• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy

    2022-09-24 08:04:12FangQiLin林芳祁NongLi李農(nóng)WenGuangZhou周文廣JunKaiJiang蔣俊鍇FaRanChang常發(fā)冉YongLi李勇SuNingCui崔素寧WeiQiangChen陳偉強DongWeiJiang蔣洞微HongYueHao郝宏玥GuoWeiWang王國偉YingQiangXu徐應強andZhiChuanNiu牛智川
    Chinese Physics B 2022年9期

    Fang-Qi Lin(林芳祁) Nong Li(李農(nóng)) Wen-Guang Zhou(周文廣) Jun-Kai Jiang(蔣俊鍇)Fa-Ran Chang(常發(fā)冉) Yong Li(李勇) Su-Ning Cui(崔素寧) Wei-Qiang Chen(陳偉強)Dong-Wei Jiang(蔣洞微) Hong-Yue Hao(郝宏玥) Guo-Wei Wang(王國偉)Ying-Qiang Xu(徐應強) and Zhi-Chuan Niu(牛智川)

    1State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    3Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: type-II superlattice,InAs/GaSb,long-wavelength,strain-balanced

    1. Introduction

    Since G. A. Sai-Halasz, R. Tsu, and L. Esaki[1]firstly proposed the theory of type-II superlattices in 1977, after decades of theoretical scientific development and the progress of molecular beam epitaxy technology,it has aroused great interest from many researchers worldwide. In 1987,D.L.Smith and C. Mailhiot[2]proposed that type II superlattices could be used as excellent candidate materials for infrared detectors.The current state-of-the-art infrared detection technology is based on mercury cadmium telluride (Hg1-xCdxTe) materials,and most commercial LWIR optical receivers are dominated by Hg1-xCdxTe material,[3,4]which can obtain high detectivity and fast response. Hg1-xCdxTe materials can be used for infrared detection based on PIN and avalanche photodiode(APD)structures.[5]

    However, Hg1-xCdxTe has some defects, such as poor uniformity,[6]a high thermal expansion coefficient,[7]extreme sensitivity to component control,[8,9]and a large tunneling dark current[10-12]due to the low effective mass of electrons.The HgxCd1-xTe materials needed for infrared detectors are difficult to grow consistently on account of high sensitivity to alloy composition, which causes poor spatial uniformity.This problem is particularly severe in LWIR and very longwavelength infrared detection(VLWIR).Other commercially available LWIR detectors[13]include Si:x,[14]vanadium oxide(VxOy),[15]and amorphous silicon(α-Si),[16]which have high operating temperatures(uncooled),good uniformity,compatibility with existing COMS processes, and low manufacturing costs. However,these photodetectors are limited by a narrow tunable wavelength range and poor detectivity.

    Compared with other materials (Hg1-xCdxTe, InSb,QWIP, QD, and VxOy, etc.), InAs/GaSb, as a typical type-II superlattice material, has many advantages,[17-19]such as accurate regulation of the band gap, high operating temperature,[20-22]large effective mass,[2]inhibition of Auger recombination,[23]broadband absorption,incident light at normal angle and good uniformity of material growth. The detection wavelength of InAs/GaSb type-II superlattice materials can be changed from near infrared to very long wave infrared only by adjusting the layer thickness of the InAs and GaSb layers.[24,25]Especially for long-wavelength infrared (LWIR)[26,27]and very long-wavelength infrared(VLWIR)[28-30]range detection,its advantage is obvious. Although InAs/GaSb T2SL was deemed a competitive candidate,the current efficiency is still far from expected. To further improve crystalline quality and device performance,many strategies,including optimizing the heterojunction interface by controlling the Sb/As background pressure and shutter sequence during interface formation,using a migration-enhance epitaxy technique,[31,32]and introducing novel structures to suppress dark current,[33,34]have been adopted. These approaches have been proven to be very effective.

    In this paper, we demonstrate that a high-quality strainbalanced InAs/GaSb type-II superlattice material for longwavelength infrared range detection could be obtained by optimizing the V/III beam-equivalent pressure (BEP) ratio during the molecular beam epitaxy growth process. The longwavelength InAs/GaSb superlattice materials prepared in various V/III BEP ratios were assessed by using high-resolution xray diffraction,atomic force microscopy and the relative spectral response.

    2. Experiment

    In our experiment, all epitaxial samples were grown on tellurium-doped n-type epi-ready GaSb (001) substrates by a Veeco Gen 20 molecular beam epitaxy system, which was equipped with group-III (Ga, In, and Al) SUMO dual-source cells and group-V(Sb2and As2)valve crack sources. The detailed structure of the LWIR detector is shown in Fig. S4 of the supporting information. Before the growth of functional layers,the wafers were heated to 420°C in a preparation module for 2 hours of degas and then heated to 680°C in a growth module for 30 minutes to remove the surface oxide layers. After that, a thin GaSb buffer layer was deposited at 630°C to keep the surface smooth.In situreflection high-energy electron diffraction (RHEED) was used to monitor the substrate surface temperature and growth status.When the substrate surface temperature reached a typical temperature(marked asTc),the electron diffraction pattern changed from 2×5 to 1×3,andTcwas defined as the transition temperature at which GaSb surface reconstruction(2×5?1×3).[35]occurred at a given antimony flux. All these samples were grown atTc-15°C.

    During the serials growth of these samples, the As/In beam-equivalent pressure ratios were set at 2, 3, 4, 5, and 7,and the Sb/Ga BEP flux ratio was kept at 7. Then the Sb/Ga beam-equivalent pressure ratios were set at 5, 6, 7, 8, 9, and 10 (marked as A, B, C, D, E, and F), while the As/In beamequivalent pressure ratio was kept at 3, and the more parameters detail are shown in Table 1 of supporting information.After the optimization of the 12.5 ML/8 ML InAs/GaSb superlattice absorption region,LWIR detectors were fabricated,as shown in Fig.S6. The device consisted of 7 functional layers from bottom to top: tellurium-doped n-type GaSb (001)substrates,GaSb buffer layer,bottom n-type contact layer and barrier sharing the same structure, which was composed of 18/3/5/3 MLS of InAs/GaSb/AlSb/GaSb superlattices. The ptype absorption regions share the same structure as the top ptype contact layer,which consists of 12.5/8 MLs of InAs/GaSb superlattices. Finally,a 200 nm GaSb layer cap was deposited to protect the superlattices.

    After epitaxial growth of the functional layers,for all the samples, optical microscopy was used to observe and estimate surface defects by using a Nikon Eclipse LV100D optical microscope. The structural quality was assessed by symmetric (004) x-ray scans with a Bruker JV QC-3 high-resolution double-crystal x-ray diffractometer (HRXRD), and the surface morphology was studied by using a Park System NX20 atomic force microscope (AFM). The optical performance of the epitaxial layers was measured by using a Bruker Vertex-80 Fourier transform infrared(FTIR)spectrometer.

    3. Results and discussion

    To balance the strain of 12.5 MLs/8 MLs InAs/GaSb with the GaSb substrate,the InSb interface was adopted in this experiment. In each growth period, the nominal interface type was varied by using the techniques of migration-enhanced epitaxy (MEE). The indium and antimony shutters were kept open for a few seconds to generate the InSb interface between the InAs and GaSb layers. The mechanical shutter sequences used during the growth period in this work are illustrated in Fig. 1. Specifically, the indium shutter was kept open before and after the growth of the InAs layer for 2.9 seconds and 2.7 seconds, respectively. At a high growth rate, it is easy to form an InSb island structure. To improve the growth of the InSb interface, it was deposited by employing a low growth rate indium source. Similarly, the Sb shutter was kept open before and after the growth of the GaSb layer for 6 seconds and 3 seconds,respectively.

    Fig.1. The shutter sequence during per period.

    From the high-resolution x-ray diffraction results shown in Figs.2(a)and S1,in these samples,the Sb/Ga BEP flux ratio was kept at 7,and we can clearly see that lattice mismatch between the epitaxial layer and the substrate of the five samples falls first and then rises as the As/In BEP flux ratio rises.When the As/In BEP flux ratio is small,the tensile strain is not exactly compensated,resulting in a compressive strain. When the As/In BEP flux is 3,the mismatch reaches a smallest value of 20 arcsec (165 ppm). When the As/In BEP flux ratio is large, the tensile stress becomes larger as the As/In BEP flux ratio rises. Similarly,from Figs.2(b)and S3,we can see that lattice mismatch between the epitaxial layer and the substrate of the six samples falls first and then rises as the Sb/Ga BEP flux ratio rises. When the Sb/Ga BEP flux ratio is small, the InSb faces produced between the InAs layers and GaSb layers are not enough to balance the intrinsic tensile strain. When the Sb/Ga BEP flux is 8, the mismatch of sample D reaches a smallest value of 13 arcsec (108 ppm), but it produces too many InSb faces when the Sb/Ga BEP flux ratio is large,and the compressive stress becomes larger as the Sb/Ga BEP flux ratio rises.

    The surface morphology roughness was evaluated by AFM,as shown in Figs.2(a),2(c),S2,and S3. Generally,the growth rate of epitaxial layers is determined by the III group element BEP flux, while the V/III BEP flux ratio will influence the nucleation process and then play a crucial role in the material surface quality.

    To some extent, the FWHM and intensity of the zeroorder diffraction peak from high-resolution x-ray diffraction can indicate the epitaxial quality of the heterogeneous interface. As shown in Fig. 2(d), when the Sb/Ga BEP flux ratio is too small or large,the intensity of the zero-order diffraction peak decreases considerably and reaches a maximum value of 5.52×106when the Sb/Ga BEP flux ratio is 8. In contrast,the FWHM obtains a small value with 28 arcsec at 8. It should be noted that the FWHM of these samples are relatively close,which means that the interface of the six samples is flat with the same shutter sequences.

    Fig.2. The material quality of the samples. (a)The mismatch(arcsec)and RMS at different As/In BEP fluxes. (b)The mismatch(arcsec/ppm)at different As/In Sb/Ga BEP fluxes. (c)Surface roughness at different Sb/Ga BEP flux. (d)The FWHM and intensity of the zero-order peak at different Sb/Ga BEP fluxes. (e)The AFM image of As/InBEP=3 (2×2μm2). (f)The AFM image of Sb/GaBEP=8 (5×5μm2).

    From the AFM results, whether there is too large or too little As/In ratio, many rod-shaped islands are generated on the surface. From the theory of film formation, they are not suitable for atoms to migrate to a reasonable lattice position to form a smooth and flat surface. When the As/In BEP and Sb/Ga flux is 3 and 7 respectively, the AFM images show an RMS surface roughness of approximately 2.29 ?A.In order to obtain better surface morphology, then Sb/Ga flux should be optimized. We can see that there are many V group vacancies when the Sb/Ga BEP flux ratio is small, as shown in Fig. S5(Sb/Ga = 3, 4, and 5). When the Sb/Ga BEP flux ratio is larger than 8, many three-dimensional network structures are produced on the surface, as shown in Figs. S5 (Sb/Ga = 10 and 11) and S3 (Sb/Ga = 9 and 10). This is caused by too many Sb atoms adsorbed on the surface,and excess Sb atoms lead to the growth model transforming into an island growth model. Too much or too little Sb atom flux causes the surface to be rough. When the Sb/Ga BEP flux ratio is 8,the smallest RMS surface roughness was obtained,as shown in Figs.2(f),S4 and S5. The AFM images show an RMS surface roughness of approximately 1.63 ?A and clear atomic steps over an area of 10×10μm2and 5×5μm2as shown in Fig.2(f).

    The period thickness of the 12.5 ML/8 ML InAs/GaSb superlattice epitaxial layer was extracted from HRXRD. The HRXRD measurements agree well with the simulation results,as shown in Fig.3. The measured period of this material is approximately 61.44 ?A(theoretical period thickness is 62.22 ?A),as shown in Fig. 3, and the high-resolution x-ray diffraction exhibits high-order satellite peaks,which indicate that the epitaxial material possesses high quality.

    Fig.3. High-resolution x-ray diffraction and simulation results.

    Fig.4. The relative spectral response of LWIR detector.

    Finally, an FTIR spectrometer was used to measure the relative spectral response of the LWIR detector at 77 K. The optical performance of the devices is shown in Fig.4. The device exhibits a 100% cut-off wavelength of 12.6 μm under a 20 mV applied bias. The peak response wavelength is approximately 4 μm, in addition, there is a strong CO2absorption peak at 4.26μm.

    4. Conclusion

    In summary, we have obtained high material quality InAs/GaSb type-II superlattice material for long-wavelength infrared range by using optimal V/III beam-equivalent pressure ratio, which is 8 and 3 with MEE method controlled InSb-like interface, and the experimental results indicate that we succeed in growing strain balanced and high quality InAs/GaSb superlattices on the GaSb substrate. In the following steps, we will improve the device performance of the LWIR detectors. High-quality epitaxial materials have laid a solid foundation for designing and manufacturing highperformance infrared photodetectors.

    Acknowledgements

    Project supported by the National Key Technology R&D Program of China (Grant Nos. 2018YFA0209104,2018YFA0209102,2019YFA0705203,and 2019YFA070104),the National Natural Science Foundation of China (Grant Nos. 61790581, 61274013, and 62004189), and the Key Research Program of the Chinese Academy of Sciences (Grant No.XDPB22).

    亚洲精品国产精品久久久不卡| 亚洲精品国产一区二区精华液| 男男h啪啪无遮挡| 18禁裸乳无遮挡免费网站照片 | 老汉色av国产亚洲站长工具| 身体一侧抽搐| 欧美日韩亚洲国产一区二区在线观看| 亚洲av熟女| 久久婷婷人人爽人人干人人爱| 一边摸一边做爽爽视频免费| 91老司机精品| 国产成人一区二区三区免费视频网站| 在线免费观看的www视频| 日韩欧美 国产精品| 窝窝影院91人妻| e午夜精品久久久久久久| 成人免费观看视频高清| 久久欧美精品欧美久久欧美| 国产成+人综合+亚洲专区| 日本撒尿小便嘘嘘汇集6| 亚洲九九香蕉| 国产又色又爽无遮挡免费看| 国产视频一区二区在线看| 看免费av毛片| 欧美色欧美亚洲另类二区| 久久久久久久精品吃奶| 国产精品,欧美在线| 亚洲成人免费电影在线观看| 一级毛片精品| 免费看日本二区| 国产精品 国内视频| 深夜精品福利| 99国产极品粉嫩在线观看| 超碰成人久久| 黄色丝袜av网址大全| 久久午夜亚洲精品久久| 亚洲人成77777在线视频| 亚洲国产看品久久| 日本黄色视频三级网站网址| 啦啦啦韩国在线观看视频| 夜夜夜夜夜久久久久| 免费搜索国产男女视频| 男女床上黄色一级片免费看| 亚洲av成人不卡在线观看播放网| 岛国在线观看网站| 人人澡人人妻人| 在线看三级毛片| 一个人观看的视频www高清免费观看 | 成人一区二区视频在线观看| 国产精品亚洲av一区麻豆| 亚洲精品久久国产高清桃花| 久久久久久大精品| 久久国产精品男人的天堂亚洲| 熟女电影av网| 人人妻人人看人人澡| 精品日产1卡2卡| 一本久久中文字幕| or卡值多少钱| 色综合亚洲欧美另类图片| 午夜视频精品福利| 亚洲专区字幕在线| 亚洲人成网站高清观看| 亚洲欧美激情综合另类| 大型av网站在线播放| 国产av不卡久久| 一a级毛片在线观看| 久久久久久人人人人人| 中文字幕精品免费在线观看视频| 国产乱人伦免费视频| 免费电影在线观看免费观看| 身体一侧抽搐| 精品国内亚洲2022精品成人| 免费一级毛片在线播放高清视频| 日日摸夜夜添夜夜添小说| 亚洲天堂国产精品一区在线| 黄片播放在线免费| 一本精品99久久精品77| 国产区一区二久久| 99精品久久久久人妻精品| 麻豆av在线久日| 亚洲九九香蕉| 日韩三级视频一区二区三区| 午夜免费观看网址| 巨乳人妻的诱惑在线观看| 亚洲全国av大片| 国产99白浆流出| 午夜激情av网站| av电影中文网址| 脱女人内裤的视频| 成熟少妇高潮喷水视频| 精品无人区乱码1区二区| 男人的好看免费观看在线视频 | 啦啦啦 在线观看视频| 日韩欧美一区二区三区在线观看| 精华霜和精华液先用哪个| 免费在线观看影片大全网站| 在线十欧美十亚洲十日本专区| 99久久精品国产亚洲精品| 给我免费播放毛片高清在线观看| 欧美成人性av电影在线观看| 国产亚洲欧美在线一区二区| 国产91精品成人一区二区三区| 午夜免费成人在线视频| 久久久久久人人人人人| 妹子高潮喷水视频| 桃色一区二区三区在线观看| 首页视频小说图片口味搜索| www国产在线视频色| 久久精品国产99精品国产亚洲性色| x7x7x7水蜜桃| 在线观看免费午夜福利视频| tocl精华| 又大又爽又粗| 老鸭窝网址在线观看| 99国产精品一区二区蜜桃av| 香蕉丝袜av| 香蕉丝袜av| 91av网站免费观看| 中文字幕另类日韩欧美亚洲嫩草| 成人亚洲精品一区在线观看| 女生性感内裤真人,穿戴方法视频| 深夜精品福利| 天堂动漫精品| 亚洲国产欧洲综合997久久, | 欧美日韩亚洲国产一区二区在线观看| 国产单亲对白刺激| 很黄的视频免费| 亚洲人成伊人成综合网2020| 国产麻豆成人av免费视频| 亚洲成人久久爱视频| 国内精品久久久久久久电影| x7x7x7水蜜桃| 国产亚洲欧美98| 97超级碰碰碰精品色视频在线观看| 久久这里只有精品19| 三级毛片av免费| 在线看三级毛片| 国产成人一区二区三区免费视频网站| 久久这里只有精品19| av片东京热男人的天堂| 十分钟在线观看高清视频www| 久久久久久亚洲精品国产蜜桃av| a级毛片在线看网站| 国产精品精品国产色婷婷| 久久久久久大精品| 男女做爰动态图高潮gif福利片| 精品电影一区二区在线| 精品卡一卡二卡四卡免费| 国产99久久九九免费精品| 啦啦啦韩国在线观看视频| 亚洲av中文字字幕乱码综合 | 深夜精品福利| 99在线人妻在线中文字幕| 久久久久久久午夜电影| 午夜福利免费观看在线| 亚洲人成77777在线视频| 又黄又爽又免费观看的视频| 伦理电影免费视频| 久久热在线av| 久久 成人 亚洲| 在线国产一区二区在线| 亚洲av片天天在线观看| 中文字幕精品免费在线观看视频| 在线十欧美十亚洲十日本专区| 欧美激情久久久久久爽电影| 亚洲一区中文字幕在线| 国产精品国产高清国产av| 美女国产高潮福利片在线看| 一级a爱视频在线免费观看| 麻豆成人av在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品一卡2卡三卡4卡5卡| 国产精品亚洲一级av第二区| 亚洲电影在线观看av| 每晚都被弄得嗷嗷叫到高潮| 日韩免费av在线播放| 最好的美女福利视频网| 亚洲第一av免费看| 一区二区日韩欧美中文字幕| 免费在线观看完整版高清| 变态另类丝袜制服| 国产精品日韩av在线免费观看| 国产精品爽爽va在线观看网站 | 免费在线观看成人毛片| 精品无人区乱码1区二区| 少妇的丰满在线观看| 国产久久久一区二区三区| 最近最新中文字幕大全电影3 | 黑人巨大精品欧美一区二区mp4| 精品国产亚洲在线| 精品电影一区二区在线| 无遮挡黄片免费观看| av欧美777| 国产成年人精品一区二区| 视频区欧美日本亚洲| 亚洲av第一区精品v没综合| 亚洲国产欧美一区二区综合| 欧美成人一区二区免费高清观看 | 视频区欧美日本亚洲| a级毛片a级免费在线| 天天添夜夜摸| 最近最新中文字幕大全免费视频| 国产精品 国内视频| 麻豆国产av国片精品| 亚洲成a人片在线一区二区| 亚洲男人的天堂狠狠| 久久热在线av| 亚洲av成人不卡在线观看播放网| 久久久久久大精品| 日日干狠狠操夜夜爽| 午夜福利视频1000在线观看| 女警被强在线播放| 久久精品国产99精品国产亚洲性色| 在线播放国产精品三级| 99精品在免费线老司机午夜| 国产亚洲精品一区二区www| 亚洲色图av天堂| 亚洲精品中文字幕在线视频| 亚洲真实伦在线观看| 丰满的人妻完整版| 久久久水蜜桃国产精品网| 制服丝袜大香蕉在线| 最近最新免费中文字幕在线| 久久香蕉激情| 成人三级做爰电影| 亚洲欧洲精品一区二区精品久久久| 免费在线观看日本一区| 欧美日韩亚洲国产一区二区在线观看| 欧美久久黑人一区二区| 无限看片的www在线观看| 亚洲熟女毛片儿| 亚洲精品一区av在线观看| 他把我摸到了高潮在线观看| 亚洲人成77777在线视频| 99riav亚洲国产免费| 精品无人区乱码1区二区| 午夜久久久在线观看| 久久青草综合色| 少妇熟女aⅴ在线视频| 欧美日韩黄片免| www日本黄色视频网| 亚洲精品美女久久av网站| 搡老妇女老女人老熟妇| 男人的好看免费观看在线视频 | 国产日本99.免费观看| 国产成人啪精品午夜网站| 一级毛片高清免费大全| 欧美精品亚洲一区二区| 波多野结衣高清无吗| 黄色女人牲交| 黄色视频,在线免费观看| 99riav亚洲国产免费| 夜夜夜夜夜久久久久| 制服人妻中文乱码| 亚洲av成人一区二区三| 日本成人三级电影网站| 国产男靠女视频免费网站| 亚洲,欧美精品.| 一夜夜www| 国产欧美日韩一区二区精品| 成熟少妇高潮喷水视频| 久久国产亚洲av麻豆专区| 变态另类成人亚洲欧美熟女| 亚洲精品一区av在线观看| 深夜精品福利| 国产亚洲精品久久久久5区| 午夜福利视频1000在线观看| 久久精品国产99精品国产亚洲性色| 黄片播放在线免费| 少妇熟女aⅴ在线视频| 少妇粗大呻吟视频| 亚洲国产毛片av蜜桃av| 亚洲精品美女久久av网站| 亚洲黑人精品在线| 国产极品粉嫩免费观看在线| www.精华液| 欧美乱码精品一区二区三区| 国产99白浆流出| 男人舔女人下体高潮全视频| 成人亚洲精品一区在线观看| 久久久久九九精品影院| 亚洲avbb在线观看| 欧美日本视频| 久久久久久人人人人人| 欧美午夜高清在线| 亚洲一码二码三码区别大吗| 免费在线观看成人毛片| 看免费av毛片| 久久香蕉精品热| 国产精品香港三级国产av潘金莲| 露出奶头的视频| 好男人在线观看高清免费视频 | 精华霜和精华液先用哪个| 欧美性猛交黑人性爽| 两性夫妻黄色片| 国产av一区在线观看免费| 欧美国产精品va在线观看不卡| 此物有八面人人有两片| 国产欧美日韩精品亚洲av| 一个人观看的视频www高清免费观看 | 一本一本综合久久| 久久久久精品国产欧美久久久| 无限看片的www在线观看| 久久精品人妻少妇| 国产一卡二卡三卡精品| 亚洲av熟女| 亚洲成国产人片在线观看| 老熟妇乱子伦视频在线观看| 97碰自拍视频| 国产成年人精品一区二区| 免费在线观看亚洲国产| 国产麻豆成人av免费视频| 激情在线观看视频在线高清| av有码第一页| 亚洲成av人片免费观看| 欧美日本视频| 亚洲,欧美精品.| 特大巨黑吊av在线直播 | 丝袜人妻中文字幕| 亚洲欧美日韩高清在线视频| 国产男靠女视频免费网站| 69av精品久久久久久| 免费观看精品视频网站| 亚洲精品一区av在线观看| 午夜免费激情av| 看片在线看免费视频| 久久久国产欧美日韩av| 免费搜索国产男女视频| 免费观看精品视频网站| 亚洲国产精品sss在线观看| 久久精品国产亚洲av高清一级| 亚洲国产精品久久男人天堂| 亚洲 欧美 日韩 在线 免费| 欧美激情 高清一区二区三区| 国产欧美日韩一区二区精品| 超碰成人久久| 日韩欧美一区视频在线观看| 亚洲无线在线观看| 亚洲欧美激情综合另类| 女同久久另类99精品国产91| 99国产综合亚洲精品| 久久热在线av| 午夜福利18| 久久香蕉激情| 国产精品1区2区在线观看.| 长腿黑丝高跟| 少妇的丰满在线观看| 欧美乱色亚洲激情| 两个人免费观看高清视频| 欧美黄色淫秽网站| 一边摸一边做爽爽视频免费| 亚洲精品中文字幕一二三四区| 国产99久久九九免费精品| 亚洲国产精品sss在线观看| 真人一进一出gif抽搐免费| 久久精品国产综合久久久| 在线视频色国产色| 中国美女看黄片| 免费一级毛片在线播放高清视频| 亚洲精品一区av在线观看| 中亚洲国语对白在线视频| 人妻丰满熟妇av一区二区三区| 大型黄色视频在线免费观看| 狠狠狠狠99中文字幕| 久久午夜综合久久蜜桃| 老熟妇仑乱视频hdxx| 18禁裸乳无遮挡免费网站照片 | 亚洲中文字幕日韩| a级毛片a级免费在线| 亚洲欧洲精品一区二区精品久久久| 精品久久久久久,| 久9热在线精品视频| www日本在线高清视频| 日韩欧美三级三区| 国产亚洲欧美98| 欧美日韩黄片免| 国产成人精品久久二区二区91| 一级毛片女人18水好多| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 国产视频一区二区在线看| 美女高潮到喷水免费观看| 两个人看的免费小视频| 日韩 欧美 亚洲 中文字幕| 给我免费播放毛片高清在线观看| 色婷婷久久久亚洲欧美| 天堂动漫精品| e午夜精品久久久久久久| 婷婷精品国产亚洲av| 国产一区二区在线av高清观看| 精品欧美一区二区三区在线| 亚洲熟女毛片儿| av在线天堂中文字幕| 夜夜躁狠狠躁天天躁| 日本五十路高清| 久久精品成人免费网站| 91老司机精品| 99国产极品粉嫩在线观看| 18美女黄网站色大片免费观看| 欧美最黄视频在线播放免费| 亚洲精品一区av在线观看| 成人午夜高清在线视频 | 欧美三级亚洲精品| 母亲3免费完整高清在线观看| 搞女人的毛片| or卡值多少钱| 中文在线观看免费www的网站 | 国产精品久久久人人做人人爽| 午夜老司机福利片| 天天一区二区日本电影三级| 中亚洲国语对白在线视频| 美女 人体艺术 gogo| 欧美日韩精品网址| 亚洲av日韩精品久久久久久密| 最新美女视频免费是黄的| 久久久国产欧美日韩av| 久9热在线精品视频| 亚洲国产精品合色在线| 国产午夜精品久久久久久| 国产视频内射| 在线观看www视频免费| 视频区欧美日本亚洲| 老司机午夜福利在线观看视频| 999久久久国产精品视频| 性色av乱码一区二区三区2| 精品第一国产精品| 国产野战对白在线观看| 18禁美女被吸乳视频| 欧美大码av| 村上凉子中文字幕在线| 亚洲精品中文字幕一二三四区| 熟女少妇亚洲综合色aaa.| 欧美日韩黄片免| 一级片免费观看大全| 欧美 亚洲 国产 日韩一| 精品国产一区二区三区四区第35| 青草久久国产| 亚洲一区二区三区不卡视频| 亚洲第一av免费看| 午夜免费激情av| 免费一级毛片在线播放高清视频| 国产真人三级小视频在线观看| 欧美人与性动交α欧美精品济南到| 亚洲午夜精品一区,二区,三区| 美女高潮到喷水免费观看| 精品午夜福利视频在线观看一区| 黄色成人免费大全| 免费高清视频大片| 老司机午夜十八禁免费视频| 亚洲午夜理论影院| 亚洲国产精品sss在线观看| 1024视频免费在线观看| 亚洲 欧美一区二区三区| av超薄肉色丝袜交足视频| 久99久视频精品免费| 少妇熟女aⅴ在线视频| 亚洲激情在线av| 午夜免费激情av| 国产成+人综合+亚洲专区| 99热只有精品国产| 欧美黄色淫秽网站| 国产午夜福利久久久久久| 男女之事视频高清在线观看| 国产成人av激情在线播放| 国产三级在线视频| 91国产中文字幕| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜一区二区| 久久精品国产99精品国产亚洲性色| 亚洲精品在线美女| 久久精品国产亚洲av高清一级| 夜夜躁狠狠躁天天躁| www日本黄色视频网| 亚洲成人久久爱视频| 一级a爱视频在线免费观看| 免费高清在线观看日韩| 欧美一级a爱片免费观看看 | 一区二区三区激情视频| 久久久久久久精品吃奶| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲精品综合一区在线观看 | 国产欧美日韩一区二区三| 日本撒尿小便嘘嘘汇集6| 成人特级黄色片久久久久久久| 国产黄色小视频在线观看| 日日夜夜操网爽| 国产免费av片在线观看野外av| 欧美色欧美亚洲另类二区| 国产午夜福利久久久久久| 国产成人精品久久二区二区91| 国产激情偷乱视频一区二区| 国产主播在线观看一区二区| 老司机午夜十八禁免费视频| 亚洲电影在线观看av| 99国产精品一区二区蜜桃av| 亚洲av片天天在线观看| 深夜精品福利| 亚洲男人的天堂狠狠| 精品人妻1区二区| 禁无遮挡网站| 成人国产综合亚洲| 亚洲狠狠婷婷综合久久图片| 精品一区二区三区av网在线观看| 日韩 欧美 亚洲 中文字幕| 中文字幕精品亚洲无线码一区 | 丰满的人妻完整版| 免费看日本二区| 欧美一区二区精品小视频在线| 欧美成人一区二区免费高清观看 | 满18在线观看网站| 午夜日韩欧美国产| 天堂√8在线中文| 天堂影院成人在线观看| 亚洲第一av免费看| 亚洲人成伊人成综合网2020| 国产成人欧美| 又大又爽又粗| 岛国在线观看网站| 黄色视频,在线免费观看| 啦啦啦观看免费观看视频高清| 男女做爰动态图高潮gif福利片| 国产亚洲欧美98| 999久久久国产精品视频| 中国美女看黄片| 少妇熟女aⅴ在线视频| 露出奶头的视频| 国产成人av激情在线播放| 国产av一区二区精品久久| 欧美一级毛片孕妇| 亚洲精品在线观看二区| 午夜精品久久久久久毛片777| 国产亚洲精品久久久久久毛片| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av成人一区二区三| 19禁男女啪啪无遮挡网站| 两个人看的免费小视频| 久久99热这里只有精品18| 亚洲av电影不卡..在线观看| 久久久国产欧美日韩av| 很黄的视频免费| 日韩免费av在线播放| 99在线视频只有这里精品首页| 一区二区三区激情视频| 亚洲精品久久国产高清桃花| 777久久人妻少妇嫩草av网站| 国产高清有码在线观看视频 | 国产精品亚洲av一区麻豆| 久久欧美精品欧美久久欧美| 在线观看免费午夜福利视频| 国产一区二区三区视频了| 嫁个100分男人电影在线观看| 亚洲欧美精品综合一区二区三区| 国产成人精品久久二区二区91| 超碰成人久久| 少妇裸体淫交视频免费看高清 | 欧美色欧美亚洲另类二区| 亚洲 国产 在线| 国产极品粉嫩免费观看在线| 欧美日韩黄片免| 国产色视频综合| 动漫黄色视频在线观看| 中国美女看黄片| 精品少妇一区二区三区视频日本电影| 老鸭窝网址在线观看| 国产黄片美女视频| 亚洲国产欧美一区二区综合| 国语自产精品视频在线第100页| 亚洲黑人精品在线| 欧美日韩精品网址| a级毛片在线看网站| 精品福利观看| 日本 欧美在线| 亚洲专区国产一区二区| 视频在线观看一区二区三区| 又紧又爽又黄一区二区| 免费搜索国产男女视频| av免费在线观看网站| 欧美成人一区二区免费高清观看 | 黄片大片在线免费观看| 日本黄色视频三级网站网址| 国产色视频综合| 亚洲成人久久性| 18禁黄网站禁片午夜丰满| 日韩欧美国产一区二区入口| 在线看三级毛片| 精品久久久久久,| 婷婷丁香在线五月| av在线播放免费不卡| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美一区二区三区在线观看| 亚洲欧洲精品一区二区精品久久久| 1024香蕉在线观看| 精品一区二区三区av网在线观看| 十八禁网站免费在线| 看片在线看免费视频| 亚洲狠狠婷婷综合久久图片| 香蕉久久夜色| 这个男人来自地球电影免费观看| 黑人巨大精品欧美一区二区mp4| 在线观看免费日韩欧美大片| 999久久久精品免费观看国产| 99在线视频只有这里精品首页| 18禁观看日本| 桃色一区二区三区在线观看| 成人三级黄色视频| 熟女少妇亚洲综合色aaa.| 日韩欧美一区二区三区在线观看| xxx96com| 国产午夜精品久久久久久| 午夜日韩欧美国产| 日本免费a在线| 国语自产精品视频在线第100页| 99riav亚洲国产免费| 麻豆久久精品国产亚洲av| 日韩有码中文字幕|