彭 琪,張 強(qiáng),張 宇,唐金平,何文君,劉映春
(1.成都理工大學(xué) 地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都 610059;2.廣東省財(cái)經(jīng)職業(yè)技術(shù)學(xué)校,廣東 佛山 528231)
據(jù)統(tǒng)計(jì),我國(guó)地下水資源量?jī)H占全國(guó)水資源總量的31%,卻維持全國(guó)近70%的人口飲用和40%的農(nóng)田灌溉,可見(jiàn)其在保證居民生活用水、社會(huì)經(jīng)濟(jì)發(fā)展和生態(tài)環(huán)境平衡等方面起的作用不可小覷[1]。然而隨著我國(guó)工業(yè)化與都市化進(jìn)程,地下水的污染問(wèn)題日趨顯著。因此,選取客觀、有效的地下水水質(zhì)評(píng)價(jià)方法是非常必要的,合理的評(píng)價(jià)結(jié)果對(duì)地下水資源的開(kāi)發(fā)利用具有重要意義。
傳統(tǒng)的綜合水質(zhì)評(píng)價(jià)方法,通常首先對(duì)各評(píng)價(jià)指標(biāo)進(jìn)行賦權(quán),再根據(jù)不同方法理論進(jìn)行等級(jí)歸類(lèi)。但值得注意的是,不同的賦權(quán)方法得到的權(quán)重往往不一致,各評(píng)價(jià)指標(biāo)權(quán)重的取值大小直接關(guān)系到最終的評(píng)價(jià)結(jié)果,對(duì)于如何才算合理賦權(quán)等爭(zhēng)議問(wèn)題也一直存在。為此引入D-HDT對(duì)地下水水質(zhì)進(jìn)行評(píng)價(jià)研究,合理規(guī)避了這一問(wèn)題,為地下水水質(zhì)評(píng)級(jí)工作開(kāi)辟新思路。
D-HDT源于離散數(shù)學(xué)的序理論,表示為有限偏序集的數(shù)學(xué)圖表[2]。在D-HDT中,對(duì)于m個(gè)樣品,n個(gè)測(cè)度構(gòu)成矩陣A=[aij]m×n,先按其測(cè)度對(duì)矩陣列進(jìn)行排序,通過(guò)歸一化后得到偏序標(biāo)準(zhǔn)矩陣C=[cij]m×n,然后經(jīng)構(gòu)造的函數(shù)關(guān)系式獲得鄰接布爾矩陣F=[fij]m×m,再將矩陣F轉(zhuǎn)化成關(guān)系矩陣HR,由關(guān)系矩陣HR經(jīng)過(guò)一系列的拓?fù)溥\(yùn)算得到層次分明的有向哈斯圖[3]。
在環(huán)境工程領(lǐng)域中,D-HDT常用于多指標(biāo)系統(tǒng)的排序,確定環(huán)境污染物的敏感性、優(yōu)先等級(jí)及其空間分布水平等[4-6]。本次將其引入地下水水質(zhì)評(píng)價(jià)中,以拓?fù)鋵蛹?jí)圖的形式展示水質(zhì)的好壞,其效果相對(duì)于傳統(tǒng)用表格、數(shù)學(xué)公式及文字等詮釋方式顯得更直觀。
具體評(píng)價(jià)步驟如下:
(1)確定評(píng)價(jià)指標(biāo)集及分級(jí)標(biāo)準(zhǔn)。地下水環(huán)境質(zhì)量評(píng)價(jià)涉及指標(biāo)眾多,不同的地下水系統(tǒng)中水質(zhì)指標(biāo)對(duì)地下水環(huán)境的影響不同,評(píng)價(jià)指標(biāo)的合理選取既可以避免忽略一些關(guān)鍵污染指標(biāo),也可以簡(jiǎn)化部分評(píng)價(jià)的工作量。地下水水質(zhì)分級(jí)標(biāo)準(zhǔn)參考《地下水質(zhì)量標(biāo)準(zhǔn)(GB/T 14848-2017)》。
(2)指標(biāo)數(shù)據(jù)處理。由于D-HDT最終結(jié)果只能反映樣品之間的優(yōu)劣層級(jí)排序,而無(wú)法獲得某個(gè)層級(jí)具體歸為哪一級(jí)別,為彌補(bǔ)這一遺憾,按照《地下水質(zhì)量標(biāo)準(zhǔn)(GB/T 14848-2017)》構(gòu)造5組(S1-S5)標(biāo)準(zhǔn)等級(jí)(Ⅰ-Ⅴ)樣品數(shù)據(jù),并將其加入到待評(píng)樣品數(shù)據(jù)中,構(gòu)成一個(gè)初始數(shù)據(jù)矩陣A=[aij]m×n,然后利用極差處理法將初始數(shù)據(jù)矩陣A歸一化獲得標(biāo)準(zhǔn)矩陣B=[bij]m×n。
(3)指標(biāo)權(quán)重排序。本方法主要依靠權(quán)重的順序來(lái)進(jìn)行偏序處理,故其順序可直接影響評(píng)價(jià)結(jié)果的準(zhǔn)確性。雖然不同的方法獲得的權(quán)重大小不同,但是在權(quán)重排序上往往會(huì)一致[7]。選擇合適的計(jì)算方法獲得各個(gè)指標(biāo)的權(quán)重,然后由大到小依次排序,標(biāo)準(zhǔn)矩陣B相應(yīng)的列也隨之改變,得到偏序標(biāo)準(zhǔn)化矩陣C=[cij]m×n。
(4)建立鄰接布爾矩陣。在建立鄰接矩陣之前,首先要對(duì)偏序標(biāo)準(zhǔn)化矩陣C=[cij]m×n轉(zhuǎn)換成蘊(yùn)含權(quán)重信息的方案決策矩陣D=[dij]m×n。文獻(xiàn)[8]提出對(duì)于含有m個(gè)方案n個(gè)指標(biāo)的決策問(wèn)題,在各評(píng)價(jià)指標(biāo)的權(quán)重順序滿(mǎn)足ω11>ω12>…>ω1n的條件下,可通過(guò)式(1)計(jì)算獲得累加決策矩陣D=[dij]m×n。
D=[dij]m×n=CE
(1)
(2)
式中:E為上三角全為1的矩陣。
建立鄰接布爾矩陣通常是將累加決策矩陣D各樣品相互比較判斷得到[9],其中樣品i與樣品j要比較兩次,對(duì)于整個(gè)評(píng)價(jià)系統(tǒng)來(lái)說(shuō)存在m個(gè)樣品則要比較m(m-1)次,而樣品自身則不需要比較,即鄰接布爾矩陣的對(duì)角線(xiàn)上的值通常用0來(lái)表示,其他位置的值由式(3)比較關(guān)系求得,即當(dāng)j行中每一個(gè)值均大于i行中每一個(gè)值時(shí),fij=1,否則fij=0。由此獲得鄰接布爾矩陣F=[fij]m×m,由于鄰接布爾矩陣F表示的是樣品間的比較關(guān)系,故矩陣的行與列均代表樣品。
(3)
(5)計(jì)算Hasse矩陣。該部分可通過(guò)matlab軟件實(shí)現(xiàn)。首先通過(guò)鄰接布爾矩陣F與單位矩陣I相加得到相乘矩陣G,然后對(duì)相乘矩陣G進(jìn)行布爾連乘運(yùn)算,直到運(yùn)算結(jié)果矩陣不發(fā)生變化,便得到可達(dá)矩陣R;最后再通過(guò)文獻(xiàn)[10]給出的可達(dá)矩陣R與Hasse矩陣的轉(zhuǎn)化關(guān)系式(4)進(jìn)行布爾運(yùn)算得到Hasse矩陣。
HR=(R-I)-(R-I)2
(4)
式中:R為可達(dá)矩陣;HR為Hasse矩陣;I為單位矩陣;(R-I)2為布爾運(yùn)算。
(6)繪制有向Hasse圖,分析評(píng)價(jià)結(jié)果。Hasse圖能夠可視化地表達(dá)出Hasse矩陣中的覆蓋關(guān)系,利用帶有標(biāo)志的圓將存在覆蓋關(guān)系的樣品組用線(xiàn)連接起來(lái)。由于Hasse圖是有方向的,所以?xún)H在一個(gè)方向讀取,文獻(xiàn)[11]詳細(xì)介紹了其可視化所遵循的原則。結(jié)合預(yù)先設(shè)定的五組標(biāo)準(zhǔn)等級(jí)樣品,分析有向Hasse圖,獲得評(píng)價(jià)結(jié)果。
按本次選取的評(píng)價(jià)指標(biāo),構(gòu)造的5組(S1-S5)標(biāo)準(zhǔn)等級(jí)(Ⅰ-Ⅴ)樣品數(shù)據(jù)表1,然后將其加入到13組待評(píng)價(jià)樣品中,構(gòu)成一個(gè)18組樣品的初始數(shù)據(jù)矩陣A=[aij]18×8,再利用極值處理法將初始數(shù)據(jù)歸一化獲得標(biāo)準(zhǔn)化數(shù)據(jù)矩陣B=[bij]18×8。
表1 標(biāo)準(zhǔn)等級(jí)樣品
Tab.1 The sample of standard grade
標(biāo)準(zhǔn)樣品標(biāo)準(zhǔn)等級(jí)評(píng)價(jià)指標(biāo)/(mg·L-1)NH3-NCl-SO2-4NO-3NO-2ZnNiTDSS1Ⅰ0.0125251.00.0050.0250.001150S2Ⅱ0.061001003.50.0550.2750.002400S3Ⅲ0.3020020012.50.5500.7500.011750S4Ⅳ1.0030030025.02.9003.0000.0601500S5Ⅴ2.0040040035.05.0007.0000.2002500
采用熵權(quán)法賦予各評(píng)價(jià)指標(biāo)權(quán)重,其重要性排序見(jiàn)表2。再根據(jù)權(quán)重排序調(diào)整標(biāo)準(zhǔn)化數(shù)據(jù)矩陣B=[bij]18×8,使其指標(biāo)順序與權(quán)重排序一致,獲得表3偏序標(biāo)準(zhǔn)化數(shù)據(jù)矩陣C=[cij]18×8。
表2 指標(biāo)權(quán)重排序
Tab.2 Order of indicator weights
評(píng)價(jià)指標(biāo)NH3-NCl-SO2-4NO-3NO-2ZnNiTDS指標(biāo)權(quán)重0.1500.0430.0160.2360.3130.1740.0410.027權(quán)重排序45821367
表3 偏序標(biāo)準(zhǔn)化數(shù)據(jù)
Tab.3 Partial order standardized data
樣品評(píng)價(jià)指標(biāo)NH3-NCl-SO2-4NO-3NO-2ZnNiTDSX10.014500.0046800.020500.622860.246230.669310.75051X20.000050.0041800.020500.659350.195980.727930.81496X300.004430.008600.004560.578250.145730.695730.90645X41.000001.000000.266481.000000.679620.095480.846850.72189X50.126190.399130.444130.020500.947290.447240.944160.76610X60.000210.0279600.020500.099710.045230.146590.19955X70.001470.024710.017190.004560.075390.045230.130640.19955X80.004400.539820.001580.316631.000000.246231.000000.87004X90.009580.010620.004440.230070.659350.195980.777731.00000X100.000310.000270.008740.088840.160540.145730.303980.47246X110.000160.000020.266480.088840.161370.095480.304740.47765X120.1100600.444130.635540.064270.447240.149040.31079X130.006230.004430.004440.043280.521460.045230.618090.76247S10.000160.010620.0007200000S20.002780.037710.036530.011390.017160.005030.026230.04058S30.028690.135240.104580.066060.040040.050250.062950.09469S40.151740.270700.426930.225510.062920.296480.141630.14879S50.261700.379061.000000.453300.085801.000000.246550.20290
利用上述偏序標(biāo)準(zhǔn)化矩陣C經(jīng)式(1)得到累加決策矩陣D,再由式(3)建立表4鄰接布爾矩陣F,通過(guò)連乘法得到可達(dá)矩陣R,再經(jīng)式(4)進(jìn)行布爾運(yùn)算獲得表5 Hasse矩陣HR。
表4 鄰接布爾矩陣F
Tab.4 Adjacency boolean matrixF
M18×18X1X2X3X4X5X6X7X8X9X10X11X12X13S1S2S3S4S5X1000110000000000001X2000110011000000001X3000110011000000001X4000000000000000000X5000100000000000000X6000110010001000111X7000110010001000111X8000100000000000000X9000110000000000001X10100110011001100011X11000110010001000011X12000110000000000001X13000110001001000001S1100111111001001111S2000110010001000111S3000110000000000011S4000100000000000001S5000100000000000000
表5 Hasse矩陣HR
Tab.5 Hasse matrixHR
M18×18X1X2X3X4X5X6X7X8X9X10X11X12X13S1S2S3S4S5X1000010000000000001X2000000011000000000X3000000011000000000X4000000000000000000X5000100000000000000X6000000010001000100X7000000010001000100X8000100000000000000X9000010000000000001X10100000010000100010X11000000010001000010X12000010000000000001X13000000001001000000S1100001101000001000S2000000010001000100S3000010000000000010S4000000000000000001S5000100000000000000
將表5 Hasse矩陣經(jīng)拓?fù)溥\(yùn)算轉(zhuǎn)化為層級(jí)關(guān)系可視化的有向Hasse圖,見(jiàn)圖1。
圖1 有向Hasse圖Fig.1 Directed-Hasse diagram
圖1已將樣品間的分層及聚類(lèi)關(guān)系直觀的顯現(xiàn)出來(lái),18個(gè)樣品分為6個(gè)層級(jí),從下往上水質(zhì)由優(yōu)到劣。第一層集:S1;第二層集:S2、X10、X7、X6;第三層集:S3、X11、X3、X2、X13;第四層集:S4、X12、X9、X1;第五層集:S5、X8、X5;第六層集:X4。
其中S1~S5為預(yù)先設(shè)計(jì)的標(biāo)準(zhǔn)樣品,對(duì)應(yīng)級(jí)別為Ⅰ~Ⅴ。圖1清晰顯示,S1~S5經(jīng)有向哈斯圖方法分層級(jí)與聚類(lèi)后,其層級(jí)順序與對(duì)應(yīng)水質(zhì)級(jí)別一致,即第一層集----Ⅰ級(jí)、第二層集----Ⅱ級(jí)、第三層集----Ⅲ級(jí)、第四層集----Ⅳ級(jí)、第五層集----Ⅴ級(jí),相應(yīng)的各個(gè)樣品的評(píng)價(jià)等級(jí)也顯而易見(jiàn)。其中X4樣本位于第六層集,已經(jīng)超出了S5的級(jí)別,屬于水質(zhì)極差的那種,鑒于《地下水質(zhì)量標(biāo)準(zhǔn)(GB/T 14848-2017)》將水質(zhì)定為了五個(gè)級(jí)別,故將其質(zhì)量劃歸為Ⅴ級(jí)。
為驗(yàn)證評(píng)價(jià)方法的可行性,現(xiàn)將此次評(píng)價(jià)結(jié)果與文獻(xiàn)[12]評(píng)價(jià)結(jié)果作對(duì)比,見(jiàn)圖2。經(jīng)比較,基于客觀標(biāo)準(zhǔn)的有向Hasse圖技術(shù)得到的評(píng)價(jià)結(jié)果,既沒(méi)有像超標(biāo)權(quán)-貝葉斯法那樣僅考慮單個(gè)污染指標(biāo)與標(biāo)準(zhǔn)值之間的關(guān)系而忽略整個(gè)樣品體系之間的聯(lián)系,也沒(méi)有像熵權(quán)-貝葉斯法那樣只考慮到整個(gè)樣品體系之間的聯(lián)系而降低異常指標(biāo)值的影響,其整體評(píng)價(jià)結(jié)果介于這兩種方法之間,反映出評(píng)價(jià)區(qū)域水質(zhì)屬于中等偏上情況,評(píng)價(jià)結(jié)果更符合客觀現(xiàn)實(shí)。
圖2 評(píng)價(jià)結(jié)果對(duì)比圖Fig.2 Comparison of evaluation results
(1)針對(duì)地下水水質(zhì)評(píng)價(jià)特點(diǎn),依據(jù)客觀標(biāo)準(zhǔn)構(gòu)造的五組標(biāo)準(zhǔn)等級(jí)樣品彌補(bǔ)了D-HDT在地下水水質(zhì)評(píng)價(jià)中無(wú)法獲得某個(gè)層級(jí)具體歸為哪一級(jí)別的遺憾。5組標(biāo)準(zhǔn)樣品在有向Hasse圖中的分布層級(jí)順序,S1~S5依次由下往上排列,也進(jìn)一步驗(yàn)證了此次評(píng)價(jià)方法的可靠性。
(2)基于客觀標(biāo)準(zhǔn)的D-HDT解決了以往水質(zhì)評(píng)價(jià)中賦權(quán)爭(zhēng)議的問(wèn)題,僅需評(píng)價(jià)指標(biāo)權(quán)重順序即可進(jìn)行評(píng)價(jià)??陀^標(biāo)準(zhǔn)與有向Hasse圖的結(jié)合使得評(píng)價(jià)結(jié)果可視化、更客觀,充分展現(xiàn)了本次研究的準(zhǔn)確性及優(yōu)越性,為今后地下水水質(zhì)評(píng)價(jià)提供了新思路。