徐大鳳 劉永勝 常 青 陳四清① 趙捷杰 邊 力 葛建龍 劉長琳
真蛸早期發(fā)育形態(tài)特征及生長規(guī)律研究*
徐大鳳1,2劉永勝3常 青1,4陳四清1,4①趙捷杰1,2邊 力1,4葛建龍1,4劉長琳1,4
(1. 中國水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 青島 266071;2. 上海海洋大學(xué)水產(chǎn)與生命學(xué)院 上海 201306;3. 煙臺(tái)市水產(chǎn)研究所 煙臺(tái) 264000;4. 青島海洋科學(xué)與技術(shù)試點(diǎn)國家實(shí)驗(yàn)室 海洋漁業(yè)科學(xué)與食物產(chǎn)出過程功能實(shí)驗(yàn)室 青島 266071)
為了探究真蛸()早期幼體生長發(fā)育特征,在室內(nèi)水泥池育苗條件下,研究了孵化后1~100日齡真蛸的形態(tài)變化特征,并對(duì)1~49日齡真蛸的全長、腕長、胴長、胴寬、體重及最長腕的吸盤個(gè)數(shù)進(jìn)行了測量。結(jié)果顯示,在鹽度為30~32,水溫為18.6℃~26.0℃條件下,初孵仔蛸平均全長為(3.05±0.11) mm,大部分初孵仔蛸外卵黃囊在出膜前已吸收完畢,1日齡仔蛸已開口攝食,17日齡稚蛸開始攝食糠蝦,35日齡稚蛸開始營底棲生活,60日齡體色由透明發(fā)育為乳白色,80日齡體色已與成體相同,100日齡除性腺外,各器官發(fā)育成熟,形態(tài)特征與成體基本一致。研究表明,真蛸早期(1~49日齡)發(fā)育過程中,體重與全長呈立方函數(shù)關(guān)系,為=5×10–53– 0.00092+0.0072–0.0132;全長與腕長呈立方函數(shù)關(guān)系,為=–0.00123+0.04922+0.0243+0.2179;全長、體重、腕長、胴長、胴寬分別與日齡呈立方函數(shù)關(guān)系,為=–0.00013+0.01052–0.0122+3.0562、=–2×10–73+4×10–52–0.0004+0.0034、=–0.00043+0.02472–0.1037+0.8214、=–0.00043+0.01242+0.0749+1.4757、=–3×10–53+0.00252+0.0354+1.4026。依據(jù)營養(yǎng)類型、形態(tài)和生物學(xué)特征等參數(shù),將真蛸早期發(fā)育分為仔蛸期、稚蛸浮游期、稚蛸底棲期和幼蛸期4個(gè)時(shí)期。
真蛸;早期發(fā)育;形態(tài)特征;生長
真蛸()屬于軟體動(dòng)物門(Mollusca)、頭足綱(Caphalopoda)、二鰓亞綱(Dibranchiata)、八腕目(Octopoda)、蛸科(Octopodidae)、蛸屬(),是重要的經(jīng)濟(jì)種類,廣泛分布于世界各大洋的熱帶和溫帶海域(董正之, 1988)。真蛸味道鮮美,營養(yǎng)豐富,食用價(jià)值極高,既可鮮食,也可為干品,入藥具有補(bǔ)氣養(yǎng)血、收斂生肌的作用,深受人們喜愛。真蛸具有生命周期短(廖永巖等, 2006)、產(chǎn)卵量大(Boyle, 1983;Iglesias, 2007; Garcia, 2006)、食物轉(zhuǎn)化率高(Mangold, 1973; Roo, 2017)和生長速度快(Mangold, 1973)等特點(diǎn),是極具潛力的海水增養(yǎng)殖品種。
目前,由于對(duì)真蛸生物學(xué)、繁育條件和營養(yǎng)需求等知識(shí)缺乏了解,人工繁育條件下,幼體在浮游期生長慢、死亡率極高,阻礙了真蛸增養(yǎng)殖產(chǎn)業(yè)發(fā)展(Garrido, 2017; 王衛(wèi)軍等, 2017)。國外許多學(xué)者從生理、生化和營養(yǎng)等方面對(duì)真蛸幼體開展了大量工作(García-Garrido, 2012; Garrido, 2016、2017; Nande, 2017; Roo, 2017),而關(guān)于真蛸早期形態(tài)特征和生長規(guī)律鮮有報(bào)道。國內(nèi)對(duì)真蛸研究剛剛起步,李雷斌等(2012)和鄭小東等(2011)分別對(duì)真蛸幼體的餌料和浮游期生長進(jìn)行了研究,但對(duì)真蛸幼體早期生長發(fā)育特征的描述和劃分缺乏詳細(xì)的資料。因此,開展對(duì)真蛸早期幼體的形態(tài)特征與生長等方面的研究十分必要。
本研究觀察了真蛸幼體胚后從浮游至附底 (100日齡)過程中的形態(tài)發(fā)育,并對(duì)各個(gè)階段的形態(tài)特征進(jìn)行描述和劃分,對(duì)1~49日齡幼體的可量性狀進(jìn)行測量和分析,以期補(bǔ)充和完善真蛸早期生長發(fā)育研究資料,旨在豐富真蛸基礎(chǔ)生物學(xué)研究,為國內(nèi)開展真蛸人工育苗技術(shù)的開發(fā)提供參考資料。
真蛸親體于2017年7月采捕自浙江省南麂島海域,通過活水車運(yùn)輸?shù)綗熍_(tái)市水產(chǎn)研究所牟平基地人工培育,培養(yǎng)40 d后,自然交配產(chǎn)卵,將產(chǎn)卵親體、卵群及蛸巢一并置于水泥池中流水孵化,期間每日投喂少量菲律賓蛤仔()。培育水溫為23.7℃~25.4℃,鹽度為29~32,pH為7.8~8.4,日換水量為100%~200%,孵化21 d得到初孵幼體。
將初孵仔蛸移入水泥池(6 m×2 m×1.5 m)中培育,50日齡前,水溫變化范圍為23.6℃~26.0℃,50~ 100日齡,水溫變化范圍為18.6℃~23.0℃,鹽度為30~32,連續(xù)充氧,溶解氧含量>5.0 mg/L,3日齡前靜水培育,4日齡開始換水,日換水量為30%~70%,光照強(qiáng)度1000 lx以下。0~15日齡投喂鹵蟲()無節(jié)幼體,15~50日齡投喂鹵蟲無節(jié)幼體和活體糠蝦,50日齡后投喂光滑河藍(lán)蛤(),殼長為12~ 16 mm,日投喂2次。
每日定期觀察,1~49日齡真蛸,每隔1 d在池中隨機(jī)取8尾幼體,50~100日齡真蛸每隔4 d隨機(jī)取 5尾幼體,用顯微鏡(奧林巴斯CX23型)和解剖鏡(重光ZSA0850型)拍照并記錄其發(fā)育情況。1~49日齡真蛸,在解剖鏡下測定其全長、胴長、胴寬、腕長和最長腕吸盤個(gè)數(shù)等形態(tài)特征,用精密電子天平測定其體重,測量前用擰干的濕紗布吸干表面水分。測量方法:全長(Total length, TL)為真蛸胴部低端至腕部最前端的距離;腕長(Arm length, AL)為真蛸腕的基部至頂端的距離;胴長(Mantle length, ML)為真蛸胴部底端至頭部底端的距離;胴寬(Mantle width, MW)為真蛸胴體最寬的距離(圖1)。
圖1 真蛸測量參數(shù)(蔡如星, 1991)
實(shí)驗(yàn)數(shù)據(jù)采用Excel2016和SPSS19.0軟件處理。選定2為最大值的函數(shù)關(guān)系式作為最佳曲線。以平均體重、全長及腕長的日均增長量、瞬時(shí)增長率來描述真蛸幼體的生長特征(李達(dá)等, 2017)。
參數(shù)計(jì)算公式為:
(1)瞬時(shí)增長率(Instantaneous growth gain rate, %/t)=[(ln2–ln1)/(2–1)]×100%
(2)瞬時(shí)增重率(Instantaneousweight gainrate, %/t) =[(ln2–ln1)/(2–1)]×100%
(3)日均增長量(Average daily growth gain, mm/d)= (2–1)/(2–1)
(4)日均增重量(Average daily weight gain, g/d)= (2–1)/(2–1)
式中,1為1時(shí)刻的全長、腕長或胴長(mm);2為2時(shí)刻的全長、腕長或胴長;1為1時(shí)刻的體重(g);2為2時(shí)刻的體重(g)。
2.1.1 仔蛸期 初孵仔蛸:大部分初孵仔蛸外卵黃囊已吸收完畢,僅有少數(shù)尚未吸收(圖2a、圖2b),未吸收完卵黃囊呈橢圓形,長徑為(0.842±0.019) mm,短徑為(0.801± 0.002) mm,卵黃囊被腕部包裹,在孵出9 h內(nèi)可被吸收完;初孵幼蛸內(nèi)卵黃囊披附在消化腺周圍,尚未吸收完畢(圖2w)。
1~2 d:孵化1 d仔蛸已開口攝食,全長為(3.05± 0.11) mm,腕長/胴長比為0.40∶1,形態(tài)已與成體接近(圖2c),胴體背部外套膜表面透明無色,內(nèi)部有8個(gè)色素斑塊,胴體腹部色素斑塊16~20個(gè)均勻分布;頭部背面有7~9個(gè)大小不一、近卵圓形色素斑塊,頭部腹面有2個(gè)近紡錘形淺色斑;各腕長大小相近,腕上均勻分布3~4個(gè)色素斑塊,各腕3個(gè)初生吸盤(圖2v);口球內(nèi)上下顎發(fā)達(dá),消化、呼吸以及循環(huán)器官結(jié)構(gòu)明顯;內(nèi)卵黃囊縮小,但未消化完畢(圖2x);初孵仔蛸可在水中自由活動(dòng),主要靠胴體收縮來完成,營浮游生活,活動(dòng)能力較弱;當(dāng)仔蛸停留在某一水層時(shí),頭部朝下,胴體斜向上,呈斜角狀態(tài),有趨光性。
3~5 d:腕部末端開始生長,但并未形成新生吸盤;鰓葉逐漸增至8~10片,胴長、腕長、胴寬逐步增長,但生長速度較為緩慢;強(qiáng)光下或遇見刺激時(shí),有噴墨現(xiàn)象發(fā)生;有集群現(xiàn)象。孵化第5天(圖2d),內(nèi)卵黃囊已吸收完畢(圖2y),全長為(3.33±0.10) mm,腕長/胴長比為0.44∶1,全長日增長量為0.07 mm/d。
2.1.2 稚蛸浮游期 7~25 d:生長速度加快,隨著腕增長,腕上色素與吸盤個(gè)數(shù)逐漸增多,腕吸盤2行,生長于3個(gè)初生吸盤末端;孵化25 d(圖2h),最長腕吸盤個(gè)數(shù)逐漸增至13個(gè),全長為(7.51±0.44) mm,腕長/胴長比為0.745∶1,全長日增長量為0.224 mm/d。
27~33 d:胴體背部色素斑塊增多(圖2i),相比于胴長,腕部生長迅速,腕上色素繼續(xù)增加;孵化33 d (圖2j),各腕之間觀察到由淺膜連接(圖2z),腕部吸盤逐漸增至17~19個(gè),全長為(10.15±0.28) mm,腕長/胴長比為1∶1,全長日增長量為0.250 mm/d。
2.1.3 稚蛸底棲期 35 d:孵化35 d稚蛸(圖2k),幼體底棲比例達(dá)60%,即認(rèn)為真蛸幼體進(jìn)入稚蛸底棲期。此時(shí)全長為(10.76±0.48) mm,腕長/胴長比為1.04∶1,全長日增長量為0.305 mm/d,平均吸盤個(gè)數(shù)為21個(gè),吸附能力增強(qiáng),可吸附在池壁或池底。
37~49 d:胴體腹部色素斑塊收縮,并逐漸向胴體底部聚集;胴體背面色素斑塊數(shù)量增多;孵化49 d (圖2o),稚蛸吸盤增至26個(gè),全長為(15.16±1.10) mm,腕長/胴長比為1.51∶1,全長日增長量為0.329 mm/d。
52~60 d:胴體背部色素斑塊逐漸退化(圖2p),體色逐漸由透明變?yōu)槿榘咨?圖2q);腕出現(xiàn)明顯分化,腕式特征:2>3>4>1,與成體相同(圖2q);孵化60 d,全長為(17.95±1.71) mm,腕長/胴長比為1.98∶1,全長日增長量為0.299 mm/d;吸附池底能力增強(qiáng),在池底爬行活動(dòng)增多。
60~90 d:胴體和腕部色素斑點(diǎn)極細(xì),且密集增多(圖2r、圖2s),頭部色素斑塊褪化,體色逐漸由乳白色變?yōu)楹稚?,體色已與成體相同;孵化90 d,全長為(31.02±2.01) mm,腕長/胴長比為2.5∶1,全長日增長量為0.436 mm/d;強(qiáng)光照射或受刺激體色變白。
2.1.4 幼蛸 100 d:發(fā)育100 d(圖2t、圖2u),全長為(42.51±2.63) mm,全長日增長量為1.150 mm/d,腕長/胴長比為3.63∶1,與成體真蛸基本一致。稚蛸生長到除性腺未發(fā)育成熟外,其形態(tài)特征已與成體真蛸一致,進(jìn)入幼蛸階段。
真蛸早期發(fā)育階段(0~49 d)的各項(xiàng)生長指標(biāo)見表1,仔蛸的生長較為緩慢,17日齡后生長速度明顯加快。
a~c:初孵仔蛸;a:含外卵黃囊;b:7 h;c:未含外卵黃囊;d~s:稚蛸;d:5 d;e:9 d;f:13 d;g:17 d;h:25 d;i:29 d;j:33 d;k:35 d;l:37 d;m:41 d;n:45 d;o:49 d;p:52 d;q:60 d;r:80 d;s:90 d;t和u:100 d幼蛸;v:初孵仔蛸腕;w:初孵仔蛸腹面胴體(7 h);x:1 d仔蛸腹面胴體;y:5 d仔蛸腹面胴體;z:33 d稚蛸腕部。A:外卵黃囊;B:外卵黃囊(7 h);C:吸盤;D和E:內(nèi)卵黃囊;F:無內(nèi)卵黃囊;G:淺膜
a~c: Newly hatched larva; a: External yolk sac; b: 7 h; c: No external yolk sac; d~s: Juvenile; d: 5 d; e: 9 d; f: 13 d; g: 17 d; h: 25 d; i: 29 d2; j: 33 d; k: 35 d; l: 37 d; m: 41 d; n: 45 d; o: 49 d; p: 52 d; q: 60 d; r: 80 d; s: 90 d; t and u: 100 d young octopus; v: Newly hatched larva arm; w: Venter mantle view of newly hatched larva (7 h); x: Venter mantle view of 1 d larva; y: Venter mantle view of 5 d larva; z: 33 d juvenile arm.A: External yolk sac; B: External yolk sac (7 h); C: Sucker; D and E: Internal yolk; F: No internal yolk; G: Superficial membrane
初孵仔蛸的平均體重為(0.0026±0.0001) g,平均全長為(3.05±0.11) mm;49日齡,平均體重為(0.0455± 0.0022) g,平均全長為(15.16±1.10) mm,體重為初孵仔蛸的28倍,全長為初孵仔蛸的5倍。通過擬合方程可知,體重、全長與日齡呈立方函數(shù)增長,方程分別為=–2×10–73+4×10–52–0.0004+0.0034 (圖3,2= 0.9889)和=–0.00013+0.01052–0.0122+ 3.0562 (圖4,2=0.9968)。體重與全長關(guān)系符合如下關(guān)系式:= 5×10–53–0.00092+0.0072–0.0132(圖5,2= 0.9951)。孵化后1~17 d,體重和全長總增長速度較為緩慢,體重和全長日增長量分別為0.00025 g/d和0.139 mm/d;孵化后19~49 d,生長較快,體重和全長的日增長量為分別為0.00125 g/d和0.317 mm/d。
2.4.1 腕長、胴長、胴寬與日齡的關(guān)系 真蛸發(fā)育早期各器官生長緩慢,1~33日齡,腕長小于胴長;隨著全長增長,腕相對(duì)其他器官增長迅速,35日齡的幼體平均腕長為(4.79±0.35) mm,平均胴長為(4.60± 0.31) mm,腕長已大于胴長。生長至49日齡時(shí),腕長為(7.68±0.53) mm的稚蛸,胴長為(5.09±0.32) mm,胴寬為(5.40±0.12) mm。通過擬合方程可知,腕長、胴長、胴寬與日齡呈立方函數(shù)增長,方程分別為= –0.00043+0.02472–0.1037+0.8214 (圖6,2= 0.9963);=–0.00043+0.01242+0.0749+1.4757 (圖6,2=0.9941);=–3×10–53+0.00252+0.0354+1.4026 (圖7,2=0.9974);真蛸幼體全長與腕長符合關(guān)系式=–0.00123+0.04922+ 0.0243+0.2179 (圖8,2= 0.9983)。
圖3 真蛸幼體體重與日齡的關(guān)系
圖4 真蛸幼體全長與日齡的關(guān)系
圖5 真蛸幼體體重與全長的關(guān)系
圖6 真蛸幼體胴長(a)、腕長(b)與日齡的關(guān)系
圖7 真蛸幼體胴寬與日齡的關(guān)系
圖8 真蛸幼體全長與腕長的關(guān)系
圖9 真蛸幼體腕長與胴長的比值變化
2.4.2 早期吸盤個(gè)數(shù)變化 真蛸早期吸盤個(gè)數(shù)變化如圖10所示,吸盤發(fā)育是真蛸幼體增長變化的重要指標(biāo),初孵仔蛸每個(gè)腕有3個(gè)初生吸盤,1~7 d,吸盤個(gè)數(shù)未見增加;1~11 d吸盤個(gè)數(shù)增加較少,增加2個(gè)吸盤;11~21 d增加了6個(gè)吸盤;21~31 d增加了6個(gè)吸盤,吸盤個(gè)數(shù)增加速度加快;31~41d增加了 5個(gè)吸盤;41~49 d增加了4個(gè)吸盤,吸盤個(gè)數(shù)增加速度放緩,其中生長至35日齡底棲生活時(shí),平均吸盤個(gè)數(shù)為21個(gè)。
圖10 真蛸早期幼體吸盤個(gè)數(shù)變化
在蛸類早期階段劃分研究方面,Moguel等(2010)首次把瑪雅蛸()早期生命歷程分為2個(gè)階段:后孵化期和幼蛸期。Fernández-Gago等(2017)將胚胎和孵化后1個(gè)月真蛸分為4個(gè)階段:胚胎期、前孵化期、后孵化期和幼蛸期,但均未對(duì)底棲階段的真蛸幼體劃分。本研究依據(jù)營養(yǎng)類型、形態(tài)和生物學(xué)特征等參數(shù),將真蛸早期階段劃分為:仔蛸期、稚蛸浮游期、稚蛸底棲期和幼蛸期4個(gè)階段。各階段劃分依據(jù)如下:(1)仔蛸期:營浮游生活,初孵仔蛸以內(nèi)源性和外源性混合營養(yǎng)為主,內(nèi)卵黃囊未吸收,內(nèi)卵黃囊完全消失為這一時(shí)期結(jié)束的標(biāo)志;(2)稚蛸浮游期:營浮游生活,真蛸內(nèi)卵黃囊吸收完畢,僅以外源性攝食為營養(yǎng)來源,腕長小于胴長;(3)稚蛸底棲期:營底棲生活,腕長生長迅速,腕長大于胴長,但此時(shí)腕長/胴長比尚未達(dá)到成體標(biāo)準(zhǔn),色素斑塊縮小分散,透明體色逐漸轉(zhuǎn)為乳白色,隨后體色轉(zhuǎn)為棕褐色,已與真蛸親體體色相似;(4)幼蛸:性腺發(fā)育尚未成熟,但腕長/胴長比等外部形態(tài)特征與成體基本相同。
本研究觀察到大部分初孵仔蛸外卵黃囊在卵內(nèi)已吸收,內(nèi)卵黃囊4~5日齡吸收完畢,這與Fernández-Gago等(2017)的研究結(jié)果基本一致。Vidal等(2002)認(rèn)為真蛸與其他頭足類動(dòng)物類似,在孵化后2~3日齡仔蛸可能仍將卵黃作為主要的能量來源,由于初孵仔蛸腕不發(fā)達(dá)、吸盤個(gè)數(shù)少以及消化能力較弱等原因(Young, 1988),掠食活動(dòng)能力較弱。17日齡前的真蛸,營浮游生活,體重、全長的生長速度緩慢,攝食和消化能力較弱,僅可攝食鹵蟲幼體等活動(dòng)能力較弱的生物餌料。而在17日齡后,隨著個(gè)體增長,腕長/胴長比增加迅速,消化系統(tǒng)逐漸完善,提高了捕食與消化食物的能力,可捕獲糠蝦等活動(dòng)力較強(qiáng)、個(gè)體較大的生物餌料。17日齡后,體重和體長平均日增長量比前期提高了0.001 g/d和0.178 mm/d,由此可推斷,仔蛸孵化后,為提高捕獲食物和躲避敵害的能力,影響仔稚幼蛸存活的視覺、攝食和運(yùn)動(dòng)等的重要器官在短時(shí)間內(nèi)優(yōu)先發(fā)育,體重增長相對(duì)緩慢,以此增強(qiáng)適應(yīng)環(huán)境能力,提高成活率(何滔等, 2012; 雷舒涵等, 2014; Moguel, 2010)。35日齡浮游生活結(jié)束,進(jìn)入底棲階段,這與Nixon等(1996)研究結(jié)果基本相同。進(jìn)入底棲階段的真蛸,腕長/胴長比不斷增大,腕部作為真蛸的重要器官,腕部的生長速度對(duì)真蛸的生存能力有極為重要的影響,腕的快速增長,可為吸盤提供發(fā)育的空間,使稚蛸有吸附池壁和在池底爬行的能力,并提高稚蛸主動(dòng)捕食能力。真蛸底棲階段平均吸盤個(gè)數(shù)為21,與Takeuchi(2009)的報(bào)道結(jié)果基本一致,而Iglesias等(2004)報(bào)道的底棲吸盤個(gè)數(shù)為23個(gè),推測此差異與培育環(huán)境有關(guān)。50日齡后真蛸主要各功能器官進(jìn)一步完善,腕上吸盤個(gè)數(shù)不斷增多,攝食與捕食能力進(jìn)一步增強(qiáng),已可攝食小貝殼類餌料。
在本研究幼苗培育實(shí)驗(yàn)過程中,有2個(gè)危險(xiǎn)期。第1個(gè)危險(xiǎn)期:7~15 d,會(huì)出現(xiàn)大量死亡現(xiàn)象(林國清等, 2008),Iglesias等(2014)和Vidal等(2005)認(rèn)為在此階段,稚蛸的捕食和消化能力正在進(jìn)一步完善,是蛸類內(nèi)源性和外源性攝食過渡的關(guān)鍵時(shí)期。真蛸對(duì)餌料要求比較高,幼體孵化前幾周需要不間斷的捕食與攝食,所以在前期餌料供應(yīng)不足情況下,可能會(huì)導(dǎo)致幼蛸因營養(yǎng)缺乏而死亡。作者在養(yǎng)殖過程中發(fā)現(xiàn),前期仔蛸活動(dòng)能力較差,主動(dòng)攝食能力較低,需要維持較高密度餌料投喂來保證被動(dòng)攝食,但此階段仍具有很高的死亡率(Seixas, 2010a、b),具體原因和機(jī)理還需進(jìn)一步研究。
第2個(gè)危險(xiǎn)期:33~40 d,此時(shí)從浮游生活逐步進(jìn)入底棲生活,各器官發(fā)育已較成熟,稚蛸主動(dòng)攝食能力增強(qiáng),但此階段真蛸幼體對(duì)餌料和營養(yǎng)要求較高,單一餌料已經(jīng)不能滿足稚蛸營養(yǎng)需求,需要PUFA或多種營養(yǎng)來提供補(bǔ)充所需,如蟹幼體的添加可以顯著提高成活率(Navarro, 2000、2003)。本研究由于條件限制,僅投喂糠蝦餌料以致成活率較低,所以此階段應(yīng)注意餌料的營養(yǎng)強(qiáng)化,投喂復(fù)合餌料彌補(bǔ)單一餌料在營養(yǎng)上的不足,提高苗種成活率。
Boyle PR. Cephalopod life cycles. Academic Press, 1983, 335–364
Cai RX. Zoology molluscs of Zhejiang. Hangzhou: Zhejiang Science and Technology Press, 1991, 302 [蔡如星. 浙江動(dòng)物志·軟體動(dòng)物. 杭州: 浙江科學(xué)技術(shù)出版社, 1991, 302]
Dong ZZ. Fauna Sinica, Mollusca, Cephalopod. Beijing: Science Press, 1988, 88–95[董正之. 中國動(dòng)物志軟體動(dòng)物門頭足綱. 北京: 科學(xué)出版社, 1988, 88–95]
Fernández-Gago R, He? M, Gensler H,. 3D reconstruction of the digestive system incuvier, 1797 embryos and paralarvae during the first month of life. Frontiers in Physiology, 2017, 8: 462
Garcia GB, Cerezo VJ. Optimal proportions of crabs and fish in diet for common octopus () on growing. Aquaculture, 2006, 253(1): 502–511
García-Garrido S, Hachero-Cruzado I, Rosas C,. Protein and amino acid composition from the mantle ofjuveniles (Cuvier, 1797) exposed to prolonged starvation. Journal of Coastal Conservation, 2012, 16(4): 555–566
Garrido D, Navarro JC, Perales-Raya C,. Fatty acid composition and age estimation of wild, paralarvae. Aquaculture, 2016, 464: 564–569
Garrido D, Varó I, Morales AE,. Assessment of stress and nutritional biomarkers in cultured, paralarvae: Effects of geographical origin and dietary regime. Aquaculture, 2017, 468(1): 558–568
He T, Xiao ZZ, Liu QH,. Allometric growth in rock bream larvae (Temminck et Schlegel 1844). Journal of Fisheries of China, 2012, 36(8): 1242–1248 [何滔,肖志忠, 劉清華, 等. 條石鯛早期發(fā)育階段的生長模式. 水產(chǎn)學(xué)報(bào), 2012, 36(8): 1242–1248]
Iglesias J, Fuentes L, Villanueva R. Cephalopod culture. Springer Netherlands, 2014, 427–450
Iglesias J, Otero JJ, Moxica C,. The completed life cycle of the Octopus (, Cuvier) under culture conditions: Paralarval rearing usingand Zoeae, and first data on juvenile growth up to 8 months of age. Aquaculture International, 2004, 12(4–5): 481–487
Iglesias J, Sánchez FJ, Bersano JGF,. Rearing ofs, paralarvae: Present status, bottlenecks and trends. Aquaculture, 2007, 266(1): 1–15
Lei SH, Zhang XM, Zhang PD,. Early development of golden cuttlefish. Journal of Fishery Sciences of China, 2014 , 21(1): 37–43 [雷舒涵, 張秀梅, 張沛東, 等. 金烏賊的早期生長發(fā)育特征. 中國水產(chǎn)科學(xué), 2014, 21(1): 37–43]
Li D, Liu CL, Li A,. Principal component analysis of the morphometric traits of the cuttlebone ofat early developmental stages. Progress in Fishery Sciences, 2017, 38(5): 41–49 [李達(dá), 劉長琳, 李昂, 等. 金烏賊()早期發(fā)育階段內(nèi)殼形態(tài)學(xué)指標(biāo)的主成分分析. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(5): 41–49]
Li LB, Zhong JX, Ning Y,. Effects of diets on growth and survival rates ofparalarvae. Journal of Fujian Fisheries, 2012, 34(4): 326–330 [李雷斌, 鐘建興, 寧岳, 等. 不同餌料對(duì)真蛸浮游幼體生長和存活的影響.福建水產(chǎn), 2012, 34(4): 326–330]
Liao YY, Gao FY, Zhang JJ. The research and aquaculture of octopus that distribution in China. Journal of Aquaculture, 2006, 27(5): 11–15 [廖永巖, 高鳳英, 張聚杰. 中國產(chǎn)章魚的研究和增養(yǎng)殖. 水產(chǎn)養(yǎng)殖, 2006, 27(5): 11–15]
Lin GQ, Huang J, Hu RC,. Preliminary experiment on artificial propagation of. Journal of Fujian Fisheries, 2008(3): 16–20 [林國清, 黃健, 胡榮炊, 等. 真蛸人工繁殖初步試驗(yàn). 福建水產(chǎn), 2008(3): 16–20]
Mangold K, von Boletzky S. New data on reproductive biology and growth of. Marine Biology, 1973, 19(1): 7–12
Moguel C, Mascaró M, Avila-Poveda OH,. Morphological, physiological, and behavioral changes during post-hatching development of(Mollusca: Cephalopoda) with special focus on the digestive system. Aquatic Biology, 2010, 9(1): 35–48
Nande M, Iglesias J, Domingues P,. Effect of temperature on energetic demands during the last stages of embryonic development and early life of(Cuvier, 1797) paralarvae. Aquaculture Research, 2017, 48(4): 1951– 1961
Navarro JC, Villanueva R. The fatty acid composition ofparalarvae reared with live and inert food: Deviation from their natural fatty acid profile. Aquaculture, 2003, 219(1–4): 613–631
Navarro JC, Villanueva R. Lipid and fatty acid composition of early stages of cephalopods: An approach to their lipid requirements. Aquaculture, 2000, 183(1–2): 161–177
Nixon M, Mangold K. The early life of(Cephalopoda: Octopodidae) in the plankton and at settlement: A change in lifestyle. Journal of Zoology, 1996, 239(2): 301–327
Roo J, Estefanell J, Betancor MB,. Effects of supplementation of decapod zoea to Artemia basal diet on fatty acid composition and digestive gland histology in common octopus () paralarvae. Aquaculture Research, 2017, 48(2): 633–645
Seixas P, Otero A, Valente LMP,. Growth and fatty acid composition of, paralarvae fed with enriched Artemia, or co-fed with an inert diet. Aquaculture International, 2010a, 18(6): 1121–1135
Seixas P, Rey-Méndez M, Valente LMP,. High DHA content in Artemia is ineffective to improveparalarvae rearing. Aquaculture, 2010b, 300(1–4): 156–162
Takeuchi T. Nutritional studies on improvement of health and quality of marine aquatic animals larvae. Nippon Suisan Gakkaishi, 2009, 75(4): 623–635
Vidal EAG, DiMarco FP, Wormuth JH,. Influence of temperature and food availability on survival, growth and yolk utilization in hatchling squid. Bulletin of Marine Science, 2002, 71(2): 915–931
Vidal EAG, Roberts MJ, Martins RS. Yolk utilization, metabolism and growth in reared,reynaudii paralarvae. Aquatic Living Resources, 2005, 18(4): 385–393
Wang WJ, Dong G, Li HJ,. Feeding behavior of larvaland the effect of different diets on its growth and survival. Progress in Fishery Sciences, 2017, 38(6): 100–106 [王衛(wèi)軍, 董根, 李煥軍, 等. 短蛸()幼體攝食行為和不同餌料對(duì)其生長、存活的影響. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(6): 100–106]
Young R, Harman RF. Larva, paralarva and subadult in cephalopod terminology. Malacologia, 1988, 29(1): 201– 207
Zheng XD, Liu ZS, Zhao N,. Embryonic development and paralarval growth of. Oceanologia et Limnologia Sinica, 2011, 42(2): 317–323[鄭小東, 劉兆勝, 趙娜, 等. 真蛸()胚胎發(fā)育及浮游期幼體生長研究. 海洋與湖沼, 2011, 42(2): 317–323]
Morphology, Growth and Development in the Early Life of
XU Dafeng1,2, LIU Yongsheng3, CHANG Qing1,4, CHEN Siqing1,4①, ZHAO Jiejie1,2, BIAN Li1,4, GE Jianlong1,4, LIU Changlin1,4
(1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071; 2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306; 3. Fisheries Research Institute of Yantai, Yantai 264000; 4. Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071)
To explore the growth and development patterns during the early life period of, the morphological characteristics of larva, juvenile, and youngunder industrialized breeding conditions were observed and recorded. From hatching to 49 days of age, eight larvae were sampled randomly every two days, and total length, arm length, mantle length, mantle width, body weight, and sucker number in the longest arm were measured. In conditions of water salinity of 30~32 and 18.6℃~26.0℃, the average full length of the newly hatched larva was (3.05±0.11) mm; the yolk sac of newly hatched larvae was absorbed by the larvae themselves before hatching or within 9 hours after hatching; the 1-day-old larva just began to feed and the 17-day-old larva could feed on shrimp; at the age of 35 days, the larvae were ready for benthonic living; the body color of 60-day-old larva changed from transparent to milky white; at the age of 80 days, the body color of the larva is the same as that of the adult; the organs of 100-day-old larva were mature except for the gonads, and the morphological characteristics were consistent with those of the adult. The results showed thatlarva (1~49 days of age) body weight exhibited a cubic function growth relationship with total length, represented by the equation:=5×10–53–0.00092+0.0072–0.0132; total length exhibited a linear growth relationship with arm length, represented by the equation:=–0.00123+0.04922+0.0243+0.2179;total length, body weight,arm length, mantle length, and mantle width exhibited a cubic function growth relationship with days respectively, with the regression equations:=–0.00013+0.01052–0.0122+3.0562,=–2×10–73+4× 10–52–0.0004+0.0034,=–0.00043+0.02472–0.1037+0.8214,=–0.00043+0.01242+0.0749+1.4757, and=–3×10–53+0.00252+0.0354+1.4026. We divided the early period ofinto four developmental stages: Larvae octopus, juvenile paralarvae octopus, juvenile benthonic octopus, and young octopus. Each stage was determined by feeding style (endogenous or exogenous), morphological and biological characteristics, and ratio between arm lengths and mantle length.
; Early life development; Morphological characteristics; Growth
CHEN Siqing, E-mail: chensq@ysfri.ac.cn
* 現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-49)和煙臺(tái)市科技計(jì)劃項(xiàng)目(2014NC049)共同資助 [This work was supported by the Earmarked Fund of China Aquaculture Research System(CARS-49), and Science and Technology Development Plan of Yantai(2014NC049)]. 徐大鳳,E-mail: xudafengqq@163.com
陳四清,研究員,E-mail: chensq@ysfri.ac.cn
2018-07-26,
2018-08-15
S917.4
A
2095-9869(2019)05-0145-10
10.19663/j.issn2095-9869.20180726001
http://www.yykxjz.cn/
徐大鳳, 劉永勝, 常青, 陳四清, 趙捷杰, 邊力, 葛建龍, 劉長琳. 真蛸早期發(fā)育形態(tài)特征及生長規(guī)律研究. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(5): 145–154
Xu DF, Liu YS, Chang Q, Chen SQ, Zhao JJ, Bian L, Ge JL, Liu CL. Morphology, growth and development in the early life of. Progress in Fishery Sciences, 2019, 40(5): 145–154
(編輯 馬璀艷)