• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The mechanism of flapping propulsion of an underwater glider*

    2016-12-06 08:15:47YongchengLI李永成DingyiPAN潘定一ZhengMA馬崢

    Yong-cheng LI (李永成), Ding-yi PAN (潘定一), Zheng MA (馬崢)

    1. China Ship Scientific Research Center, Wuxi 214082, China, E-mail:liyongcheng702@163.com

    2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

    The mechanism of flapping propulsion of an underwater glider*

    Yong-cheng LI (李永成)1, Ding-yi PAN (潘定一)2, Zheng MA (馬崢)1

    1. China Ship Scientific Research Center, Wuxi 214082, China, E-mail:liyongcheng702@163.com

    2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

    To develop a bionic maneuverable propulsion system to be applied in a small underwater vehicle, a new conceptual design of the bionic propulsion is applied to the traditional underwater glider. The numerical simulation focuses on the autonomous underwater glider (AUG)'s flapping propulsion at Re=200 by solving the incompressible viscous Navier-Stokes equations coupled with the immersed boundary method. The systematic analysis of the effect of different motion parameters on the propulsive efficiency of the AUG is carried out, including the hydrofoil's heaving amplitude, the pitching amplitude, the phase lag between heaving and pitching and the flapping frequency. The results obtained in this study can provide some physical insights into the propulsive mechanisms in the flapping -based locomotion.

    autonomous underwater glider, flapping propulsion, immersed boundary method

    The autonomous underwater glider (AUG) is a new type of underwater vehicles and it is driven by its own buoyancy. Compared with the traditional underwater vehicle, it has the advantages of low noise, low energy consumption, and long range[1].

    Despite these advantages, some problems regarding the AUG should be given serious consideration. One of the most crucial problems is the “drift”. For collecting intense data, the gliding speed of the AUG has to be relatively low, which is only about 0.5 knot(0.25 m/s). Under such a low speed, the movement of the AUG would be easily influenced by the ocean current, and it is not easy to continually follow the initially determined route.

    In order to solve this problem, a conceptual design of the bionic propulsion method is adopted for the design of the AUG. In this paper, the bionic propulsion of a newly designed underwater glider is investigated by numerically solving the incompressible viscous Navier-Stokes equations coupled with the immersed boundary method to reveal the effect of hydrofoil's motion parameters on the propulsive efficiency, including the heaving amplitude, the pitching amplitude, the phase lag between heaving and pitching and the flapping frequency and to have an improved understanding of physical mechanisms of the flapping-based locomotion adopted by swimming animals.

    As shown in Fig.1, the computational model is composed of the hull and the hydrofoils. The total length of the model is 1.200 m, where the middle part is a cylinder of 0.250 m in diameter and 0.625 m in length. The front part is a semi-ellipsoid of 0.175 m in semi-major axis, and the rear part is also a semi-ellipsoid of 0.400 m in semi-major axis. The hydrofoil is in the NACA0015 profile with a span length of 0.300 m and a chord length of 0.300 m, which is chosen as the characteristic length C.

    Fig.1 Schematic diagram of the computational model

    The bionic propulsion method is introduced into the design of the AUG, and and the hydrofoil's flapping is used to increase the AUG's advancing speed. The hydrofoil's motion is the combination of the heaving motion along the Y axis and the pitching motion around the Z axis, both directions of motion are sinusoidal, with a phase lag in the same motion cycle. The equations of the heave motion and the pitch motion are, respectively:

    where0h is the heaving amplitude,0θ the pitching amplitude, f the flapping frequency and0ψ the phase lag. As a result of the hydrofoil's flapping, the underwater glider can move quickly. The schematic diagram of the movement is shown in Fig.2.

    Fig.2 Schematic diagram of the motion process

    The surrounding water around the AUG is considered as incompressible and viscous, and the Navier-Stokes equations of fluid motion is employed as[2,3]

    where u is the velocity vector, p is the pressure,Re is the Reynolds number, which can be calculated as Re=U0L/ν with U0and L being the characteristic velocity and length scales, and f is the additional body force. To discretize the Navier-Stokes equations for numerical solutions, the Crank-Nicolson scheme is used for viscous terms and the Adams-Bashforth scheme is applied for other terms in Eq.(3). In addition, the finite difference projection method is used to obtain the velocity and pressure fields. For simplification, the Reynlods number in the current study is chosen as 200, without any additional turbulent model to be applied.

    The immersed boundary (IB) method is applied to capture the flapping motion of the hydrofoil.The additional body force f of the IB method near the moving boundary is modified according to the “direct forcing” approach[2], in which the body force can be derived as

    It is worth mentioning that unlike other bionic propulsion studies, this paper focuses on the practical application, to maintain a balance between the hull's average resistance and the hydrofoil's average thrust. Thus a glider can maintain a constant moving speed. The formula of balance is defined as

    where D represents the drag experienced by the hull,F(xiàn) represents the thrust generated by the hydrofoils,and T is a motion period.

    We here present some typical results on the bionic propulsion of the underwater glider. Based on the measurements and the modeling of the animal locomotion,the governing parameters used in this study are chosen as follows: the flapping frequency f=0.3Hz-1.0Hz, the phase lag between heaving and pitching ψ0=30o-110o, the heaving amplitude=0.05C-0.5C, the pitching amplitude θ=30oand the moving velocity V =0.5m/s-1.2m/s.

    In order to characterize the propulsive efficiency of the underwater glider, the ratio of the kinetic energy of the body and the input work is usually employed[3,4]and defined as

    where T is a movement period, and P the input power, which represents the energy required by the AUG to overcome the fluid force in the unit time and it consists of two parts, which arewhere1P is the power required by the hull to overcome the fluid resistance,2P is the power required by the hydrofoils to overcome the fluid dynamics, V is the average advancing speed, ()Lt is the vertical force acted on the hydrofoils and ()Mt is the torque around the Z axis.

    Figure 3 shows the propulsive efficiency η versus the phase lag with the fixed pitching amplitude θ=30oand the flapping frequency f=0.6Hz .

    Fig.3 Propulsive efficiency versus phase lag

    It is seen from Fig.3 that the propulsive efficiency for each moving velocity increases to its maximum and then decreases with0ψ, the best phase lag increases constantly while the highest propulsive efficiency sees a slight change with the increase of the moving velocity. When the phase lag is aroundo90, the maximum value of the propulsive efficiency is obtained. So, in the following calculation, the phase lag is set aso90.

    Figure 4 shows the curve of the propulsive efficiency versus the pitching amplitude and the moving velocity with the fixed flapping frequency f=0.6Hz and the phase lago90.

    Fig.4 Propulsive efficiency versus pitching amplitude and moving velocity

    As shown in Fig.4, similarly, the propulsive efficiency increases to its maximum and then gradually decreases with the increase of θ at several moving velocities. Furthermore, with the increase of the moving velocity, the highest propulsive efficiency experiences a sharp decline while the pitching amplitude corresponding to the maximum propulsive efficiency shows a slight change, abouto30. So it is recommended that the pitching amplitude is chosen aso30.

    Figure 5 shows the propulsive efficiency versus the heaving amplitude and the moving velocity with the fixed pitching amplitude θ=30oand the phase lag ψ0=90o.

    Fig.5 Propulsive efficiency versus heaving amplitude and moving velocity

    As shown in Fig.5, there exists a certain heaving amplitude leading to the highest propulsive efficiency for a specified moving velocity and the best heaving amplitude increases constantly with the increase of the moving velocity while the corresponding propulsive efficiency shows a gradual decrease, which means that to obtain a high moving velocity means a sacrifice of the propulsive efficiency, and therefore the loss of the long range and the high duration.

    Figure 6 shows the propulsive efficiency versus flapping frequency and the moving velocity with the fixed pitching angle 30oand the phase lag 90o.

    Fig.6 Propulsive efficiency versus flapping frequency and moving velocity

    As can be seen from Fig.6, at different moving velocities, the propulsive efficiency increases to itsmaximum and then gradually decreases with the increase of the flapping frequency. Besides that, the best flapping frequency increases constantly with the increase of the moving velocity while the maximum propulsive efficiency in the corresponding case decreases with the increase of the moving velocity.

    Fig.7 (Color online) Instantaneous vortex structures for =f0.4 Hz, 0.6 Hz and 1.0 Hz

    The propulsive behaviors of the flapping propulsion are closely associated with the vortex structures around the hydrofoils. In order to explain the above phenomenon, the vortex structures are obtained for three flapping frequencies =f0.4 Hz, 0.6 Hz and 1.0 Hz with V =1.2m/s , θ=30oand ψ0=90o. The instantaneous vortex structures are shown in Fig.7.

    As shown in Figs.7(a)-7(c) for f=0.6Hz , the leading-edge vortex first moves along the upper surface of the hydrofoil to the trailing edge and falls off while a new leading-edge vortex emerges on the leading edge of the hydrofoil. The shedding leading-edge vortex is then connected with the tip vortices, lying in the two sides of the flapping hydrofoil, and is eventually closed with the trailing edge leading to vortex loops in the tail flow field. This phenomenon is consistent with the experimental observations of Von Ellenrieder[5,6].

    In the case of f=0.4Hz , Figs.7(d)-(7f) show that the shedding vortices in the upper and lower surfaces of the hydrofoil separate from each other in the tail flow field, therefore, there is no vortex loop exists. In the case of a higher frequency f=1.0Hz ,F(xiàn)igs.7(g)-7(i) show that the vortices in the upper and lower surfaces of the hydrofoil separate earlier and they are overlapping with each other, so it is more difficult to form a vortex loop. Since the energy required for the propulsion is mainly derived from the vortex loop, so that may explain the results we have obtained above.

    References

    [1]CHEN Ya-jun, CHEN Hong-xun and Ma zheng Hydrodynamic analyses of typical underwater gliders[J]. Journal of Hydrodynamics, 2015, 27(4): 556-561

    [2]HUA R. N., ZHU L. and LU X. Y. Locomotion of a flapping flexible plate[J].Physics of Fluids, 2003, 25(12): 121901.

    [3]SHAO Xue-ming, PAN Ding-yi and DENG Jian et al. Numerical studies on the propulsive and wake structure of finite-span flapping hydrofoils with different aspect ratios[J]. Journal of Hydrodynamics, 2010, 22(2): 147-154.

    [4]PAN D., DENG J. and SHAO X. et al. On the propulsive performance of tandem flapping hydrofoils with a modified immersed boundary method[J]. International Journal of Computational Method, 2016, 13: 1650025.

    [5]Von ELLENRIEDER K., PARKER K. and SORIA J. Flow structures behind a heaving and pitching finite-span wing[J]. Journal of Fluid Mechanics, 2003, 490: 129-138.

    [6]TANG Chao, LU Xi-yun. Self-propulsion of a threedimensional flapping flexible plate[J]. Journal of Hydrodynamics, 2016, 28(1): 1-9.

    (August 18, 2016, Revised September 10, 2016)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51279184).

    Biography: Yong-cheng LI (1992-), Male, Master Candidate

    Ding-yi PAN,

    E-mail: dpan@zju.edu.cn

    svipshipincom国产片| 亚洲中文av在线| 99国产精品一区二区三区| 老司机深夜福利视频在线观看| 脱女人内裤的视频| 女警被强在线播放| 免费不卡黄色视频| 人妻久久中文字幕网| 高清在线国产一区| 国产在线精品亚洲第一网站| 啦啦啦中文免费视频观看日本| 国产99久久九九免费精品| 另类亚洲欧美激情| 中文字幕色久视频| 一本—道久久a久久精品蜜桃钙片| av网站在线播放免费| av一本久久久久| 国产在线精品亚洲第一网站| 国产精品免费大片| 中文字幕最新亚洲高清| 国产成人啪精品午夜网站| 免费久久久久久久精品成人欧美视频| 久久性视频一级片| 亚洲成a人片在线一区二区| 制服人妻中文乱码| 亚洲av成人不卡在线观看播放网| 成人国语在线视频| 99精品欧美一区二区三区四区| 亚洲自偷自拍图片 自拍| 免费在线观看黄色视频的| 淫妇啪啪啪对白视频| 夜夜骑夜夜射夜夜干| 可以免费在线观看a视频的电影网站| 成在线人永久免费视频| 少妇精品久久久久久久| 欧美性长视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲天堂av无毛| 涩涩av久久男人的天堂| 美国免费a级毛片| 两性夫妻黄色片| 午夜福利乱码中文字幕| 一区二区三区乱码不卡18| 免费在线观看黄色视频的| 亚洲精品国产精品久久久不卡| 久热爱精品视频在线9| 美女高潮喷水抽搐中文字幕| 精品第一国产精品| 99在线人妻在线中文字幕 | 国产精品1区2区在线观看. | 欧美激情高清一区二区三区| 久久午夜综合久久蜜桃| 波多野结衣av一区二区av| 嫁个100分男人电影在线观看| 淫妇啪啪啪对白视频| www.999成人在线观看| 一区二区三区激情视频| 久久人人爽av亚洲精品天堂| 国产极品粉嫩免费观看在线| 亚洲中文av在线| videos熟女内射| 在线 av 中文字幕| 日韩免费av在线播放| 午夜福利影视在线免费观看| 欧美成人免费av一区二区三区 | 热re99久久精品国产66热6| 脱女人内裤的视频| 菩萨蛮人人尽说江南好唐韦庄| 少妇裸体淫交视频免费看高清 | 日韩免费高清中文字幕av| 精品第一国产精品| 久久这里只有精品19| 欧美精品一区二区大全| 亚洲九九香蕉| 宅男免费午夜| 国产免费av片在线观看野外av| 一个人免费看片子| 免费看a级黄色片| 精品福利观看| 精品高清国产在线一区| 少妇的丰满在线观看| 老鸭窝网址在线观看| 欧美黑人欧美精品刺激| 国产成人av激情在线播放| 亚洲成av片中文字幕在线观看| 9色porny在线观看| 90打野战视频偷拍视频| 久久精品亚洲熟妇少妇任你| 69av精品久久久久久 | 午夜福利视频在线观看免费| 国产精品偷伦视频观看了| 国产精品亚洲一级av第二区| 欧美精品一区二区免费开放| 妹子高潮喷水视频| 久久久精品国产亚洲av高清涩受| 国产日韩欧美亚洲二区| 首页视频小说图片口味搜索| 午夜福利乱码中文字幕| 久久午夜综合久久蜜桃| 国产欧美日韩精品亚洲av| 9热在线视频观看99| 欧美成人午夜精品| 99久久人妻综合| 日韩视频在线欧美| 精品国产一区二区三区四区第35| 午夜福利一区二区在线看| 99在线人妻在线中文字幕 | 一夜夜www| 久久精品亚洲av国产电影网| 操出白浆在线播放| 黄色片一级片一级黄色片| 欧美日韩亚洲国产一区二区在线观看 | kizo精华| 成年人免费黄色播放视频| 丝袜美腿诱惑在线| 久久亚洲真实| 久久久国产成人免费| 欧美黄色淫秽网站| 熟女少妇亚洲综合色aaa.| 久久国产精品人妻蜜桃| 成人精品一区二区免费| 精品福利观看| 亚洲 国产 在线| 国产真人三级小视频在线观看| 大陆偷拍与自拍| 男女边摸边吃奶| 最黄视频免费看| 久久久精品94久久精品| 久久青草综合色| 成年人午夜在线观看视频| 久久久精品区二区三区| av线在线观看网站| 在线永久观看黄色视频| 露出奶头的视频| 欧美在线一区亚洲| 一区二区三区精品91| 亚洲国产av新网站| 国产精品一区二区在线不卡| 王馨瑶露胸无遮挡在线观看| 成人av一区二区三区在线看| 日韩 欧美 亚洲 中文字幕| 欧美午夜高清在线| 丝袜美腿诱惑在线| 亚洲人成电影免费在线| 人妻久久中文字幕网| 亚洲精品久久午夜乱码| 久久久久网色| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区精品视频观看| 免费在线观看影片大全网站| 午夜福利乱码中文字幕| 午夜福利免费观看在线| 69av精品久久久久久 | 黄色成人免费大全| 老熟妇仑乱视频hdxx| 久久精品熟女亚洲av麻豆精品| 成年人免费黄色播放视频| 精品免费久久久久久久清纯 | 亚洲人成电影免费在线| 国产精品久久电影中文字幕 | 成年女人毛片免费观看观看9 | 夜夜夜夜夜久久久久| 丰满迷人的少妇在线观看| 亚洲自偷自拍图片 自拍| 国产精品久久久久久精品古装| 国产精品久久久av美女十八| 老汉色av国产亚洲站长工具| 18禁美女被吸乳视频| 免费观看a级毛片全部| 国产高清videossex| 欧美日韩国产mv在线观看视频| 侵犯人妻中文字幕一二三四区| 成人国产一区最新在线观看| 国产精品香港三级国产av潘金莲| 性高湖久久久久久久久免费观看| 亚洲少妇的诱惑av| 久久久久久久国产电影| 精品一品国产午夜福利视频| 大香蕉久久网| 99国产综合亚洲精品| 日本av免费视频播放| 一级毛片电影观看| 国产精品久久久久成人av| 久久久久久人人人人人| av欧美777| 大陆偷拍与自拍| 午夜精品久久久久久毛片777| 免费av中文字幕在线| 一本综合久久免费| 久久久久久久大尺度免费视频| 亚洲第一av免费看| 亚洲久久久国产精品| cao死你这个sao货| 女人精品久久久久毛片| 人人妻人人添人人爽欧美一区卜| 岛国在线观看网站| 老熟女久久久| 国产伦理片在线播放av一区| 啪啪无遮挡十八禁网站| 女人精品久久久久毛片| 少妇猛男粗大的猛烈进出视频| 精品少妇一区二区三区视频日本电影| 午夜福利欧美成人| 亚洲九九香蕉| 热99re8久久精品国产| 久久影院123| 亚洲午夜精品一区,二区,三区| 乱人伦中国视频| 久久久精品免费免费高清| 欧美在线一区亚洲| 麻豆国产av国片精品| 精品午夜福利视频在线观看一区 | 飞空精品影院首页| 一区福利在线观看| 亚洲av电影在线进入| 久久久国产成人免费| 国产高清videossex| 在线 av 中文字幕| 亚洲伊人色综图| 国产午夜精品久久久久久| 亚洲国产精品一区二区三区在线| 欧美人与性动交α欧美精品济南到| 久久午夜综合久久蜜桃| 757午夜福利合集在线观看| 精品亚洲成国产av| 在线天堂中文资源库| 欧美日韩成人在线一区二区| 亚洲免费av在线视频| 黄色a级毛片大全视频| 在线观看www视频免费| 国产又色又爽无遮挡免费看| 男女床上黄色一级片免费看| 另类亚洲欧美激情| 欧美av亚洲av综合av国产av| 十八禁高潮呻吟视频| 悠悠久久av| 另类精品久久| 欧美日韩黄片免| 在线观看www视频免费| 成人特级黄色片久久久久久久 | 久久久精品区二区三区| 九色亚洲精品在线播放| 一级a爱视频在线免费观看| 国产精品国产高清国产av | 自拍欧美九色日韩亚洲蝌蚪91| 法律面前人人平等表现在哪些方面| 王馨瑶露胸无遮挡在线观看| 嫩草影视91久久| 十八禁网站网址无遮挡| 欧美精品一区二区免费开放| 国产在线精品亚洲第一网站| 亚洲精品成人av观看孕妇| 精品一品国产午夜福利视频| 国产成人精品无人区| 精品人妻熟女毛片av久久网站| 久久人妻熟女aⅴ| 少妇的丰满在线观看| 欧美国产精品va在线观看不卡| 国产成人系列免费观看| 国产亚洲精品久久久久5区| 免费在线观看黄色视频的| 国产精品一区二区免费欧美| 在线观看66精品国产| 国产91精品成人一区二区三区 | 老熟妇乱子伦视频在线观看| av天堂在线播放| 亚洲av日韩精品久久久久久密| 男人操女人黄网站| 色视频在线一区二区三区| av免费在线观看网站| 国产免费av片在线观看野外av| 一边摸一边抽搐一进一小说 | 欧美久久黑人一区二区| 又紧又爽又黄一区二区| 91麻豆精品激情在线观看国产 | 亚洲精品在线美女| 国产一卡二卡三卡精品| 亚洲av国产av综合av卡| 国产aⅴ精品一区二区三区波| 一区二区三区激情视频| 黄片小视频在线播放| 黄片大片在线免费观看| 成人18禁高潮啪啪吃奶动态图| 中文亚洲av片在线观看爽 | 亚洲,欧美精品.| 欧美乱妇无乱码| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线| 啦啦啦 在线观看视频| tocl精华| av国产精品久久久久影院| 搡老熟女国产l中国老女人| 久久婷婷成人综合色麻豆| 人人妻人人爽人人添夜夜欢视频| 青草久久国产| 亚洲免费av在线视频| 国产av国产精品国产| 建设人人有责人人尽责人人享有的| 国产高清视频在线播放一区| 国产在线视频一区二区| 男人操女人黄网站| 啦啦啦中文免费视频观看日本| 女人被躁到高潮嗷嗷叫费观| 国产男女超爽视频在线观看| 十分钟在线观看高清视频www| 成人永久免费在线观看视频 | 国产麻豆69| 丰满少妇做爰视频| 国产日韩欧美在线精品| 交换朋友夫妻互换小说| 正在播放国产对白刺激| 欧美 日韩 精品 国产| 亚洲人成77777在线视频| 国产97色在线日韩免费| 久久精品亚洲熟妇少妇任你| 在线观看免费视频网站a站| 丝袜人妻中文字幕| 淫妇啪啪啪对白视频| 久久久久久人人人人人| 午夜福利免费观看在线| 精品午夜福利视频在线观看一区 | 亚洲国产看品久久| 国产免费现黄频在线看| 色婷婷av一区二区三区视频| 夜夜骑夜夜射夜夜干| 在线观看免费视频网站a站| 国产黄频视频在线观看| 一区二区三区国产精品乱码| 久久久国产欧美日韩av| 男女边摸边吃奶| 久久 成人 亚洲| 在线观看人妻少妇| 精品福利永久在线观看| 精品第一国产精品| 黑人巨大精品欧美一区二区mp4| www.999成人在线观看| 免费不卡黄色视频| 水蜜桃什么品种好| 精品人妻在线不人妻| 别揉我奶头~嗯~啊~动态视频| 欧美日韩国产mv在线观看视频| 亚洲精品久久成人aⅴ小说| 黄片大片在线免费观看| 亚洲精品av麻豆狂野| 在线观看一区二区三区激情| 纵有疾风起免费观看全集完整版| 美女扒开内裤让男人捅视频| 不卡一级毛片| 大陆偷拍与自拍| 久久久精品94久久精品| 飞空精品影院首页| 久久中文字幕一级| av片东京热男人的天堂| 色婷婷久久久亚洲欧美| 久久久精品免费免费高清| 免费人妻精品一区二区三区视频| 精品一区二区三区av网在线观看 | 天堂动漫精品| 色婷婷av一区二区三区视频| 曰老女人黄片| 亚洲中文av在线| 国产精品亚洲av一区麻豆| 国产精品一区二区精品视频观看| 日本精品一区二区三区蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 美国免费a级毛片| 午夜福利乱码中文字幕| 亚洲人成电影免费在线| 热99国产精品久久久久久7| 一本一本久久a久久精品综合妖精| 菩萨蛮人人尽说江南好唐韦庄| 97人妻天天添夜夜摸| 19禁男女啪啪无遮挡网站| 人妻久久中文字幕网| 超碰97精品在线观看| 久久中文字幕人妻熟女| 亚洲综合色网址| 国产欧美日韩一区二区三区在线| 亚洲九九香蕉| 国产片内射在线| 午夜精品国产一区二区电影| 精品福利永久在线观看| 亚洲色图综合在线观看| 99九九在线精品视频| 在线观看人妻少妇| 久久天躁狠狠躁夜夜2o2o| 免费在线观看日本一区| 极品少妇高潮喷水抽搐| 亚洲人成电影观看| 在线观看免费高清a一片| 国产日韩欧美在线精品| 欧美日韩视频精品一区| 精品少妇内射三级| 精品一区二区三卡| 久久性视频一级片| 日韩免费高清中文字幕av| 18禁国产床啪视频网站| 黄色片一级片一级黄色片| 老司机在亚洲福利影院| 国产三级黄色录像| 国产精品免费大片| 飞空精品影院首页| 国产成人精品无人区| xxxhd国产人妻xxx| 日韩制服丝袜自拍偷拍| 亚洲七黄色美女视频| av国产精品久久久久影院| 少妇精品久久久久久久| 欧美日韩成人在线一区二区| 咕卡用的链子| 蜜桃在线观看..| 国产精品美女特级片免费视频播放器 | 自线自在国产av| 精品福利永久在线观看| 亚洲色图综合在线观看| 搡老岳熟女国产| 久9热在线精品视频| 两性午夜刺激爽爽歪歪视频在线观看 | kizo精华| 成人国产av品久久久| 一区福利在线观看| 欧美日韩福利视频一区二区| 国产精品国产高清国产av | 亚洲中文av在线| 欧美国产精品一级二级三级| 日韩制服丝袜自拍偷拍| 高清毛片免费观看视频网站 | 在线永久观看黄色视频| 日本撒尿小便嘘嘘汇集6| 变态另类成人亚洲欧美熟女 | 麻豆av在线久日| 国产亚洲精品一区二区www | 成人免费观看视频高清| 国产男女内射视频| 久久九九热精品免费| 视频区图区小说| 亚洲精品成人av观看孕妇| 久久人妻熟女aⅴ| 日日夜夜操网爽| 久久毛片免费看一区二区三区| av片东京热男人的天堂| 久久久精品区二区三区| 高清黄色对白视频在线免费看| 99国产精品99久久久久| 热99久久久久精品小说推荐| 在线av久久热| 女人被躁到高潮嗷嗷叫费观| 麻豆av在线久日| 在线十欧美十亚洲十日本专区| 国产av精品麻豆| 丁香六月欧美| 男女午夜视频在线观看| 99精品久久久久人妻精品| 黑人巨大精品欧美一区二区mp4| 亚洲精品中文字幕一二三四区 | a级片在线免费高清观看视频| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产区一区二| 欧美精品一区二区大全| 美女福利国产在线| 国产精品二区激情视频| 欧美国产精品一级二级三级| 国产精品影院久久| 美女主播在线视频| 亚洲三区欧美一区| 一级,二级,三级黄色视频| 两性午夜刺激爽爽歪歪视频在线观看 | 一个人免费在线观看的高清视频| 9色porny在线观看| av视频免费观看在线观看| 可以免费在线观看a视频的电影网站| 狠狠精品人妻久久久久久综合| 18在线观看网站| 大片免费播放器 马上看| 国产在线观看jvid| 三级毛片av免费| 女人被躁到高潮嗷嗷叫费观| 久久精品成人免费网站| 成人永久免费在线观看视频 | 久久久国产一区二区| 九色亚洲精品在线播放| 色在线成人网| 精品国产一区二区三区久久久樱花| 五月开心婷婷网| 成在线人永久免费视频| 又大又爽又粗| 午夜成年电影在线免费观看| 天天躁日日躁夜夜躁夜夜| 精品一品国产午夜福利视频| 免费观看a级毛片全部| 九色亚洲精品在线播放| 日本a在线网址| 老司机深夜福利视频在线观看| 男女边摸边吃奶| 国产在视频线精品| 亚洲人成77777在线视频| 日日爽夜夜爽网站| 精品人妻熟女毛片av久久网站| www.熟女人妻精品国产| 丁香欧美五月| 久久精品国产99精品国产亚洲性色 | av网站在线播放免费| 免费黄频网站在线观看国产| 一区二区av电影网| 三上悠亚av全集在线观看| 日本av免费视频播放| 妹子高潮喷水视频| 亚洲国产欧美一区二区综合| www日本在线高清视频| 香蕉丝袜av| 9191精品国产免费久久| 性高湖久久久久久久久免费观看| 久久99热这里只频精品6学生| a级片在线免费高清观看视频| 法律面前人人平等表现在哪些方面| 啦啦啦免费观看视频1| 最新在线观看一区二区三区| 亚洲少妇的诱惑av| av福利片在线| 亚洲三区欧美一区| 黄片大片在线免费观看| 国产精品亚洲一级av第二区| 亚洲一区二区三区欧美精品| 亚洲午夜精品一区,二区,三区| 亚洲七黄色美女视频| 国产精品久久久久成人av| 国产精品av久久久久免费| 精品国产国语对白av| 女性生殖器流出的白浆| 日日夜夜操网爽| 十八禁网站免费在线| 精品第一国产精品| 99re6热这里在线精品视频| 久久人妻av系列| 欧美黄色片欧美黄色片| av天堂久久9| 亚洲av美国av| 久久人人爽av亚洲精品天堂| 日韩视频在线欧美| 大码成人一级视频| 午夜福利视频在线观看免费| 女人精品久久久久毛片| 少妇精品久久久久久久| 亚洲人成电影免费在线| 不卡av一区二区三区| 亚洲精品美女久久久久99蜜臀| 精品午夜福利视频在线观看一区 | 亚洲色图av天堂| 99re6热这里在线精品视频| 日韩中文字幕视频在线看片| 精品少妇一区二区三区视频日本电影| 色94色欧美一区二区| av天堂久久9| 午夜免费成人在线视频| 桃红色精品国产亚洲av| 国产在视频线精品| 中文字幕人妻丝袜一区二区| 十分钟在线观看高清视频www| 成人特级黄色片久久久久久久 | 最近最新中文字幕大全免费视频| 久久国产精品人妻蜜桃| 亚洲成人免费av在线播放| 两性夫妻黄色片| 老熟妇乱子伦视频在线观看| videosex国产| 国产人伦9x9x在线观看| 国产在线观看jvid| 别揉我奶头~嗯~啊~动态视频| 亚洲va日本ⅴa欧美va伊人久久| 99精品欧美一区二区三区四区| aaaaa片日本免费| 国产亚洲av高清不卡| 亚洲性夜色夜夜综合| 我的亚洲天堂| 欧美黑人精品巨大| 国产成人一区二区三区免费视频网站| 中文亚洲av片在线观看爽 | 蜜桃在线观看..| 黄片播放在线免费| 亚洲精品美女久久av网站| 午夜福利视频精品| 国产男女超爽视频在线观看| 久久精品国产综合久久久| 国产精品av久久久久免费| 老司机亚洲免费影院| 电影成人av| 999久久久精品免费观看国产| 操出白浆在线播放| 久久久久久久国产电影| 午夜老司机福利片| 好男人电影高清在线观看| 亚洲伊人久久精品综合| 国产精品麻豆人妻色哟哟久久| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区三| 久久热在线av| 国产欧美亚洲国产| 国产亚洲精品一区二区www | 99国产精品一区二区蜜桃av | 九色亚洲精品在线播放| 丝袜人妻中文字幕| 黄色 视频免费看| 别揉我奶头~嗯~啊~动态视频| 国产深夜福利视频在线观看| 国产区一区二久久| 男女无遮挡免费网站观看| 国产人伦9x9x在线观看| 午夜福利,免费看| 日日摸夜夜添夜夜添小说| 午夜福利在线免费观看网站| 亚洲自偷自拍图片 自拍| 亚洲av欧美aⅴ国产| 久久久精品区二区三区| 欧美日韩福利视频一区二区| 久久久国产欧美日韩av|