• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      入射角度對氣力射播小麥種粒入土參數(shù)影響的試驗研究

      2019-10-10 02:32:18李洪文王慶杰程修沛魏忠彩劉俊孝
      農(nóng)業(yè)工程學報 2019年16期
      關鍵詞:氣力入射角氣壓

      王 超,李洪文,何 進,王慶杰,程修沛,魏忠彩,劉俊孝

      入射角度對氣力射播小麥種粒入土參數(shù)影響的試驗研究

      王 超,李洪文※,何 進,王慶杰,程修沛,魏忠彩,劉俊孝

      (1. 中國農(nóng)業(yè)大學工學院,北京 100083;2. 農(nóng)業(yè)部河北北部耕地保育農(nóng)業(yè)科學觀測實驗站,北京 100083)

      針對稻麥輪作區(qū)黏濕土壤條件下的小麥機械化播種,為避免傳統(tǒng)接觸式小麥播種技術存在的粘附堵塞嚴重和作業(yè)阻力、功耗大等問題,該文采用非接觸式小麥氣力射播技術理論,通過自制的小麥氣力射播試驗臺,開展整潔種床土壤條件下入射角度對氣力射播小麥種粒入土參數(shù)影響的試驗研究。試驗結果表明:隨著入射角度的增加,相同加速氣壓下小麥種粒的射播速度垂直分量和射播深度不斷增加,小麥種粒觸土后產(chǎn)生水平滑移和彈跳的幾率變小,且各入射角度下射播深度與射播速度呈正相關關系,不同入射角度下小麥種粒呈現(xiàn)出不同射播深度和土壤沖擊效果,小麥種粒未產(chǎn)生損壞情況;當入射角度≥45°和射播速度垂直分量≥25 m/s時,小麥種??杀煌耆洳ト胪寥乐星页雒缏蚀笥?6%,90°入射角度下的射播效果最好。同時,為實現(xiàn)田間作業(yè)時小麥種粒的垂直射播入土,應使射播速度水平分量與機具作業(yè)速度相等且射播速度垂直分量≥25 m/s。試驗結果可為非接觸式小麥射播裝備的研制提供基礎數(shù)據(jù)和技術支撐。

      農(nóng)業(yè)機械;試驗;小麥;氣力射播;入射角度;非接觸式

      0 引 言

      長江中下游稻麥輪作區(qū)是中國主要的糧食生產(chǎn)基地[1],其種植面積達900~1300萬hm2[2],約占全國小麥總面積的37%以上。該區(qū)域光熱資源豐富、降雨充沛、地下水位高[3],小麥生長受水資源限制作用小[4],使得稻茬田小麥種植適宜采用淺播淺種的農(nóng)藝方式[5-6],與北方旱地小麥種植相比差異較大。然而,由于稻茬麥播種機具缺乏,且現(xiàn)有小麥機械化播種裝備無法適應稻茬田含水量大、質(zhì)地黏重的土壤環(huán)境[7-9],導致稻麥區(qū)小麥機械化播種困難。

      近年來,國內(nèi)外專家圍繞稻茬麥機械化播種進行了大量研究,并研制出多種適應稻茬田播種小麥的播種機具。Sidhu等[10]研制的Happy Seeder播種機通過秸稈撿拾后拋裝置、帶狀淺旋裝置與開溝器的科學匹配,可在較低土壤含水率的稻茬田播種小麥。Pannu等[11]針對稻茬田小麥播種機開溝器粘附堵塞問題,設計了一種減粘防堵型播種機具,能夠?qū)崿F(xiàn)較為穩(wěn)定的稻茬麥播種作業(yè)。李兵等[12]研制了一種GBSL-180型雙軸式旋耕滅茬播種機,該機通過合理配置雙軸旋耕結構和采用鈍角開溝器,能夠降低稻茬麥播種時的機具粘附堵塞問題。胡紅等[13]設計了一種稻茬田小麥寬幅精量少耕播種機,該機采用低粘附的雙圓盤開溝器在條帶旋耕后的種床開出種溝完成稻茬麥條播播種。然而,目前國內(nèi)外研究成果多是在傳統(tǒng)小麥播種機的基礎上優(yōu)化改進而來[14-15],普遍采用淺旋淺開溝、開溝器優(yōu)化或旋耕刀與開溝器匹配減粘防堵的技術,這種接觸式播種技術仍存在因開溝器與黏濕土壤接觸而導致的粘附堵塞和作業(yè)阻力、功耗增大等問題[16-18],制約了稻茬地小麥機械化生產(chǎn)。

      本文根據(jù)非接觸式播種技術理論[19],采用無開溝器的氣力射播技術方法避免播種部件與土壤接觸,將小麥高速投置于土壤,同時為研究入射角度對小麥種粒氣力射播入土參數(shù)的影響,開展了無秸稈殘茬整潔種床土壤條件下的小麥氣力射播試驗,以期為非接觸式小麥射播裝備的研制提供基礎數(shù)據(jù)和技術支撐。

      1 氣力射播試驗裝置結構及工作原理

      1.1 氣力射播試驗裝置結構

      根據(jù)氣體引射原理和預試驗研究得到氣力射播試驗裝置,其結構示意圖如圖1所示,主要由調(diào)角支架、調(diào)角板、耐壓氣管I、引射器、氣嘴、加速管和膠套等組成。耐壓氣管I與引射器的氣嘴連通,引射器和加速管連接后固接在調(diào)角支架上,調(diào)角支架通過調(diào)角板實現(xiàn)不同入射角度的調(diào)節(jié)。

      1.調(diào)角支架 2.調(diào)角板 3.耐壓氣管I 4.引射器 5.加速管 6.氣嘴 7.膠套 8.進種口 9.土壤

      1.Angle adjusting rack 2.Angle adjusting plate 3.Pressure resistant trachea I 4.Ejector 5.Accelerating tube 6.Air nozzle 7. Rubber sleeve 8.Seed entrance 9.Soil

      注:H為射播高度,mm;L為射播距離,mm;為入射角度,(°)。

      Note:His pneumatic seeding height, mm;Lis pneumatic seeding distance, mm;is incident angle, (°).

      圖1 氣力射播試驗裝置結構示意圖

      Fig.1 Structure of pneumatic seeding device

      1.2 工作原理

      試驗時,使加速管最下端與土壤耕層表面保持一定的射播高度H,高壓氣體自耐壓氣管I輸入并從氣嘴下端噴射,在加速管內(nèi)形成穩(wěn)定的高速氣流,隨后從進種口投放小麥種粒,小麥種粒在引射器內(nèi)空氣負壓的作用下被吸入并與高速氣流混合,膠套避免吸入的小麥種粒與鋼制氣嘴發(fā)生碰撞而產(chǎn)生損壞,小麥種粒受高速氣流作用在加速管(加速管長度為600 mm,內(nèi)徑為10 mm)內(nèi)加速后射出,以一定的速度和入射角度(0~90°)射入土壤中,最后關閉高壓氣體輸送完成單次小麥氣力射播試驗過程。

      2 射播試驗設計與方法

      2.1 試驗設備

      本試驗采用自制的小麥氣力射播試驗臺進行試驗研究,如圖2所示。該試驗臺主要包括臺架、氣力射播裝置、氣壓調(diào)節(jié)裝置、耐壓氣管、空氣壓縮機和計算機等。試驗時,打開空氣壓縮機為試驗提供持續(xù)穩(wěn)定氣壓,通過氣壓調(diào)節(jié)裝置控制加速氣壓(氣壓為0~1 MPa)大小以實現(xiàn)小麥種粒不同射播速度的調(diào)節(jié)。

      1.空氣壓縮機 2.耐壓氣管II 3.氣壓調(diào)節(jié)裝置 4.氣力射播裝置 5.試驗土壤 6.臺架 7.電子測角儀 8.計算機 9.高速攝像機 10.太陽燈

      主要儀器及設備:5F01C-16G高速攝像機(合肥君達高科信息技術有限公司),EF-200太陽燈(上海金貝攝影器材實業(yè)有限公司),電子數(shù)顯卡尺(哈爾濱量具刃具集團有限責任公司),三角板(得利集團有限公司),電子測角儀(西安勝利儀器有限責任公司)。

      2.2 試驗材料

      試驗土壤樣品取自湖北省農(nóng)業(yè)科學院作物研究所試驗田(114°32¢282E,30°49¢232N),取樣時間為2018年10月,該試驗田常年稻麥輪作,土壤類型為壤質(zhì)黏土,土壤pH值為6.1,塑限為23.20%,液限為41.62%。采集耕作層0~5 cm的土樣,依據(jù)《土工試驗規(guī)程》(SL237- 1999)[20],將土樣經(jīng)自然風干、去雜、研磨和過篩等操作后,分別裝入自制的方形土槽(200 mm′200 mm′50 mm)內(nèi)壓實并用保鮮膜密封供試驗[21-22],試驗用土樣的土壤含水率為37%,土壤容重約為1.20 g/cm3。試驗用小麥品種為湖北省大面積種植的鄭麥9023。

      2.3 試驗方法

      為研究入射角度對小麥氣力射播入土參數(shù)結果的影響,根據(jù)實際播種作業(yè)中存在機具作業(yè)速度的工況,分別開展入射角度為15°、30°、45°、60°、75°、90°共6個水平下的小麥種粒氣力射播試驗,根據(jù)引射器實際作業(yè)壓力范圍,每個入射角度水平下分別進行加速氣壓為0.2、0.4、0.6、0.8和1 MPa下的5組射播試驗,每組試驗在同一加速氣壓下重復射播3個點,每個射播點射播1粒小麥種粒。

      2.3.1 射播時間

      對小麥種粒自加速管最下端飛出至射入土壤的射播過程進行高速拍攝,設置5F01C-16G高速攝像機的拍攝模式為按幀采集、并行曝光,采集長度為8 000幀,采集周期為200s,曝光時間為100s。按照以上參數(shù)設置,每次射播時由高速攝像機高速采集模式下的軟件界面得到高速攝像機的實際拍攝幀率F;試驗結束后,從每個射播點試驗拍攝得到的所有圖片中提取射播過程圖片,射播時間計算公式為

      式中T為第個水平第組第個射播點的射播時間,s;N為第個水平第組第個射播點提取到的射播過程的圖片張數(shù);F為實際拍攝幀率,幀/s。

      2.3.2 射播速度

      根據(jù)前期預試驗,試驗設置射播高度H約為90 mm,為提高試驗結果準確性,每次射播試驗用電子數(shù)顯卡尺測量每次射播的實際射播高度??紤]到小麥射播時間極短,以及高速氣流自加速管下端噴出后的紊流射流特性[23-25],故視射播過程中小麥種粒勻速運動,同時定義使小麥種粒剛好被完全射入土壤中時的射播速度為臨界射播速度。射播速度計算公式為

      式中v為第個水平第組的平均射播速度,m/s;L為第個水平第組第個射播點的實際射播距離,mm。其中

      式中H為第個水平第組第個射播點的實際射播高度,mm。

      2.3.3 射播深度

      射播深度為小麥通過氣力射播沖擊土壤所形成的種穴最底部與土壤表面的垂直距離,根據(jù)稻茬麥播種農(nóng)藝要求,射播深度最大應不超過50 mm[10-11,15]。將小麥種粒剛好被完全射入土壤中時的射播深度稱為臨界射播深度。每個入射角度水平的射播試驗結束后,分別測量每個射播點的小麥種粒射播深度。射播深度計算公式為

      式中H為第個水平第組的平均射播深度,mm;H為第個水平第組第個射播點的射播深度,mm。

      2.3.4 種子破損率

      參照GB/T9478-2005《谷物條播機試驗方法》[26]和GB/T 6973-2005《單粒(精密)播種機試驗方法》[27],射播試驗前觀察挑取未損傷的小麥種粒開展試驗,試驗結束后挑選和計算試驗中破碎損傷的種粒并計算小麥種子破損率。小麥種子破損率計算公式為

      式中為小麥種子破損率,%;P為試驗中破損的小麥種子總個數(shù);P試驗用小麥種子總個數(shù);P為小麥種子的原始破碎率(試驗總樣本中破損的小麥種子個數(shù)與總樣本中小麥數(shù)量的比值。由于試驗樣本為挑選的未損傷小麥種粒,該試驗中小麥種子的原始破碎率為0),%。

      3 結果與分析

      3.1 氣力射播效果

      試驗中,小麥種粒經(jīng)氣力加速后,均可自加速管最下端飛出并高速沖向土壤。以入射角度45°、加速氣壓1 MPa時的射播過程(圖3)為例,初始時小麥種粒飛出后在空中不斷翻滾,經(jīng)過約2 412s進入土壤。

      圖3 小麥氣力射播過程示例

      不同入射角度下,小麥種粒經(jīng)加速后射向土壤產(chǎn)生“傾斜撞擊-水平滑移-彈跳飛出”、“傾斜撞擊-水平滑移-入土”和“垂直撞擊-翻滾-入土”3種射播入土效果。試驗中隨著入射角度的增加,小麥種粒觸土后產(chǎn)生水平滑移和彈跳的幾率變小,不同入射角度的小麥種粒呈現(xiàn)出不同的射播深度和土壤沖擊效果,各射播點的小麥種粒均未產(chǎn)生損壞情況。當入射角度為15°時,小麥種粒觸土后即產(chǎn)生不同程度滑移和彈跳,且均無法被射入土壤,小麥種粒從方形土槽左側射入,觸土并撞擊土壤表面形成不同深度的劃痕后從右側彈出土槽,如圖4a所示;當入射角度為30°時,小麥種粒在較高加速氣壓(0.8、1 MPa)下由左向右水平滑移3~8 mm后可實現(xiàn)射播入土,如圖4b所示,而加速氣壓分別為0.2、0.4和0.6 MPa時,小麥種粒觸土撞擊并產(chǎn)生自左向右的水平滑移后彈出土槽;當入射角度為45°、60°°和75°時,不同加速氣壓下小麥種粒雖產(chǎn)生不同程度的水平滑移但均可被射入土壤中;當入射角度為90°時,小麥種粒均可被垂直射入土壤并形成單粒種穴,未產(chǎn)生滑移和彈跳現(xiàn)象,入土效果最佳,如圖4c所示。

      3.2 射播入土參數(shù)擬合關系

      試驗中,不同入射角度和加速氣壓下的小麥種粒氣力射播試驗結果如表1所示。

      圖4 不同入射角度的小麥氣力射播入土效果示意圖

      表1 小麥種粒氣力射播試驗結果

      利用Matlab 2014a軟件[28-30],分別對小麥氣力射播過程的射播速度與射播深度、垂直速度與射播深度進行擬合,結果如圖5所示。由圖5可知,各擬合方程的決定系數(shù)均達到0.9以上,擬合關系較好。

      整體上看,隨著入射角度的提高,小麥種粒的射播深度不斷增加,且各入射角度下的射播深度與射播速度均呈正相關關系。當入射角度足夠大時,小麥種粒在較小的射播速度下便可實現(xiàn)相對較深的射播深度,如在入射角度為15°(圖5a)的條件下,小麥種粒以約61.50 m/s的最大射播速度仍無法射入土壤,而入射角度為45°、90°時,以同樣的射播速度可分別達到約6和10 mm的射播深度(圖5c、圖5f);提高射播速度有利于小麥種粒在較小的入射角度下實現(xiàn)射播入土,如入射角度為30°(圖5b)時,結合前述射播入土效果可知,當射播速度≥52.14 m/s時小麥種??杀簧淙胪寥溃洳ニ俣取?4.46 m/s時種粒觸土即被彈飛。此外,在15°入射角度下小麥種粒無法被射入土壤中,而入射角度為30°、45°、60°、75°、90°時,小麥種粒達到臨界射播深度(約為3 mm)時所需的臨界射播速度分別為50~55、45~50、40~45、35~40和25~30 m/s。

      當入射角度不同時,相同加速氣壓下的射播速度差別較小而垂直速度卻差異較大,如當加速氣壓為1 MPa時,90°入射角度下的射播速度和垂直速度均為66.63 m/s(圖5f),分別比入射角度為30°時的射播速度61.74 m/s、垂直速度30.87 m/s(圖5b)提高約7.92%、53.67%。因此,隨著入射角度的增加,相同加速氣壓下的垂直速度不斷提高,小麥種粒的射播深度也逐漸增加。當入射角度為30°、45°、60°、75°時,小麥種粒剛好實現(xiàn)完全射播入土時所需的垂直速度為25~30 m/s,與90°入射角度下的結果一致;當入射角度為15°時,最大垂直速度約為15.92 m/s,無法實現(xiàn)小麥種粒射播入土。

      因此,當入射角度為30°~90°且垂直速度≥25 m/s時,小麥種??杀煌耆淙胪寥乐校划斎肷浣嵌葹?0°時,相同加速氣壓下的射播深度最大為11.27 mm。

      3.3 出苗情況

      為進一步觀察氣力射播方式對小麥出苗效果的影響,在相同試驗條件下,重復進行各入射角度下的小麥氣力射播試驗,其中由于入射角度15°時小麥種粒均被彈飛,故不再進行相應的出苗試驗。試驗后將土槽在18 ℃室溫下放置10 d后觀察小麥出苗情況,結果如表2所示。

      表2 不同入射角度的小麥出苗情況

      整體上,小麥在低入射角度下的出苗率較低。由表2可知,入射角度為45°~90°時的小麥出苗率大于86%,結合前述射播試驗中未觀察到小麥種粒明顯損壞情況,說明在該入射條件下采用氣力射播方式將小麥種粒射入土壤的播種方式可行,但后續(xù)仍需大量田間試驗以進一步觀察和統(tǒng)計出苗效果。當入射角度為30°時,小麥出苗率約為66.7%,低于GB 4404.1-2008《糧食作物種子第一部分:禾谷類》[31]中規(guī)定的小麥種子85%發(fā)芽率標準,其原因可能為低入射角度下,小麥種粒水平滑移較長導致小麥種粒磨損加大而產(chǎn)生內(nèi)部微小裂紋,進而種粒不能萌發(fā)。入射角度為45°~90°時,小麥出苗率大于86%,出苗效果較好,符合播種要求。

      3.4 射播速度分析

      綜上所述,采用氣力射播方式播種小麥,在入射角度≥45°和射播速度垂直分量≥25 m/s時,小麥種??蓪崿F(xiàn)穩(wěn)定的完全射播入土和良好的出苗效果;相同加速氣壓下通過增加入射角度可獲得更深的射播深度,且入射角度為90°時的射播效果最好。同時,為明確田間射播播種作業(yè)時,入射角度與機具作業(yè)速度的關系,對小麥種粒的射播速度進行分析,如圖6所示。

      圖5 不同入射角度下速度與射播深度的擬合關系

      注:Om為小麥種粒質(zhì)心;v1為機具作業(yè)速度,m·s-1;vS為射播速度,m·s-1;vSx為射播速度水平分量,m·s-1;vSy為射播速度垂直分量,m·s-1。

      為實現(xiàn)小麥種粒的垂直射播入土,應使射播速度的水平分量與機具作業(yè)速度相等且射播速度垂直分量≥25 m/s;由圖6中關系可知,實現(xiàn)垂直射播時機具作業(yè)速度分別與射播速度和入射角度呈正相關、負相關關系,即當機具作業(yè)速度提高時,可通過增加射播速度或減小入射角度以實現(xiàn)不同作業(yè)速度下的小麥種粒的垂直氣力射播。

      4 結 論

      1)采用非接觸式氣力射播播種理論,通過氣力加速將小麥種粒射入無秸稈殘茬的整潔種床土壤,并以此開展不同入射角度對小麥氣力射播入土參數(shù)影響的試驗研究。結果表明當入射角度≥45°和射播速度垂直分量≥25 m/s時,小麥種粒可實現(xiàn)穩(wěn)定的完全射播入土壤中且出苗率大于86%,90°入射角度下的射播效果最好,射播深度最大為11.27 mm。

      2)小麥氣力射播試驗表明,隨著入射角度的增加,相同加速氣壓下射播速度垂直分量和射播深度不斷增加,小麥種粒觸土后產(chǎn)生水平滑移和彈跳的幾率變小,且各入射角度下射播深度與射播速度均呈正相關關系,不同入射角度下小麥種粒呈現(xiàn)出不同射播深度和土壤沖擊效果,同時小麥種粒均未產(chǎn)生損壞情況。

      3)試驗結果表明,在進行田間射播作業(yè)時,為實現(xiàn)小麥種粒的垂直射播入土,應使射播速度水平分量與機具作業(yè)速度相等且射播速度垂直分量≥25 m/s。

      [1] 馬力,楊林章,沈明星,等. 基于長期定位試驗的典型稻麥輪作區(qū)作物產(chǎn)量穩(wěn)定性研究[J]. 農(nóng)業(yè)工程學報,2011,27(4):117-124. Ma Li, Yang Linzhang, Shen Mingxing, et al. Study on corp yield stability in a typical region of rice-wheat rotation based on long-term fertilization experiment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 117-124. (in Chinese with English abstract)

      [2] 邱讓建,楊再強,景元書,等. 輪作稻麥田水熱通量及影響因素分析[J]. 農(nóng)業(yè)工程學報,2018,34(17):82-88. Qiu Rangjian, Yang Zaiqiang, Jing Yuanshu, et al. Analysis of water and heat flux over rice-wheatrotation field and influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 82-88. (in Chinese with English abstract)

      [3] Qi Jing, Herman Van Keulen, Huib Hengsdijk. Modeling biomass, nitrogen and water dynamics in rice-wheat rotations[J]. Agricultural Systems, 2010, 103(7): 433-443.

      [4] 張秀梅,張居敏,夏俊芳,等. 水旱兩用秸稈還田耕整機關鍵部件設計與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(11):10-16. Zhang Xiumei, Zhang Jumin, Xia Junfang, et al. Design and experiment on critical component of cultivator for strawreturning in paddy field and dry land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transacti-ons of the CSAE), 2015, 31(11): 10-16. (in Chinese with English abstract)

      [5] 李朝蘇,湯永祿,吳春,等. 播種方式對稻茬小麥生長發(fā)育及產(chǎn)量建成的影響[J]. 農(nóng)業(yè)工程學報,2012,28(18):36-43. Li Chaosu, Tang Yonglu, Wu Chun, et al. Effect of sowing patterns on growth, development and yield formation of wheat in rice stubble land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 36-43. (in Chinese with English abstract)

      [6] 李朝蘇,湯永祿,解立勝,等. 2BMFDC-6型稻茬麥半旋播種機設計與性能試驗[J]. 西南農(nóng)業(yè)學報,2011,24(2):789-793. Li Chaosu, Tang Yonglu, Xie Lisheng, et al. Design and experiment of 2BMFDC-6 half-tillage seeder of wheat after rice[J]. Southwest China Journal of Agricultural Sciences, 2011, 24(2): 789-793. (in Chinese with English abstract)

      [7] 趙廣才. 中國小麥種植區(qū)域的生態(tài)特點[J]. 麥類作物學報,2010,30(4):684-686. Zhao Guangcai. Ecology characteristics of Chinese wheat planting region[J]. Journal of Triticeae Crops, 2010, 30(4): 684-686. (in Chinese with English abstract)

      [8] 劉世平,陳后慶,聶新濤,等. 田土壤肥力的綜合評價[J]. 農(nóng)業(yè)工程學報,2008,24(5):51-56. Liu Shiping, Chen Houqing, Nie Xintao, et al. Comprehensive evaluation of tillage and straw returning on soil fertility in a wheat-rice double cropping system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008,24(5):51-56. (in Chinese with English abstract)

      [9] 朱惠斌. 稻茬地種床破茬粉碎式防堵裝置研究[D]. 北京:中國農(nóng)業(yè)大學,2013. Zhu Huibin. Study on Anti-Blocking Device of No-Till Wheat Planter for Broken and Crushing Rice Crop Stubble[D]. Beijing: China Agricultural University, 2013. (in Chinese with English abstract)

      [10] Sidhu H S, Singh M, Humphreys E, et al. The happy seeder enables direct drilling of wheat into rice stubble[J]. Australian Journal of Experimental Agriculture, 2007, 47(7): 844-854.

      [11] Pannu C J S, Shukla L N. Tractor front-mounted cross-conveyor paddy straw thrower[J]. AMA-Agricultural Mechanization in Asia Africa and Latin America, 2010, 41(2): 35-42.

      [12] 李兵,王繼先,張健美,等. GBSL-180型雙軸式旋耕滅茬播種機設計[J]. 農(nóng)業(yè)機械學報,2008,39(3):180-182. Li Bing, Wang Jixian, Zhang Jianmei, et al. Design of GBSL-180 seeder with two-axel rotary tillaging and stubble cleaning[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 39(3): 180-182. (in Chinese with English abstract)

      [13] 胡紅,李洪文,李傳友,等. 稻茬田小麥寬幅精量少耕播種機的設計與試驗[J]. 農(nóng)業(yè)工程學報,2016,32(4):24-32. Hu Hong, Li Hongwen, Li Chuanyou, et al. Design and experiment of broad width and precision minimal tillage wheat planter in rice stubble field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 24-32. (in Chinese with English abstract)

      [14] 朱惠斌,李洪文,何進,等. 稻茬地雙軸驅(qū)動防堵式小麥免耕播種機[J]. 農(nóng)業(yè)機械學報,2013,44(6):39-44. Zhu Huibin, Li Hongwen, He Jin, et al. No-till wheat seeder with two-axel drive anti-blocking in rice stubble field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 39-44. (in Chinese with English abstract)

      [15] 曹衛(wèi)華,楊敏麗. 江蘇稻麥兩熟區(qū)機械化生產(chǎn)模式的效率分析[J]. 農(nóng)業(yè)工程學報,2015,31(增刊1):89-101. Cao Weihua, Yang Minli. Efficiency of mechanical production mode in paddy rice-wheat double cropping area of Jiangsu province [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 89-101. (in Chinese with English abstract)

      [16] Gathala M K, Ladha J K, Saharawat Y S, et al. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice-wheat rotation[J]. Soil Science Society of America Journal, 2011, 75(5): 1851-1862.

      [17] Ladha J K, Dawe D, Pathak H, et al. How extensive are yield declines in long-term rice-wheat experiments in Asia[J]. Field Crops Research, 2003, 81(2): 159-180.

      [18] 秦寬,丁為民,方志超,等. 稻麥聯(lián)合收獲開溝埋草一體機播種系統(tǒng)設計與試驗[J]. 農(nóng)業(yè)機械學報,2017,48(5):54-62. Qin Kuan, Ding Weimin, Fang Zhichao, et al. Design and experiment of seeding system for harvest ditch and stalk-disposing machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 54-62. (in Chinese with English abstract)

      [19] 刁培松,杜瑞成,楊自棟,等. 氣動射種理論研究[J]. 農(nóng)機化研究,2005(1):94-96. Diao Peisong, Du Ruicheng, Yang Zidong, et al. Theoretical research on pneumatic seeding[J]. Journal of Agricultural Mechanization Research, 2005(1): 94-96. (in Chinese with English abstract)

      [20] 中華人民共和國水利部. GB/T50123-1999土工試驗方法標準[S]. 北京:中國計劃出版社,1999.

      [21] 韋杰,史炳林,李進林. 紫色土坡耕地埂坎土壤抗剪性能對含水率的響應[J]. 農(nóng)業(yè)工程學報,2016,32(20):153-160. Wei Jie, Shi Binglin, Li Jinlin. Response of soil shear strength to soil water content in purple soil slope cropland bunds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 153-160. (in Chinese with English abstract)

      [22] 孟鳳英,丁啟朔,鹿飛,等. 沖擊作用下粘性土壤破碎體的分形維數(shù)與影響因[J]. 農(nóng)業(yè)機械學報,2009,40(3):108-111. Meng Fengying, Ding Qishuo, Lu Fei, et al. Fractal dimensions of cohesive soil under impact and its influencing factors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(3): 108-111. (in Chinese with English abstract)

      [23] 謝晶,柳雨嫣,王金鋒. 噴嘴結構對氣流沖擊式速凍機鋼帶表面換熱特性的影響[J]. 農(nóng)業(yè)工程學報,2018,34(18):292-298. Xie Jing, Liu Yuyan, Wang Jinfeng. Effects of nozzle structures of air impinging freezer on heat transfer characteristics of steel strip surface[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 292-298. (in Chinese with English abstract)

      [24] 王超,朱金波,胡標. 環(huán)空淹沒射流吸氣性能與能量耗散特征研究[J]. 農(nóng)業(yè)機械學報,2016,47(8):14-21,13. Wang Chao, Zhu Jinbo, Hu Biao. Suction performance and energy dissipation characteristics of annular submerged jets[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 14-21, 13. (in Chinese with English abstract)

      [25] 于賢龍,高振江,代建武,等. 苜蓿氣體射流沖擊聯(lián)合常溫通風干燥裝備設計及試驗[J]. 農(nóng)業(yè)工程學報,2017,33(15):293-300. Yu Xianlong, Gao Zhenjiang, Dai Jianwu, et al. Design and experiment of air-impingement jet combined with normal temperature ventilation dryer for alfalfa[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 293-300. (in Chinese with English abstract)

      [26] 中國國家標準化管理委員會. GB/T 9478-2005,谷物條播機試驗方法[S]. 北京:中國標準出版社,2005.

      [27] 中國國家標準化管理委員會. GB/T 6973-2005,單粒(精密)播種機試驗方法[S]. 北京:中國標準出版社,2005.

      [28] 張伏,王亞飛,馬田樂,等. 山羊蹄底部非規(guī)則曲面仿生形貌數(shù)學模型構建及驗證[J]. 農(nóng)業(yè)工程學報,2018, 34(15):30-36. Zhang Fu, Wang Yafei, Ma Tianle, et al. Mathematical model establishment and validation of bionic irregular plantar surface of goat’s hoof[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 30-36. (in Chinese with English abstract)

      [29] 雷小龍,廖宜濤,叢錦玲,等. 油菜小麥兼用氣送式直播機集排器參數(shù)優(yōu)化與試驗[J]. 農(nóng)業(yè)工程學報,2018,34(12):16-26. Lei Xiaolong, Liao Yitao, Cong Jinling, et al. Parameter optimization and experiment of air-assisted centralized seed-metering device of direct seeding machine for rape and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 16-26. (in Chinese with English abstract)

      [30] Bunce C. Correlation, agreement, and bland-altman analysis: Statistical analysis of method comparison studies [J]. Am J Ophthal, 2009, 148(1): 4-6.

      [31] 中國國家標準化管理委員會. GB 4404.1-2008,糧食作物種子第一部分:禾谷類[S]. 北京:中國標準出版社,2008.

      Effect of incident angle on wheat soil-ripping parameters by pneumatic seeding

      Wang Chao, Li Hongwen※, He Jin, Wang Qingjie, Cheng Xiupei, Wei Zhongcai, Liu Junxiao

      (1.,,100083,; 2.(),,100083,)

      Rice-wheat rotation area, with heavy clay soil texture, that it iswheat planting area accounts for more than 37% of the total wheat sowing area in China as one of the major grain production bases, and rice-wheat rotation is the main cropping pattern in this region. Meanwhile, because of the shortage crop stubble and more rainfall in autumn, which lead to serious wet damage during the tilling and seeding stage for this field. Currently, most of the existing no-tillage and less-tillage seeding equipment for wheat sowing in rice stubble areas were optimized and developed on the basis of traditional contact-type wheat seeding technology, which lead to adhesion and serious blockage phenomenon, as well as increasing of operating resistance and power consumption during working. Therefore, a innovative technical proposal of non-contact type pneumatic seeding technology that could avoid contacting between sowing parts and soil was introduced in this paper, which in order to solve the problems of soil adhesion, blockage, drag increment as well as poor sowing quality for wheat seeders under the condition of sticky heavy loam clay in rice-wheat rotation areas. Experiment that utilized a self-made platform for wheat pneumatic seeding was conducted, which could rip wheat seed into the soil condition of clean seed bed without straw and stubble mulching by high pressure accelerating airflow. During the pneumatic seeding experiment, keeping a certain pneumatic seeding height and incident angle between the accelerating tube and topsoil surface, high-pressure gas was injected from the upper apex of the air nozzle and ejected from the bottom of it, which a stable high-speed airflow was formed in the accelerator tube (the length of the accelerator tube is 600 mm and the diameter is 10 mm). Then wheat seeds were put into the seed entrance and absorbed at a high speed under the negative air pressure of the ejector, during which the rubber sleeve could protect wheat seeds from damaging. After mixing with airflow, wheat seeds were accelerated by high-speed air flow in the accelerating tube. Finally, the wheat seeds flew out and ripped into the soil at a certain incident angle and high pneumatic seeding velocity.At the same time, high-speed photography technology was used to study the parameters of pneumatic seeding velocity, vertical velocity and pneumatic seeding depth under six levels (15°, 30°, 45°, 60°, 75°, 90°) of incident angles, and pneumatic seeding experiments under five different accelerating air pressures of 0.2 MPa, 0.4 MPa, 0.6 MPa, 0.8 MPa and 1 MPa for each incident angle were carried out respectively. Pneumatic seeding experimental results showed that: For pneumatic seeding in soil without straw and stubble mulching, when the incident angle increases continuously, wheat seeds can achieve higher vertical component of pneumatic seeding velocity deeper and pneumatic seeding depth at the same accelerating air pressures, the probability of horizontal slip and bounce of wheat seeds after touching soil show an decreasing trend, and pneumatic seeding depth has a positive correlation with pneumatic seeding velocity under each incident angle. Moreover, wheat seeds show various pneumatic seeding depth and soil impact effect without damage after pneumatic seeding. When the incident angles and the vertical component of pneumatic seeding velocity were more than 45° and 25 m/s respectively, wheat seeds can be completely ripped into the soil and the emergence rate is more than 86%. The best pneumatic seeding effect achieved as incident angle is 90°. In order to realize wheat vertical pneumatic seeding in field operation, the horizontal component of pneumatic seeding velocity should be equal to the operating speed of seeder and the vertical component of pneumatic seeding velocity should be greater than 25 m/s, which the seeder operating speed shows positively and negatively correlated with pneumatic seeding velocity and incident angle, respectively. The experimental results can provide basic data and technical support for the development of non-contact wheat seeding equipment in rice-wheat rotation area.

      agricultural machinery; experiment; wheat; pneumatic seeding; incident angle; non-contact type

      2019-02-17

      2019-03-29

      國家現(xiàn)代農(nóng)業(yè)小麥產(chǎn)業(yè)技術體系專項經(jīng)費項目(CARS-03);教育部創(chuàng)新團隊發(fā)展計劃項目(IRT13039)

      王 超,博士生,主要從事保護性耕作研究。Email:superwang_999@sina.com

      李洪文,博士,教授,主要從事保護性耕作研究。Email:lhwen@cau.edu.cn

      10.11975/j.issn.1002-6819.2019.16.004

      S223.2+3

      A

      1002-6819(2019)-16-0032-08

      王 超,李洪文,何 進,王慶杰,程修沛,魏忠彩,劉俊孝. 入射角度對氣力射播小麥種粒入土參數(shù)影響的試驗研究[J]. 農(nóng)業(yè)工程學報,2019,35(16):32-39. doi:10.11975/j.issn.1002-6819.2019.16.004 http://www.tcsae.org

      Wang Chao, Li Hongwen, He Jin, Wang Qingjie, Cheng Xiupei, Wei Zhongcai, Liu Junxiao. Effect of incident angle on wheat soil-ripping parameters by pneumatic seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 32-39. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.16.004 http://www.tcsae.org

      猜你喜歡
      氣力入射角氣壓
      一般三棱鏡偏向角與入射角的關系
      看不見的氣壓
      幼兒畫刊(2021年5期)2021-12-02 04:24:04
      基于重型裝備室內(nèi)搬運及移位的組合式氣力搬運裝置設計
      中醫(yī)導引法——八段錦(六) 攢拳怒目增氣力 背后七顛百病消
      壓力容器氣壓端蓋注射模設計
      模具制造(2019年4期)2019-06-24 03:36:46
      預制圓柱形鎢破片斜穿甲鋼靶的破孔能力分析*
      用經(jīng)典定理證明各向異性巖石界面異常入射角的存在
      中國古典舞作品《月滿春江》的氣息運用研究
      藝術評鑒(2017年16期)2017-09-20 04:56:51
      氣力式靜電感應噴霧系統(tǒng)研究
      電滲—堆載聯(lián)合氣壓劈烈的室內(nèi)模型試驗
      额敏县| 清镇市| 乌什县| 新宁县| 无为县| 大宁县| 德阳市| 通州市| 巫溪县| 黎城县| 南部县| 长沙市| 开平市| 陆丰市| 纳雍县| 吴桥县| 芜湖市| 县级市| 宁武县| 德阳市| 上杭县| 湘潭市| 安福县| 昭平县| 汉川市| 龙泉市| 望江县| 宁阳县| 台北市| 岑溪市| 泗洪县| 南通市| 龙山县| 通化县| 土默特左旗| 苏州市| 石家庄市| 怀宁县| 获嘉县| 阿坝| 邻水|