸橋技術(shù)股份有限公司(北京,中國(guó))。培養(yǎng)基中所應(yīng)用的化學(xué)藥品購(gòu)于國(guó)藥集團(tuán)化學(xué)試劑有限公司(北京,中國(guó))。

      1.2 復(fù)合菌發(fā)酵及活菌計(jì)數(shù)

      將上述3株菌應(yīng)用HJ培養(yǎng)基分別培養(yǎng)后,取活菌數(shù)均為109CFU/mL的菌株種子液各10 mL,接入1 L的液體HJ培養(yǎng)基中進(jìn)行培養(yǎng),溫度35 ℃,搖床轉(zhuǎn)速120 r/min,起始pH值設(shè)置為7.2(本實(shí)驗(yàn)室試驗(yàn)優(yōu)化,適合于3株微生物共發(fā)酵),連續(xù)培養(yǎng)24 h。于0、4、8、12、16、20、24 h對(duì)混合菌液取樣并梯度稀釋,分別在YPD、MRS、LB固體培養(yǎng)基上進(jìn)行涂布,記錄酵母菌、乳酸菌及芽孢桿菌活菌數(shù)。

      1.3 復(fù)合菌發(fā)酵液脫氮試驗(yàn)

      在超凈臺(tái)中,將0、4、8、12、16、20、24 h的復(fù)合菌發(fā)酵液接入50 mL亞硝態(tài)氮及氨氮降解培養(yǎng)基中,接種終濃度為5×105CFU/mL,對(duì)照組為空白,重復(fù)試驗(yàn)次數(shù)為3。30 ℃、180 r/min,培養(yǎng)24 h后進(jìn)行取樣測(cè)定。均勻吸取培養(yǎng)液1.5 mL至離心管中,12 000 r/min離心3 min,取上清200L加入96孔板,于550 nm比色測(cè)亞硝態(tài)氮濃度、450 nm比色測(cè)氨氮濃度。

      應(yīng)該多開通去這里的航班。美國(guó)北加利福尼亞沿海紫海膽泛濫成災(zāi),摧毀了那里的巨藻林,而巨藻林的消失則意味著生態(tài)系統(tǒng)的崩潰,許多人的生計(jì)因此受到威脅。看來中國(guó)游客還不夠多,才有了這后果。

      1.4 復(fù)合菌發(fā)酵液的產(chǎn)酶、抑菌試驗(yàn)

      產(chǎn)酶功能分析:用接種環(huán)取枯草芽孢桿菌M7-1及復(fù)合菌發(fā)酵液(HJ培養(yǎng)基,發(fā)酵20 h),分別點(diǎn)接在蛋白酶、淀粉酶、纖維素酶指示平板上,35 ℃培養(yǎng)20 h后,游標(biāo)卡尺分別測(cè)定透明圈直徑2及菌落直徑1,計(jì)算2與1的比值(酶的相對(duì)活性)[12]。

      抑菌功能分析:選用國(guó)標(biāo)濾紙片法進(jìn)行功能菌株的抑菌試驗(yàn)[13]。指示菌為經(jīng)過37 ℃培養(yǎng)12 h的副溶血弧菌(實(shí)驗(yàn)室保藏),將其與生理鹽水 1:9稀釋,渦旋器混勻后涂布TCBS平板,加入載有屎腸球菌SC-01(HJ培養(yǎng)基,發(fā)酵20 h)、復(fù)合菌發(fā)酵液(發(fā)酵20 h)的濾紙片。37 ℃培養(yǎng)24 h,觀察指示菌生長(zhǎng)情況,游標(biāo)卡尺測(cè)量抑菌圈直徑。

      1.5 復(fù)合菌發(fā)酵液培藻試驗(yàn)

      取10 mL小球藻培養(yǎng)基到1 000 mL水中配制培藻試驗(yàn)基礎(chǔ)培養(yǎng)基,滅菌后待用。設(shè)置空白對(duì)照組(培藻試驗(yàn)基礎(chǔ)培養(yǎng)基)和試驗(yàn)組(在培藻試驗(yàn)基礎(chǔ)培養(yǎng)基中加入0、4、8、12、16、20、24 h的復(fù)合菌發(fā)酵液),重復(fù)試驗(yàn)次數(shù)為3,接種終濃度為105CFU/mL。試驗(yàn)前同時(shí)加入1萬個(gè)/mL的小球藻液體(實(shí)驗(yàn)室保藏)。光照2 000 lx,溫度25 ℃條件下,培養(yǎng)72 h,培養(yǎng)過程中每隔4 h搖晃15次。分別從瓶中取10 mL樣品進(jìn)行葉綠素a質(zhì)量分?jǐn)?shù)的測(cè)定。

      1.6 復(fù)合菌發(fā)酵液的誘食、健腸試驗(yàn)

      選擇300尾體質(zhì)量為15 g左右的健康南美白對(duì)蝦(正大集團(tuán),海南,中國(guó))作為試驗(yàn)對(duì)象,試驗(yàn)共分5組(4個(gè)處理組及1個(gè)空白對(duì)照組),每組3個(gè)重復(fù),每個(gè)重復(fù)20尾蝦。參照專利《一種水產(chǎn)動(dòng)物誘食劑的篩選方法》制備有色食丸[14],食丸分別添加1%的20 h復(fù)合菌發(fā)酵液、1%的20 h釀酒酵母菌NJ-02發(fā)酵液(HJ培養(yǎng)基)、1%的二甲基--丙酸噻亭(dimethyl-beta-propiothetin hydrochloride,DMPT)、1%的氧化三甲胺(trimetlylamine oxide,TMAO),同時(shí)投入水池同一位置,投入食丸10 min后,統(tǒng)計(jì)南美白對(duì)蝦對(duì)不同顏色食丸的捕獲與采食數(shù)量,依統(tǒng)計(jì)結(jié)果判斷試驗(yàn)品的誘食性能。

      飼喂食丸2 d后無菌解剖對(duì)蝦,取出腸道,研磨后分別梯度稀釋涂布MRS、YPD平板,進(jìn)行乳酸菌、酵母菌活菌計(jì)數(shù)。

      1.7 分析方法

      亞硝態(tài)氮濃度測(cè)定采用N-(1-萘基)-乙二胺光度法,氨氮濃度測(cè)定采用納氏試劑方法,葉綠素-a測(cè)定采用分光光度法[15]。

      基礎(chǔ)數(shù)據(jù)處理、顯著性差異分析基于SAS (statistical analysis systems)統(tǒng)計(jì)軟件,<0.05表示差異顯著。

      2 結(jié)果與分析

      2.1 復(fù)合菌發(fā)酵活菌數(shù)及pH值變化

      復(fù)合菌發(fā)酵活菌數(shù)結(jié)果如圖1所示,可知3株菌共培養(yǎng)在4~10 h分別進(jìn)入對(duì)數(shù)生長(zhǎng)期,并于12~20 h酵母菌、乳酸菌及芽孢桿菌活菌數(shù)先后達(dá)到峰值,分別為3.88×108、2.41×1010、5.38×109CFU/mL。而后,逐漸進(jìn)入生長(zhǎng)平臺(tái)期,活菌數(shù)趨于穩(wěn)定。復(fù)合菌發(fā)酵的pH值呈現(xiàn)出先降低而后回升的趨勢(shì),發(fā)酵至12 h 時(shí)pH值回升至最高值6.34,而后發(fā)生回落。

      通過結(jié)晶紫染色鏡檢觀察復(fù)合菌發(fā)酵液可知,共培養(yǎng)16 h后,3株益生菌共生良好,顯微鏡鏡檢可同時(shí)觀察到屎腸球菌SC-01、枯草芽孢桿菌M7-1及釀酒酵母菌NJ-02(圖2)。

      圖1 復(fù)合菌發(fā)酵活菌數(shù)及pH值變化曲線

      圖2 復(fù)合菌發(fā)酵液顯微鏡鏡檢圖(16 h,結(jié)晶紫染色,放大倍數(shù):60×10)

      本試驗(yàn)中選擇了釀酒酵母菌NJ-02、屎腸球菌SC-01及枯草芽孢桿菌M7-1進(jìn)行共發(fā)酵研究,這些菌株分別具有產(chǎn)酸、產(chǎn)多糖、脫氮、產(chǎn)酶、抑菌等方面的功能,但是在發(fā)酵過程中酵母菌、乳酸菌及芽孢桿菌偏好的最適pH值、培養(yǎng)溫度等條件都是不同的[16]。本試驗(yàn)中,應(yīng)用的培養(yǎng)基經(jīng)過反復(fù)優(yōu)化,并全程監(jiān)控發(fā)酵過程,以保障這3株活菌的共生性,3株益生菌接種后,乳酸菌首先實(shí)現(xiàn)了快速生長(zhǎng),主要是由于試驗(yàn)中應(yīng)用的屎腸球菌SC-01為經(jīng)過紫外誘變過的菌株,pH值適應(yīng)性強(qiáng)、生長(zhǎng)快速,其快速生長(zhǎng)導(dǎo)致pH值下降,出現(xiàn)了適應(yīng)酵母菌增殖的酸性條件[17],從而促進(jìn)了釀酒酵母菌NJ-02(適合于偏酸性環(huán)境)的生長(zhǎng)??莶菅挎邨U菌M7-1的生長(zhǎng)或許同發(fā)酵體系中微生物在生長(zhǎng)過程中產(chǎn)生的代謝產(chǎn)物有關(guān),這些代謝產(chǎn)物可成為微生物生長(zhǎng)的基質(zhì)及原料,存在一種共生增殖關(guān)系,促進(jìn)了彼此的生長(zhǎng)[18]。連續(xù)發(fā)酵24 h后,釀酒酵母菌NJ-02、屎腸球菌SC-01及枯草芽孢桿菌M7-1活菌數(shù)分別達(dá)到了3.88×108、2.41×1010、5.38×109CFU/mL。以往的研究中,Manoj等應(yīng)用優(yōu)化的培養(yǎng)基,將spp.和共培養(yǎng),得到了較高的生物量[19]。在不同種屬微生物共發(fā)酵方面,Liu等應(yīng)用及共培養(yǎng)處理乳酸菌發(fā)酵廢水,結(jié)果表明2種微生物生長(zhǎng)良好,同單菌相比,復(fù)合菌發(fā)酵大幅度的降低了廢水中總有機(jī)碳(total organic carbon,TOC)及總氮(total nitrogen,TN)濃度[20]。Pablo等將酵母菌及乳酸細(xì)菌進(jìn)行共培養(yǎng),監(jiān)測(cè)其生長(zhǎng)及代謝產(chǎn)物產(chǎn)生情況,發(fā)現(xiàn)菌種的混合發(fā)酵提升了乳酸菌及酵母菌活菌數(shù),而且影響了代謝產(chǎn)物的產(chǎn)生情況[21]。本試驗(yàn)中將乳酸菌、芽孢桿菌及酵母菌進(jìn)行共發(fā)酵培養(yǎng),應(yīng)用優(yōu)化后的培養(yǎng)基,全程監(jiān)控活菌數(shù)及pH值,共培養(yǎng)的3株菌都達(dá)到了較高的活菌數(shù),復(fù)合菌發(fā)酵菌株的共生性較好。

      2.2 復(fù)合菌發(fā)酵液脫氮性能分析

      不同時(shí)間復(fù)合菌發(fā)酵液降解亞硝態(tài)氮及氨氮試驗(yàn)結(jié)果如圖3所示。復(fù)合菌發(fā)酵液對(duì)亞硝態(tài)氮的降解率呈現(xiàn)出先下降后上升的趨勢(shì),16 h的復(fù)合菌發(fā)酵液亞硝態(tài)氮降解率達(dá)到峰值(降解率達(dá)到89%),復(fù)合菌中降解亞硝態(tài)氮的菌株為枯草芽孢桿菌M7-1,這同芽孢桿菌的生長(zhǎng)曲線一致;不同時(shí)間復(fù)合菌發(fā)酵液對(duì)氨氮降解率則一直處于上升狀態(tài),20 h的復(fù)合菌發(fā)酵液對(duì)氨氮降解率也達(dá)到峰值(降解率達(dá)到94%),復(fù)合菌中酵母菌、乳酸菌及芽孢桿菌都可利用氨氮,因此氨氮的降解一直呈現(xiàn)上升趨勢(shì)。芽孢桿菌在水產(chǎn)養(yǎng)殖中應(yīng)用已經(jīng)較為普遍,其中枯草芽孢桿菌地衣芽孢桿菌、凝結(jié)芽孢桿菌等都具有較好的生物脫氮活性[22-24],Huang等研究一株從海水養(yǎng)殖樣本中分離的異養(yǎng)硝化-好氧反硝化海濱芽孢桿菌()時(shí)發(fā)現(xiàn),該芽孢桿菌能夠在42 h完成水體中氨氮、亞硝態(tài)氮的脫除,降解率分別為86.3%和89.3%[5],可能是由于菌種的差異導(dǎo)致同本試驗(yàn)中氨氮、亞硝態(tài)氮降解率有所區(qū)別。Song等研究發(fā)現(xiàn),分離的枯草芽孢桿菌YX-6對(duì)亞硝態(tài)氮降解率在培養(yǎng)16 h達(dá)到峰值[25]。這同本研究的脫氮曲線類似,說明復(fù)合菌發(fā)酵液具備較好的脫氮功能。

      圖3 不同時(shí)間復(fù)合菌發(fā)酵液氨氮、亞硝態(tài)氮降解率

      2.3 復(fù)合菌發(fā)酵液酶活性及培藻性能分析

      復(fù)合菌發(fā)酵中選擇的3株益生菌中枯草芽孢桿菌M7-1功能為生物脫氮和產(chǎn)胞外復(fù)合酶(表1),其他2株益生菌的功效為誘食及拮抗病原菌,復(fù)合菌發(fā)酵液的胞外酶活性主要由菌株枯草芽孢桿菌M7-1產(chǎn)生,故而本試驗(yàn)選擇枯草芽孢桿菌M7-1同復(fù)合菌發(fā)酵液進(jìn)行酶活性對(duì)比試驗(yàn)??莶菅挎邨U菌M7-1及復(fù)合菌發(fā)酵液蛋白酶、淀粉酶及纖維素酶活性分析結(jié)果如表2所示,通過分析數(shù)據(jù)可知,復(fù)合菌發(fā)酵液具有同枯草芽孢桿菌M7-1相當(dāng)?shù)拿富钚裕軌蜉^好的分解蛋白質(zhì)、淀粉及纖維素類物質(zhì)。

      表2 枯草芽孢桿菌M7-1及復(fù)合菌發(fā)酵液酶活性的測(cè)定結(jié)果

      如圖4可知,不同時(shí)間復(fù)合菌發(fā)酵液處理組葉綠素-a含量都高于對(duì)照組,這同發(fā)酵液中益生菌分解大分子,產(chǎn)生易于小球藻利用的小分子物質(zhì)有關(guān)[26-27]。且隨時(shí)間推移,復(fù)合菌發(fā)酵液的培藻效果處于上升趨勢(shì),16 h的復(fù)合菌發(fā)酵液培藻效果最為理想,小球藻葉綠素a質(zhì)量分?jǐn)?shù)提升了49.6%。Hirata等研究發(fā)現(xiàn),在鯉魚養(yǎng)殖池塘中添加產(chǎn)酶益生菌后,同對(duì)照組相比,可明顯觀察到水色更綠,檢測(cè)到小球藻含量明顯升高,養(yǎng)殖的鯉魚質(zhì)量增加30%[28]。本研究中,枯草芽孢桿菌M7-1具有較好的產(chǎn)酶活性(表2),能夠快速高效地分解有機(jī)質(zhì),促進(jìn)物質(zhì)的循環(huán),提供小球藻生長(zhǎng)所需要的營(yíng)養(yǎng)物質(zhì)。

      圖4 不同發(fā)酵時(shí)間小球藻葉綠素a質(zhì)量濃度

      2.4 復(fù)合菌發(fā)酵液的誘食效果分析

      如圖5所示,統(tǒng)計(jì)誘食試驗(yàn)剩余食丸數(shù)發(fā)現(xiàn),復(fù)合菌發(fā)酵液剩余食丸顯著低于酵母菌組、氧化三甲胺(trimetlylamine oxide,TMAO)處理組及空白對(duì)照組,同化學(xué)誘食劑二甲基--丙酸噻亭(dimethyl-beta- propiothetin hydrochloride,DMPT)處理組剩余數(shù)目相當(dāng),其誘食效果顯著高于對(duì)照組(圖5)。

      不同于陸生動(dòng)物,水產(chǎn)動(dòng)物處于水環(huán)境中,餌料投入水中后即開始了溶失,這不僅浪費(fèi)了寶貴的飼料資源,而且嚴(yán)重污染水體環(huán)境。因此,需在飼料中添加能促進(jìn)水產(chǎn)動(dòng)物攝食的物質(zhì)(即誘食劑)[29]。目前,市場(chǎng)上水產(chǎn)誘食劑主要分為如下幾種:氨基酸類、動(dòng)植物提取物、生物堿、含硫化合物、中藥類、脂肪酸等[30]。而化學(xué)誘食劑如DMPT、TMAO等誘食效果突出,但成本較高,因此,開發(fā)綠色、廉價(jià)的生物水產(chǎn)誘食劑是必要的。以往的研究中,應(yīng)用甜菜堿、?;撬?、酵母提取物等作為誘食物質(zhì),促進(jìn)水產(chǎn)動(dòng)物攝食取得理想的結(jié)果[31-32]。陳昌福等研究發(fā)現(xiàn),餌料中添加2 000 mg/kg的酵母水解物(富含核苷酸)后,中華鱉的攝食速度提升了 39.2%、攝食量提高了34.8%[33]。另有試驗(yàn)表明,將不同種類誘食劑進(jìn)行復(fù)配,能夠起到協(xié)同增效的作用,復(fù)合誘食劑(甜菜堿∶DMPT∶鹽酸三甲胺∶檸檬酸∶甘氨酸∶?;撬幔汗劝彼徕c=5∶2∶10∶1∶1∶1∶1)按1%的比例添加到飼料中,結(jié)果表明,同對(duì)照相比能夠明顯提升牙鲆對(duì)飼料的攝食率,促進(jìn)了牙鲆的生長(zhǎng)[34]。本研究中,復(fù)合菌發(fā)酵液中的釀酒酵母菌NJ-02能夠產(chǎn)生誘食核苷酸,同時(shí)屎腸球菌SC-01能夠產(chǎn)生誘食氨基酸、有機(jī)酸等。含有多種誘食組分使得復(fù)合菌發(fā)酵液誘食效果優(yōu)于釀酒酵母菌NJ-02,具備開發(fā)成為生物誘食劑的潛力。

      Note: DMPT: Dimethyl-beta-propiothetin hydrochloride; TMAO: Trimetly-lam-ine oxide; Different letters mean significantly different (P<0.05).

      2.5 復(fù)合菌發(fā)酵液的抑菌、健腸效果分析

      復(fù)合菌發(fā)酵中選擇的3株益生菌中屎腸球菌SC-01功能主要為拮抗病原菌(表1),其他2株益生菌的功效主要為生物脫氮、分泌胞外酶及提升養(yǎng)殖動(dòng)物免疫力,復(fù)合菌發(fā)酵液的抑菌功能主要由菌株屎腸球菌SC-01產(chǎn)生,故而本試驗(yàn)選擇屎腸球菌SC-01同復(fù)合菌發(fā)酵液進(jìn)行抑菌活性對(duì)比試驗(yàn)。屎腸球菌SC-01及復(fù)合菌發(fā)酵液抑菌活性分析結(jié)果如表3所示,通過分析數(shù)據(jù)可知,復(fù)合菌發(fā)酵液具有同屎腸球菌SC-01相當(dāng)?shù)囊志钚?,能夠較好的抑制副溶血弧菌生長(zhǎng)。

      復(fù)合菌發(fā)酵液、酵母菌發(fā)酵液、DMPT、TMAO投喂處理組及空白對(duì)照組對(duì)蝦腸道中乳酸菌和酵母菌活菌計(jì)數(shù)如圖6所示,由圖可知,應(yīng)用復(fù)合菌發(fā)酵液拌料2 d后,對(duì)蝦腸道中乳酸菌、酵母菌活菌數(shù)顯著高于化學(xué)誘食劑及空白對(duì)照組。

      表3 屎腸球菌SC-01及復(fù)合菌發(fā)酵液抑菌活性

      注:“+++”表示抑菌作用顯著,抑菌圈≥12 mm.

      Note: “+++” : Inhibition zone≥12 mm (Significant inhibition).

      圖6 對(duì)蝦腸道中乳酸菌及酵母菌計(jì)數(shù)

      作為水產(chǎn)養(yǎng)殖中廣泛應(yīng)用的益生菌,屎腸球菌能夠調(diào)節(jié)水產(chǎn)動(dòng)物腸道菌群平衡、拮抗病原菌,釀酒酵母菌能夠提升水產(chǎn)動(dòng)物免疫力、降低疾病發(fā)生[35]。已有研究表明,副溶血弧菌為對(duì)蝦早期死亡綜合征(early mortality syndrome,EMS)的主要病原菌,席卷全球的EMS給對(duì)蝦養(yǎng)殖業(yè)造成了重大損失[36]。對(duì)蝦腸道中存活的乳酸菌能夠分泌乳酸,酸化腸道,降低pH值,而導(dǎo)致對(duì)蝦EMS發(fā)生的病原菌—副溶血弧菌在酸性條件下生長(zhǎng)會(huì)受到抑制[37]。已有研究表明,多數(shù)屎腸球菌具有較好的抑菌活性,作為益生菌制劑在人類醫(yī)學(xué)上用來拮抗腸聚集性大腸桿菌[38]。Sun等于石斑魚腸道中分離得到一株具有拮抗,及的屎腸球菌MM4,該菌能夠顯著提升石斑魚免疫性能及生長(zhǎng)性能[39]。此外,對(duì)蝦腸道中的酵母菌能夠提高對(duì)蝦的免疫力,降低對(duì)蝦發(fā)病[40]。He等研究表明,應(yīng)用釀酒酵母菌后顯著的提升了羅非魚免疫性能[41]。Huang等研究發(fā)現(xiàn)日糧中添加1 g/kg Saccharoculture(包含活菌J 8734)可以明顯提升鯉魚腸道絨毛高度及免疫活性[42]。本試驗(yàn)中復(fù)合菌發(fā)酵液中的屎腸球菌SC-01具有良好的抑制副溶血弧菌活性(表3)、釀酒酵母菌NJ-02具有潛在的免疫提升活性,復(fù)合菌發(fā)酵液或許能夠在提升對(duì)蝦抗弧菌感染方面發(fā)揮較好作用。

      3 結(jié) 論

      脫氮、產(chǎn)酶、抑菌等性能優(yōu)良的3株酵母菌、乳酸菌及芽孢桿菌能夠在同一培養(yǎng)基HJ下共培養(yǎng),連續(xù)發(fā)酵24 h,活菌數(shù)分別達(dá)到3.88×108、2.41×1010、5.38× 109CFU/mL,具備理想的脫氮、培藻性能(亞硝態(tài)氮降解率89%、氨氮降解率94%、小球藻葉綠素a質(zhì)量分?jǐn)?shù)提升49.6%),及同枯草芽孢桿菌M7-1、屎腸球菌SC-01相當(dāng)?shù)漠a(chǎn)酶、抑菌活性。飼喂對(duì)蝦,顯示出同化學(xué)誘食劑相當(dāng)?shù)恼T食效果以及良好的腸道菌群調(diào)控作用。

      綜上,本研究成功制備了具備脫氮、培藻、抑菌及生物誘食健腸等多方面功能的復(fù)合菌發(fā)酵液。該復(fù)合菌發(fā)酵液有望應(yīng)用于水產(chǎn)養(yǎng)殖中,改善水質(zhì)、促進(jìn)動(dòng)物攝食、保持腸道健康,降低抗生素及化學(xué)藥品等的應(yīng)用,為水產(chǎn)養(yǎng)殖業(yè)綠色健康可持續(xù)的發(fā)展提供了新的微生物資源和方法。

      [1] 農(nóng)業(yè)部漁業(yè)漁政管理局.2018中國(guó)漁業(yè)統(tǒng)計(jì)年鑒[R].北京:中國(guó)農(nóng)業(yè)出版社,2018.

      [2] Liu Xiao, Steele J C, Meng Xiangzhou. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review[J]. Environmental Pollution, 2017, 223: 161-169.

      [3] He Zhengxiang, Cheng Xiangrong, Kyzas G Z, et al. Pharmaceuticals pollution of aquaculture and its management in China[J]. Journal of Molecular Liquids, 2016, 223: 781-789.

      [4] Zhao Yanting, Zhang Xuxiang, Zhao Zhonghua, et al. Metagenomic analysis revealed the prevalence of antibiotic resistance genes in the gut and living environment of freshwater shrimp[J]. Journal of Hazardous Materials, 2018, 350: 10-18.

      [5] Huang Fei, Pan Luqing, Lü Na, et al. Characterization of novelstrain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification[J]. Journal of Bioscience and Bioengineering, 2017, 124 (5): 564-571.

      [6] Wan Wenjie, He Donglan, Xue Zhijun. Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacteriumHW-15[J]. Ecological Engineering, 2017, 99: 199-208.

      [7] Wang Anran, Ran Chao, Wang Yanbo. Use of probiotics in aquaculture of China: A review of the past decade[J]. Fish and Shellfish Immunology, 2019, 86: 734-755.

      [8] He Ruipeng, Feng Jie, Tian Xiangli, et al. Effcts of dietary supplementation of probiotics on the growth, activities of digestive and non-specifi immune enzymes in hybrid grouper (male×female)[J]. Aquaculture Research, 2017, 48 (12): 5782-5790.

      [9] Wu Zhuoqi, Jiang Chao, Ling Fei, et al. Effcts of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp ()[J]. Aquaculture, 2015, 438: 105-114.

      [10] Li Jianguang, Xu Yongping, Jin Liji, et al. Effcts of a probiotic mixture (YB-1 andYB-2) on disease resistance and non-specifi immunity of sea cucumber,(Selenka)[J]. Aquaculture Research, 2015, 46 (12): 3008-3019.

      [11] Hao Kai, Liu Jiayan, Ling Fei, et al. Effcts of dietary administration ofD4,D7 andD15, single or combined, on the growth, innate immunity and disease resistance of shrimp,[J]. Aquaculture, 2014, 428/429: 141-149.

      [12] 張紀(jì)忠.生物分類學(xué)[M].上海:復(fù)旦大學(xué)出版社,1990.

      [13] 黃秀梨.微生物學(xué)[M].北京:高等教育出版社,1998.

      [14] 蔡春芳,葉元土.一種水產(chǎn)動(dòng)物誘食劑的篩選方法[P].200510038890.6,2005-04-12.

      [15] 海洋調(diào)查規(guī)范:GB/T 12763.6-2007 [S].

      [16] Holt J. Bergey's Manual of Determinative Bacteriology, Ninth Edition[M]. Philadelphia Lippincott: Williams & Wilkins, 1994.

      [17] 賀銀鳳.傳統(tǒng)發(fā)酵乳制品中乳酸菌和酵母菌的互作關(guān)系[J].中國(guó)乳品工業(yè),2010,38(10):43-45. He Yinfeng. Interaction between lactic acid bacteria and yeastsin traditional fermented milks[J]. Dairy Industry, 2010, 38(10): 43-45. (in Chinese with English abstract)

      [18] 張克強(qiáng),野李.復(fù)合枯草芽孢桿菌和乳酸菌微生物制劑的制備方法[P].200510136003.9,2005-12-28.

      [19] Manoj J, Prasanna D, Larysa B, et al. Multi strain probiotic production by co-culture fermentation in a lab-scale[J]. Engineering in Life Sciences, 2016, 16(3): 247-253.

      [20] Liu Jiyun, Shi Peifu, Ahmad S, et al. Co-culture ofandefficiently treatsfermentation wastewater[J]. AMB Express, 2019, 9(1): 15-21.

      [21] Pablo á M, Ana B F, Ana H B, et al.Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation[J]. Food Control, 2008, 19(1): 62-70.

      [22] Arig N, Suzer C, Gokvardar A, et al. Effects of probioticsp) supplementation during larval development of gilthead sea bream ()[J]. Turkish Journal of Fisheries & Aquatic Sciences, 2013, 13(3): 407-414.

      [23] Nimrat S, Suksawat S, Boonthai T, et al. Potentialprobiotics enhance bacterial numbers, water quality and growth during early development of white shrimp ()[J]. Veterinary Microbiology, 2012, 159 (3/4): 443-450.

      [24] Zokaeifar H, Babaei N, Che R S, et al. Administration ofstrains in the rearing water enhances the water quality, growth performance, immune response, and resistance againstinfection in juvenile white shrimp,[J]. Fish & Shellfish Immunology, 2014, 36 (1): 68-74.

      [25] Song Zengfu, An Jian, Fu Guanghui, et al. Isolation and characterization of an aerobic denitrifyingsp. YX-6 from shrimp culture ponds[J]. Aquaculture, 2011, 319 (1): 188-193.

      [26] Ferrier M, Martin J L, Rooney-Varga J N. Stimulation of Alexandrium fundyense growth by bacterial assemblages from the Bay of Fundy [J]. Journal of Applied Microbiology, 2002, 92(4): 706-716.

      [27] Guillermo Q, Juan S A, Germán B. Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment[J]. Biotechnology Advances, 2017, 35(6): 772-781.

      [28] Hirata H, Tei T, Niiro M. Effects of probiotic additive feeding on water quality an algal growth potential in an culture of the Carp[J]. Memoirs of the Faculty of Agriculture of Kinki University, 2001, 34: 89-93.

      [29] 羅實(shí)亞.誘食劑在水產(chǎn)養(yǎng)殖中的應(yīng)用研究進(jìn)展[J].貴州農(nóng)業(yè)科學(xué),2012,40(9):183-185. Luo Shiya. Research progress of application of attractant in aquaculture[J]. Guizhou Agricultural Sciences, 2012, 40(9): 183-185. (in Chinese with English abstract)

      [30] 王安利,苗玉濤,王維娜,等.水產(chǎn)動(dòng)物誘食劑的研究進(jìn)展[J].中國(guó)水產(chǎn)科學(xué),2002,9(3):265-268. Wang Anli, Miao Yutao, Wang Weina, et al. Research progress on feed attractant for aquatic animals[J]. Journal of Fishery Sciences of China, 2002, 9(3): 265-268. (in Chinese with English abstract)

      [31] Felix N, Sudharsan M. Effect of glycine betaine, a feed attractant affecting growth and feed conversion of juvenile freshwater prawn[J]. Aquaculture Nutrition, 2015, 10(3): 193-197.

      [32] Hartati R, Briggs M R P. Effect of feeding attractants on the behaviour and performance of juvenileFabricius[J]. Aquaculture Research, 2010, 24(5): 613-624.

      [33] 陳昌福,王紹輝,王茜,等.餌料中添加酵母水解物對(duì)中華鱉成鱉的誘食效果[J].養(yǎng)殖與飼料,2007(4):54-56.

      [34] 陳京華,張文兵,麥康森,等.復(fù)合誘食劑對(duì)牙鲆攝食生長(zhǎng)的影響[J].中國(guó)水產(chǎn)科學(xué),2006,13(6):959-965. Cheng Jinghua, Zhang Wenbing, Mai Kangsen, et al. Effects of a compound feeding attractant on feed intake and growth of Japanese flounder(Temminck et Schlegel)[J]. Journal of Fishery Sciences of China, 2006, 13(6): 959-965. (in Chinese with English abstract)

      [35] Wang A R, Ran C, Wang Y B, et al. Use of probiotics in aquaculture of China: A review of the past decade[J]. Fish & Shellfish Immunology, 2018, 86: 734-755.

      [36] Lea?o E M, Mohan C V. Early mortality syndrome threatens Asia’s shrimp farms[J]. Global Aquaculture Advocate, 2012, 2012(7/8): 38-39.

      [37] Vanderzant C, Nickelson R. Survival ofin shrimp tissue under various environmental conditions[J]. Journal of Applied Microbiology, 1972, 23(1): 34-37.

      [38] Miyazaki Y, Kamiya S, Hanawa T, et al. Effect of probiotic bacterial strains of,, andenteroaggregative[J]. Journal of Infection & Chemotherapy, 2010, 16(1): 10-18.

      [39] Sun Yunzhang, Yang Hongling, Ling Zechun, et al. Gut microbiota of fast and slow growing grouper[J]. African Journal of Microbiology Research, 2009, 3 (11): 713-720.

      [40] Deng Deng, Mei Chengfang, Mai Kangsen, et al. Effects of a yeast-based additive on growth and immune responses of white shrimp,(Boone, 1931), and aquaculture environment[J]. Aquaculture Research, 2013, 44(9): 1348-1357.

      [41] He Suxu, Zhou Zhigang, Liu Yuchun, et al. Effects of dietaryfermentation product (DVAQUA*) on growth performance, intestinal autochthonous bacterial community and non-specific immunity of hybrid tilapia (♀×♂) cultured in cages[J]. Aquaculture, 2009, 294(1): 99-107.

      [42] Huang Lu, Ran Chao, He Suxu, et al. Effects of dietaryculture or live cells withspores on growth performance, gut mucosal morphology, hsp70 gene expression, and disease resistance of juvenile common carp ()[J]. Aquaculture, 2015, 438: 33-38.

      Functional properties of mixed probiotics fermentation broth and its feeding attractant effects

      Li Yan1, Ma Qingshan2※

      (1.(),,266003,; 2.,,266003,)

      With the rapid development of aquaculture farming industries, high density farming techniques are now widely adopted in China, facilitated by a raft of approaches including oxygenation enhancement, intensive feeding and the frequent addition of antibiotics for disease control. Such intensive industrialized farming methods have improved yields from aquatic farming of animals. As repeatedly noted, they may also lead to the buildup of unused feed, excreta and other biological residues, as well as the accumulation of harmful chemicals such as nitrite, and the application of chemical drugs and antibiotics has led to the proliferation of harmful and resistant bacteria and harmful algae, meanwhile, drug residues also affect the products quality and aquatic animals safety. Probiotics, such as,lactic acid bacteria and yeast have been widely used in aquaculture and yielded beneficial effects, mainly in improving water quality, growth performance and reducing the mortality rate by degradation nitrite, inhibiting pathogens, regulating intestinal flora and stimulating the immune system. It is well known that different types of probiotics can express different functions, such as denitrification, enzyme production and antibacterial activity. Mixed strain fermentation, giving multiple functions of fermentation broth, which can reduce production cost, simplify the process and broaden the application range. In this study, we explored the feasibility of multi-functional mixed strain fermentation, 3 strains of probiotics included yeast, lactic acid bacteria andwith excellent performances (NJ-02: producing exopolysaccharide, vitamin, nucleotide, etc;SC-01: producing acetic acid, lactic acid and other organic acids, inhibition of pathogens;M7-1: degradation of ammonia nitrogen and nitrite nitrogen, producing extracellular enzymes). After 24 h incubations, the number ofNJ-02,SC-01 andM7-1 viable bacteria counts reached 3.88×108, 2.41×1010, and 5.38×109CFU/mL, respectively. The results also showed that the biological denitrification and promoted algae () growth performance of the mixed fermentation broth were directly related to the number ofM7-1 viable bacteria. Further into the process, it was observed that 16 h was the best fermented time for degradation nitrite and algae cultivation. It also showed that the nitrite nitrogen degradation rate reached 89% and thechlorophyll-a concentration increased by 49.6%. Additionally, mixed strain fermentation broth showed the same enzymatic activity (protease, amylase, cellulase) and antibacterial activity () when it was compared toM7-1 andSC-01. Furthermore, the feeding attractant effect was significantly improved than that of the control group and chemical attractanttrimethylamine oxide (TMAO) (<0.05), and was equivalent to that of dimethyl-beta-propiothetin(DMPT) based on the feeding behavior of shrimp.The number oflactic acid bacteria and yeast in shrimp intestinal tract was significantly higher (<0.05) than that of the control group and the chemical attractant group. In summary, we obtained multi-functional mixed strain fermentation broth such as biological denitrification, promoting algae cultivation, antibacterial activity and biological attractant, this fermentation broth was expected to be used in aquaculture to improve water quality, enhance animal appetite and feed intake and maintain intestinal health. The study provides a microbial resource and technical method for sustainable ecological aquaculture.

      fermentation; denitrification; enzymatic activity; antibacterial activity; attractant effect

      2019-03-19

      2019-07-28

      廣西科技重大專項(xiàng)項(xiàng)目“廣西主導(dǎo)與特色水產(chǎn)品種生態(tài)養(yǎng)殖模式與技術(shù)創(chuàng)新(AA17204095-11)”

      李 艷,博士后,主要從事水產(chǎn)動(dòng)物腸道健康研究。Email: liyan-602@163.com

      馬青山,博士,主要從事海洋微生物與營(yíng)養(yǎng)代謝相關(guān)研究。 Email: horsegreenhill@163.com

      10.11975/j.issn.1002-6819.2019.16.027

      Q939; S96

      A

      1002-6819(2019)-16-0242-07

      李 艷,馬青山.復(fù)合益生菌發(fā)酵液的功能特性及對(duì)對(duì)蝦誘食效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(16):242-248. doi:10.11975/j.issn.1002-6819.2019.16.027 http://www.tcsae.org

      Li Yan, Ma Qingshan.Functional properties of mixed probiotics fermentation broth and its feeding attractant effects[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 242-248. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.16.027 http://www.tcsae.org

      猜你喜歡
      硝態(tài)發(fā)酵液酵母菌
      為什么酵母菌既能做面包也能釀酒?
      連翹內(nèi)生真菌的分離鑒定及其發(fā)酵液抑菌活性和HPLC測(cè)定
      桑黃纖孔菌發(fā)酵液化學(xué)成分的研究
      中成藥(2018年1期)2018-02-02 07:20:03
      低C/N比污水反硝化過程中亞硝態(tài)氮累積特性研究
      讓面包變“胖”的酵母菌
      蜂蜜中耐高滲透壓酵母菌的分離與鑒定
      復(fù)合誘變高產(chǎn)金屬硫蛋白酵母菌株的篩選
      HPLC與LC-MS/MS測(cè)定蛹蟲草發(fā)酵液中蟲草素的方法比較
      木瓜發(fā)酵液對(duì)小鼠四氯化碳誘發(fā)肝損傷的防護(hù)作用
      硝態(tài)氮供應(yīng)下植物側(cè)根生長(zhǎng)發(fā)育的響應(yīng)機(jī)制
      定兴县| 壶关县| 潮安县| 庄河市| 平罗县| 江陵县| 余干县| 永年县| 万州区| 都安| 新河县| 巨鹿县| 偏关县| 桑植县| 板桥市| 伊宁市| 余江县| 胶州市| 大田县| 桐庐县| 苍溪县| 北票市| 鹤庆县| 循化| 神池县| 平果县| 扶余县| 磐石市| 余江县| 康定县| 长子县| 礼泉县| 枣庄市| 柳江县| 桑日县| 武穴市| 元阳县| 桃园市| 高要市| 赣榆县| 仲巴县|