• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The numerical and experimental investigations of the near wake behind a modified square stay-cable*

    2016-12-06 08:15:44ShunchengSHEN沈順成MiaoWANG汪秒HongLU盧紅LinZOU鄒琳

    Shun-cheng SHEN (沈順成), Miao WANG (汪秒), Hong LU (盧紅), Lin ZOU (鄒琳)

    School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China,

    E-mail: whut517@126.com

    The numerical and experimental investigations of the near wake behind a modified square stay-cable*

    Shun-cheng SHEN (沈順成), Miao WANG (汪秒), Hong LU (盧紅), Lin ZOU (鄒琳)

    School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China,

    The near wake structure, the wake-flow characteristics and the drag coefficients behind a modified square stay-cable(MSC) with sinusoidal variations of the cross-section area along the spanwise direction are investigated experimentally and numerically. The Reynolds numbers are chosen as 100 and 500 for the laminar flow and =Re6 000 and 22 000 for the turbulent flow. The detailed near wake structures, the velocity fields and the force coefficients for the MSC are captured, the effect of the Reynolds number on the flow structure for the MSC is studied. The numerical and experimental investigations show that the free shear layers from the leading edge are widened and prolonged and then roll up into vortices further downstream the MSC, unlike a straight square stay-cable (SSC) under the same flow conditions. As a result, the distinct mean drag reduction and the fluctuating lift suppression are observed for all Reynolds numbers, a drag reduction of at least 15.8% and the rms lift coefficient reduction of up to 95% are observed, as compared with the case of a straight square stay-cable at =500Re.

    modified square stay-cable (MSC), wake structure, flow control, drag reduction

    Introduction

    The flow around bluff bodies, such as cylinders,chimneys and square stay-cables, is an important technical problem associated with the energy conversion and the structural design. The fluid-dynamic vibration of a rectangular slab was the subject of extensive numerical and experimental investigations and many interesting physical phenomena were observed[1-5]. Meliga et al.[6]discussed the sensitivity of aerodynamic forces on a square cylinder. Leontini et al.[7]studied the fluid-structure interaction of a square cylinder at different angles of attack. Fu et al.[8]observed the strong 3-D characteristics of the flow past a square cylinder at Re=300 by using CFX software. Samani and Bergstrom[9]investigated the effect of a wall on the wake dynamics of an infinite square cylinder. De Stefano and Vasilyev[10]carried out the numerical simulations of 3-D flow past a square cylinder by employing the wavelet-based adaptive method.

    Many methods were proposed over the recent years to control the wake vortex dynamics with the aim of weakening the vortex shedding and reducing the amplitude of the fluctuating lift as well as the drag. Both passive and active controls were investigated in the past[11]. Active methods involving the energy input to a flow structure system to bring about desirable changes of the system. Passive schemes require no external energy input, typically changing the geometry of the structures or adding fixed mechanical vortex disturbers to influence the vortex shedding. Bearman and Owen[12]observed that the rectangular cross-section bodies with a mild wavy (wave steepness of only 0.06 to 0.09 trailing edge resulted in the complete suppression of vortexshedding and a substantial drag reduction of at least 30% at Re=40000. Darekar and Sherwin[13]suggested that the primary wavelength of the straight square-section cylinder might lead to the suppression of the Karman street. Lam and Lin[14]showed that both the mean drag coefficients and thefluctuating lift coefficients of a wavy circular cylinder were evidently smaller than those of a purely circular cylinder. Malekzadeh and Sohankar[15]studied the reduction of fluid forces and heat transfer on a square cylinder using a control plate. Abograis and Alshayji[16]studied an additional passive control method to reduce the fluid forces on a square cylinder in a laminar flow. Huang et al.[17]employed the modulation of a planar jet issued from upstream surface to reduce the forces on a square cylinder. Carassale et al.[18]investigated experimentally the effect of the rounded corners on the aerodynamic behavior of square cylinders. Rashidi et al.[19]studied the control of the wake structure behind a square cylinder by magnetohydrodynamics.

    The purpose of our work is to carry out the PIV experiment measurements and numerical studies of the three-dimensional flow around a modified square stay-cable (MSC) with sinusoidal variations of the cross-section area along the spanwise direction over a wide Reynolds number range (from 100 to 22 000) to investigate their advantages in the flow control and the drag reduction. The main objectives are as follows:(1) to determine the wake structures around and behind the MSC, (2) to calculate and analyze the difference of the drag coefficient, the root-mean-square (rms) lift coefficient and the pressure characteristics between the straight square stay-cable (SSC) and the MSC, (3) to verify the mechanism of the flow control and the drag reduction by using the modified surface of the square stay-cable. Such experimental and computational results are to establish a comprehensive database to further our understanding of the physical mechanisms of the 3-D flow characteristics for the MSC and of the physical mechanisms of the control of the flow induced vibration and drag reduction.

    1 PIV setup and flow measurement

    The particle image velocimetry (PIV) measurements are conducted using a Dantec standard PIV2100 system. Fig.1 shows the schematic diagram of the experimental setup. The present measurements are carried out in a low-speed closed-loop water tunnel with a square working section of 0.3 m×0.6 m and a length of 2.4 m. The MSC of width Dm=0.015m and height Dz=Dm+2acos(2πz/λ) with a length of 0.3 m is placed horizontally. Here,zD denotes the local height of the MSC and varies in the spanwise direction z. The sinusoidal wavelength λ, the wave amplitude a and the mean diametermD of the MSC are fixed at λ/Dm=5.6 and a/Dm=0.175, respectively (Fig.1) The axial location of the maximumzD is called the“node”, while the location of the minimumzD is called the “saddle”. A SSC of diameter Dm=0.015m is also introduced for comparison. The present measurements are conducted at =U∞0.033 m/s and 0.335 m/s, corresponding to =Re500 and 6 000, respectively.

    Fig.1 Experimental setup

    2. Computational methods

    In the present simulations, the Reynolds numbers are kept at =Re100 and 500 for the laminar flow and Re=6 000 and 22 000 for the turbulent flow. At the low Reynolds numbers, the unsteady 3-D laminar flow of a viscous incompressible fluid is considered. The dimensionless 3-D Navier-Stokes equations governing the flow of a Newtonian fluid can be written in the vector form as:

    where the non-dimensional velocity vector u in theCartesian coordinates (,,)xyz has three velocity components u, v, and w, respectively, p is the nondimensional static pressure. The Reynolds number is defined as: Re=U∞D(zhuǎn)m/ν, where ν is the fluid kinematic viscosity. In solving the governing equations, the different physical quantities are normalized by the free-stream velocity and the mean diametermD. The finite volume method (FVM) with an unstructured hexahedral grid is employed to solve the unsteady incompressible 3-D Navier-Stokes equations. The pressure velocity coupling is handled with the semi-implicit pressure linked equations (SIMPLE) scheme. Discretization of the convective terms in the conservation equations is realized through a second-order accurate upwind differencing scheme. The second-order implicit forward discretization is adopted for the time derivative term in order to accelerate the convergence process.

    In the high Reynolds number regime, the 3-D large eddy simulation (LES) turbulence model is implemented also based on the FVM. The large scale eddies are solved directly by the filtered Navier-Stokes equations, and the small eddies are modeled using a subgrid scale (SGS) model. The detailed descriptions and validation tests of the present LES for the turbulence flow past bluff bodies can be found in Ref.[20].

    In the present simulations, the computational boundaries are set at 16mD in y direction. The upstream boundary is set at 8mD away from the leading edge of the MSC. The downstream boundary is 16mD away from the trailing edge of the MSC. The spanwise length of the MSC is set equal to the wavelength λ. At the inlet boundary, uniform oncoming flows with components U∞are imposed. The Neumann-type boundary condition is used at the outlet boundary. The spanwise direction of the computational domain is assumed to satisfy the periodic boundary condition and a no-slip boundary condition (u=v=w=0) is prescribed at the surface of the MSC. The lateral surfaces are treated as slip surfaces using symmetry conditions.

    The computational domain and the grid distributions are shown on Fig.2. In the laminar flow cases,the distance of the first grid near the square surface is 0.01mD. The number of meshes around the stay-cable circumference is 120 and the number of mesh layers along the stay cable spanwise direction is 56. In the turbulent flow cases, the distance from the stay cable surface to the nearest grid points is fixed as+y. The number of meshes around the cylinder circumference is 170 and the number of mesh layers along the cylinder spanwise direction is 72.

    3. Results and discussions

    Darekar and Sherwin[13]pointed out that the optimal wavelength was around 5.6mD for the drag reduction of a wavy square cylinder at low Reynolds numbers. Therefore, we might expect a drag reduction by employing a MSC with an optimal wavelength for the best effect on the FIV suppression. As a result, a MSC with a spanwise wavelength ratio of λ/Dm=5.6 and a fixed wave amplitude of a/Dm=0.175 is employed in all present experiment measurements and numerical simulations. Furthermore, the influence of the Reynolds numbers (=Re100 to 22 000) on the MSC is considered.

    3.1Weak structures

    Figure 3 and Fig.4 show the normalized instantaneous spanwise vorticity and the normalized mean streamwise velocity behind the MSC by using the PIV measurement at =Re500 and 6 000, respectively. Compared with the case of the SSC, the 3-D free shear layers are pushed further downstream behind the MSC both at =Re500 and 6 000. And the wavy surfaces of the MSC lead to a varied wake width at different spanwise positions, the wakes are wide behind the nodal position and narrow behind the saddle position and they roll up into vortices further downstream the MSC (see Fig.3). Similar trend can be found in Fig.4. The values of the vortex formation length of the MSC are evidently larger at =Re500 and 6 000, and along the spanwise direction of the MSC, they show a distinctvariation (see Fig.4). These will lead to the development of well organized 3-D free shear layers with a periodic repetition along the spanwise direction for the MSC. It also implies that the mean drag coefficients of the MSC will be smaller than those of the SSC.

    Fig.3 (Color online) Normalized instantaneous spanwise vorticity behind the MSC by PIV

    Fig.4 (Color online) Normalized mean streamwise velocity behind the MSC by PIV

    Figure 5 shows the instantaneous wake structures of the SSC or the MSC in the -xy plane at =Re100,500, 6 000 and 22 000, obtained by the numerical simulations. These computational results are in excellent agreement with the present experimental PIV measurements (refer to Fig.3) and previous published numerical results obtained by Sohankar et al.[1]and Saha et al.[2]. They indicate that the present numerical schemes are applicable for both the low and high Reynolds number regimes. As shown in Fig.5, the wake structure characteristics are clearly illustrated by the vorticity distribution around and behind the SSC and MSC. Around both the SSC and the MSC, the flow separation occurs at the leading edge at all cases of the Reynolds numbers, with a periodic shedding of vortices, dominating the near wake of the stay-cable. However, for the MSC, at all cases of the Reynolds numbers, because of the variations of the modified leadingedge along the spanwise direction, the free shear layers in the streamwise direction extend behind both the nodal section and the saddle section, while in the transverse direction, they extend only behind the nodal section of the MSC. This is the cause of the free shearlayer instability from the MSC at a further downstream position, and the 3-D free shear layers with a periodic repetition along the spanwise direction are well organized and become more stable at the near wake behind the MSC. On the other hand, with the increase of the Reynolds number, the free shear layers roll up into vortices more rapidly and increase the turbulent nature of the vortices for both the SSC and the MSC. However,with the same Reynolds number, vortices roll up at a further downstream position for the MSC as comparedwith the SSC. It suggests that the mean drag and the lift fluctuation coefficients of the MSC will be greatly reduced over such wide range of Reynolds numbers than those of the SSC.

    Fig.5 (Color online) Instantaneous wake structures of the SSC or the MSC in the -xy plane

    Fig.6 (Color online) Instantaneous 3-D wake structures of the SSC and the MSC

    Fig.7 Time history of force coefficients of the SSC and the MSC

    Figure 6 shows the instantaneous 3-D wake structures of the SSC and the MSC at =Re100, 500, and 6 000. For the MSC, the 3-D wake features are enhanced distinctly due to the effect of the wavy surface. The significant spanwise flow moves from the saddle section toward the nodal section. It means that the near wake structures are modified by this kind of wavy surface. The 3-D free shear layers are larger and more stable than those from the SSC. The formation of dislocations in the wake of the MSC reduces the mean drag coefficient and the rms lift coefficient.

    3.2Force characteristics

    Figure 7 shows the time history of the force coefficients for both the SSC and the MSC. From the drag force component of the MSC, a significant drag reduction and lift fluctuation suppression can be seen as compared with the SSC at all Reynolds numbers. For the SSC at Re=500, the mean drag coefficient=2/ρDH), the rms fluctuating lift coefficient'=2'/ρDH), and the Strouhal number(St=fsD/U∞) obtained by the present numerical results are 1.956, 1.05, and 0.141, respectively. Here, FDis the total mean drag force, F' is the rms. lift force andsf is the vortex shedding frequency obtained by the fast fourier transform (FFT) of the time history of the fluctuating lift. For the MSC, the values ofDC,LC' and St are 1.646, 0.012 and 0.095,respectively. That is to say, the drag reduction of at least 15.8% and the rms lift coefficient reduction of up to 95% with a lower shedding frequency are observed as compared with the SSC at Re=500. With the increase of the Reynolds number, the advantageous features of the MSC gradually are alleviated but still exist. These results show that the MSC with such a wavy surface is good for the control of the FIV.

    3.3Pressure distributions

    Figure 8 shows the variation curves of the mean pressure coefficient on the peripheral of the SSC and the MSC, that is, on Faces 01, 12, 23 and 30. Our LES calculations are similar to those obtained in previous researches. For all Reynolds numbers, and for both the SSC and the MSC, the profiles ofpC on Face 01 are symmetric with respect to the stagnation point, where the maximumpC of 1.1 occurs. The minimumpC(the separation point) occurs at the vertices 0 and 1. ThepC curves on Faces 12 and 30 are similar because of the symmetry. But for the profiles ofpC on Faces 12, 23 and 30, the values for the MSC are larger than those for the SSC, especially at =Re500 and6 000. From the above discussions, we conclude that a MSC with a smaller pressure difference can lead to a significant drag reduction.

    Fig.8 Variation curves of mean pressure coefficient on the peripheral of the SSC and the MSC

    4. Conclusions

    This paper presents a study of 3-D flow past a MSC for =Re100, 500, 6 000 and 22 000 by using PIV measurements and 3-D numerical simulations. The following observations are made:

    The present numerical results for the SSC show a good agreement with the present PIV experimental results and the previous published numerical results. It means that the present simulation model is validated.

    For the MSC, the mean drag coefficient reduction and the fluctuating lift suppression are observed for all Reynolds numbers of 100, 500, 6 000 and 22 000 as compared with that of the SSC. It is mainly due to the existence of well organized transverse vortices along the spanwise direction, which stabilize and elongate the free shear layers from the leading edge and these free shear layers roll up into vortices at a further downstream position. A drag reduction of at least 15.8% and the rms lift coefficient reduction of up to 95% are observed as compared with the SSC at =Re 500.

    As the Reynolds number increases, the advantageous of the flow control and the drag reduction for the MSC are gradually alleviated but still exist.

    It implies that the optimum wavy surface is a good choice for the drag reduction and the fluctuating suppression for the MSC under both the laminar and turbulent flow conditions.

    References

    [1]SOHANKAR A., NORBERG C. and DAVIDSON L. Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997, 69-71: 189-201.

    [2]SAHA A. K., BISWAS G. and MURALIDHAR K. Threedimensional study of flow past a square cylinder at low Reynolds numbers[J]. International Journal Heat and Fluid Flow, 2003, 24(1):54-66.

    [3]SEN S., MITTAL S. and BISWAS G. Flow past a square cylinder at low Reynolds numbers[J]. International Journal for Numerical Methods in Fluids, 2011, 67(10): 1160-1174.

    [4]ZHANG Wei, DAI Yu-man. Numerical study of flow around three equispaced square cylinders at low reynolds number[J]. Journal of Mechanical Engineering, 2015,51(12): 185-191(in Chinese).

    [5]YOUNIS B. A., ABRISHAMCHI A. Three-dimensional turbulent vortex shedding from a surface-mounted square cylinder: Predictions with large-eddy simulations and URANS[J]. Journal of Fluids Engineering, 2014, 136(6): 060907.

    [6]MELIGA P., BOUJO E. and PUJALS G. et al. Sensitivity of aerodynamic forces in laminar and turbulent flow past a square cylinder[J]. Physics of Fluids, 2014, 26(10): 104101.

    [7]LEONTINI J. S., JACONO D. L. and SHERIDAN J.Fluid-structure interaction of a square cylinder at different angles of attack[J]. Journal of Fluid Mechanics, 2014,747: 688-721

    [8]FU Ying-nan, ZHAO Xi-zeng and WANG Xing-gang. Three dimensional numerical simulation of flow past a square cylinder using CFX[J]. Chinese Journal of Hydrodynamics, 2015, 30(4): 382-389(in Chinese).

    [9]SAMANI M., BERGSTROM D. J. Effect of a wall on the wake dynamics of an infinite square cylinder[J]. International Journal of Heat and Fluid Flow, 2015, 55(10): 158-166.

    [10] De STEFANO G., VASILYEV O. V. Wavelet-based adaptive simulations of three-dimensional flow past a square cylinder[J]. Journal of Fluid Mechanics, 2014, 748: 433-456.

    [11] LUO Yuehao, WANG Liguo and GREEN Lork et al. Advances of drag-reducing surface technologies in turbulence based on boundary layer control[J]. Journal of Hydrodynamics, 2015, 27(4): 473-487.

    [12] BEARMAN P. W., OWEN J. C. Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines[J]. Journal of Fluids and Structures, 1998, 12(1): 123-130.

    [13] DAREKAR R. M., SHERWIN S. J. Flow past a bluff body with a wavy stagnation face[J]. Journal of Fluids and Structures, 2001, 15(3-4): 587-596.

    [14] LAM K., LIN Y. F. Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers[J]. Journal of Fluid Mechanics, 2009, 620: 195-220.

    [15] MALEKZADEH S., SOHANKAR A. Reduction of fluid forces and heat transfer on a square cylinder in a laminar flow regime using a control plate[J]. International Journal of Heat and Fluid Flow, 2012, 34(4): 15-27.

    [16] ABOGRAIS A. S., ALSHAYJI A. E. Reduction of fluid forces on a square cylinder in a laminar flow using passive control methods[C]. The Proceedings of the 2013 COMSOL Conference. Boston, USA, 2013, 157-163.

    [17] HUANG R. F., HSU C. M. and CHIU P. C. Flow behavior around a square cylinder subject to modulation of a planar jet issued from upstream surface[J]. Journal of Fluids and Structures, 2014, 51(11): 362-383.

    [18] CARASSALE L., FREDA A. and MARRè-BRUNENGHI M. Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners[J]. Journal of Fluids and Structures, 2014, 44(1): 195-204.

    [19] RASHIDI S., BOVAND M. and ESFAHANI J. A. et al. Control of wake structure behind a square cylinder by Magnetohydrodynamics[J]. Journal of Fluids Engineering, 2015, 17(1): 35-67.

    [20] ZOU Lin, LIN Yu-feng. Force reduction of flow around a sinusoidal wavy cylinder[J]. Journal of Hydrodynamics,2009, 21(3): 326-335.

    E-mail: whut517@126.com

    (December 12, 2015, Revised January 5, 2016)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11172220, 51275372).

    Biography: Shun-cheng SHEN (1959-), Male, Master,Associate Professor

    Lin ZOU, E-mail: l.zou@163.com

    自拍欧美九色日韩亚洲蝌蚪91| 国产色视频综合| 国产高清激情床上av| 亚洲精品一卡2卡三卡4卡5卡| 久久国产精品人妻蜜桃| 久久香蕉激情| 日韩 欧美 亚洲 中文字幕| 激情视频va一区二区三区| 老司机靠b影院| 精品人妻1区二区| 美女午夜性视频免费| 欧美黑人精品巨大| 叶爱在线成人免费视频播放| 在线观看午夜福利视频| 黄片大片在线免费观看| 人人澡人人妻人| 精品高清国产在线一区| 国产亚洲精品久久久久久毛片 | 18禁国产床啪视频网站| 国产精品九九99| 一级片免费观看大全| 久9热在线精品视频| 女人精品久久久久毛片| 国内久久婷婷六月综合欲色啪| 丁香六月欧美| 一二三四在线观看免费中文在| 国产在线观看jvid| 精品人妻熟女毛片av久久网站| 久久中文字幕人妻熟女| bbb黄色大片| 久久香蕉激情| 成在线人永久免费视频| 精品一区二区三卡| 国产蜜桃级精品一区二区三区 | 日韩欧美三级三区| 日本黄色日本黄色录像| 久久国产精品男人的天堂亚洲| 大型黄色视频在线免费观看| 亚洲国产毛片av蜜桃av| 热re99久久精品国产66热6| 亚洲午夜理论影院| 波多野结衣一区麻豆| 交换朋友夫妻互换小说| 捣出白浆h1v1| 欧美在线黄色| 亚洲国产欧美日韩在线播放| 欧美激情久久久久久爽电影 | 老熟妇仑乱视频hdxx| 老司机在亚洲福利影院| 亚洲va日本ⅴa欧美va伊人久久| 正在播放国产对白刺激| 国产区一区二久久| 日本撒尿小便嘘嘘汇集6| 无人区码免费观看不卡| 久久草成人影院| 久久久精品国产亚洲av高清涩受| 国产欧美日韩一区二区精品| 嫁个100分男人电影在线观看| 亚洲黑人精品在线| 少妇裸体淫交视频免费看高清 | 宅男免费午夜| 国产成人系列免费观看| www.自偷自拍.com| 999久久久国产精品视频| 精品少妇一区二区三区视频日本电影| 在线观看舔阴道视频| 亚洲色图综合在线观看| 脱女人内裤的视频| 欧美久久黑人一区二区| 熟女少妇亚洲综合色aaa.| 国产亚洲欧美98| 欧美精品人与动牲交sv欧美| 80岁老熟妇乱子伦牲交| 男女午夜视频在线观看| 亚洲一码二码三码区别大吗| 999久久久国产精品视频| 亚洲伊人色综图| 国产一区二区三区视频了| 又紧又爽又黄一区二区| 亚洲av片天天在线观看| 脱女人内裤的视频| 热re99久久国产66热| 王馨瑶露胸无遮挡在线观看| 男男h啪啪无遮挡| 日日爽夜夜爽网站| 国产精品乱码一区二三区的特点 | 在线观看www视频免费| 纯流量卡能插随身wifi吗| 欧美 日韩 精品 国产| 国产亚洲一区二区精品| 免费在线观看影片大全网站| 久久人人97超碰香蕉20202| 欧美日韩亚洲高清精品| 三上悠亚av全集在线观看| 亚洲伊人色综图| 伊人久久大香线蕉亚洲五| 伊人久久大香线蕉亚洲五| 国产精品影院久久| av线在线观看网站| 日韩制服丝袜自拍偷拍| 亚洲美女黄片视频| 亚洲片人在线观看| 精品国产美女av久久久久小说| 一本一本久久a久久精品综合妖精| 亚洲,欧美精品.| 亚洲欧美一区二区三区黑人| 久久久久久久精品吃奶| 亚洲av欧美aⅴ国产| 母亲3免费完整高清在线观看| 久久久久国内视频| 99riav亚洲国产免费| 久久久国产成人精品二区 | 亚洲精品国产精品久久久不卡| 亚洲成人国产一区在线观看| 欧美在线黄色| 黄色女人牲交| 国产亚洲精品久久久久5区| 亚洲av欧美aⅴ国产| 亚洲av日韩在线播放| 69av精品久久久久久| 中国美女看黄片| 国产一卡二卡三卡精品| xxx96com| 热99国产精品久久久久久7| 日本黄色日本黄色录像| 91精品国产国语对白视频| 亚洲av日韩在线播放| 又紧又爽又黄一区二区| 国产单亲对白刺激| 欧美午夜高清在线| 两性午夜刺激爽爽歪歪视频在线观看 | av片东京热男人的天堂| 天天躁日日躁夜夜躁夜夜| 十分钟在线观看高清视频www| 久久草成人影院| 飞空精品影院首页| 国产亚洲av高清不卡| 国产熟女午夜一区二区三区| 亚洲美女黄片视频| 91老司机精品| 老鸭窝网址在线观看| 热re99久久国产66热| 免费看十八禁软件| 午夜视频精品福利| 国产aⅴ精品一区二区三区波| 亚洲精品国产精品久久久不卡| 欧美人与性动交α欧美软件| 男人的好看免费观看在线视频 | 亚洲av电影在线进入| 老司机亚洲免费影院| 欧美精品av麻豆av| 大香蕉久久网| 国产精品一区二区精品视频观看| 可以免费在线观看a视频的电影网站| 曰老女人黄片| 一级作爱视频免费观看| 80岁老熟妇乱子伦牲交| 黑人操中国人逼视频| 亚洲国产精品一区二区三区在线| 亚洲精品国产区一区二| 老司机午夜十八禁免费视频| 1024香蕉在线观看| 午夜免费鲁丝| 国产一卡二卡三卡精品| 怎么达到女性高潮| 国产在线一区二区三区精| 欧美精品高潮呻吟av久久| 99精国产麻豆久久婷婷| xxx96com| 久久狼人影院| 成人手机av| 亚洲av片天天在线观看| 精品久久久久久,| 日韩有码中文字幕| 精品福利观看| 高清黄色对白视频在线免费看| 亚洲视频免费观看视频| 亚洲精品粉嫩美女一区| www.999成人在线观看| 午夜福利一区二区在线看| 在线观看一区二区三区激情| 国产又色又爽无遮挡免费看| 久久中文看片网| av中文乱码字幕在线| 亚洲精品久久成人aⅴ小说| 亚洲全国av大片| 国产免费男女视频| 黄色毛片三级朝国网站| av福利片在线| 精品无人区乱码1区二区| 欧美一级毛片孕妇| 免费av中文字幕在线| 最新美女视频免费是黄的| 中文字幕高清在线视频| 欧美日韩国产mv在线观看视频| 麻豆乱淫一区二区| 三上悠亚av全集在线观看| 99久久人妻综合| 一区二区三区激情视频| 欧美日韩黄片免| 日韩中文字幕欧美一区二区| 亚洲三区欧美一区| 不卡av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 99精品在免费线老司机午夜| 精品少妇久久久久久888优播| 久久精品国产综合久久久| 日韩免费高清中文字幕av| 777久久人妻少妇嫩草av网站| 高清欧美精品videossex| 亚洲情色 制服丝袜| 亚洲中文日韩欧美视频| 欧美国产精品va在线观看不卡| 麻豆成人av在线观看| 欧美亚洲日本最大视频资源| 一本一本久久a久久精品综合妖精| 在线观看免费日韩欧美大片| 午夜免费鲁丝| 免费看a级黄色片| 黄色视频,在线免费观看| av福利片在线| 欧美日韩国产mv在线观看视频| 亚洲国产看品久久| 黄频高清免费视频| 亚洲成a人片在线一区二区| 国产成人精品久久二区二区免费| 国产日韩欧美亚洲二区| 露出奶头的视频| 精品福利永久在线观看| 欧美日韩视频精品一区| 免费在线观看黄色视频的| 18禁裸乳无遮挡动漫免费视频| 国产精品一区二区免费欧美| 狂野欧美激情性xxxx| 国产亚洲欧美在线一区二区| 日本精品一区二区三区蜜桃| 国产精品一区二区在线观看99| 日本黄色日本黄色录像| 麻豆av在线久日| 亚洲人成电影免费在线| 久久人人爽av亚洲精品天堂| 久久精品亚洲精品国产色婷小说| 天天躁夜夜躁狠狠躁躁| 在线永久观看黄色视频| 中文字幕人妻丝袜制服| 操出白浆在线播放| 久久人妻av系列| 热99国产精品久久久久久7| 精品国产亚洲在线| av中文乱码字幕在线| 一夜夜www| 男女高潮啪啪啪动态图| 男人舔女人的私密视频| 欧美日本中文国产一区发布| 无人区码免费观看不卡| 9热在线视频观看99| 国产一卡二卡三卡精品| 99香蕉大伊视频| 亚洲精品久久午夜乱码| 久久人人97超碰香蕉20202| 国产免费现黄频在线看| 性少妇av在线| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻人人澡人人爽人人夜夜| 国产亚洲欧美98| 中文字幕精品免费在线观看视频| 男女午夜视频在线观看| 免费观看人在逋| 三级毛片av免费| 无限看片的www在线观看| 黑人巨大精品欧美一区二区蜜桃| 狠狠婷婷综合久久久久久88av| 91麻豆av在线| 国产视频一区二区在线看| 亚洲精品美女久久久久99蜜臀| 99精品久久久久人妻精品| 看片在线看免费视频| 老熟女久久久| 91av网站免费观看| 制服人妻中文乱码| 乱人伦中国视频| 久久国产精品大桥未久av| 男人操女人黄网站| 免费在线观看日本一区| 乱人伦中国视频| 国产成人精品无人区| 老司机午夜福利在线观看视频| 咕卡用的链子| 久久狼人影院| 欧美精品一区二区免费开放| 亚洲av片天天在线观看| 成年动漫av网址| 老鸭窝网址在线观看| 午夜免费鲁丝| 国产一区在线观看成人免费| 黄片大片在线免费观看| 精品国产国语对白av| 日本欧美视频一区| 久久香蕉激情| 91大片在线观看| 男人舔女人的私密视频| 一级片免费观看大全| 两个人看的免费小视频| 午夜福利欧美成人| 免费看十八禁软件| 国产99久久九九免费精品| 国产男靠女视频免费网站| 午夜亚洲福利在线播放| √禁漫天堂资源中文www| 欧美另类亚洲清纯唯美| 亚洲va日本ⅴa欧美va伊人久久| 少妇被粗大的猛进出69影院| 免费不卡黄色视频| 欧美成人午夜精品| 久久中文字幕一级| xxxhd国产人妻xxx| 亚洲国产看品久久| 精品国产一区二区久久| 手机成人av网站| 天堂动漫精品| 91麻豆av在线| 老熟妇仑乱视频hdxx| 人人妻人人澡人人爽人人夜夜| 性少妇av在线| 欧美性长视频在线观看| 一进一出好大好爽视频| 国产麻豆69| 下体分泌物呈黄色| 亚洲av日韩精品久久久久久密| 最新在线观看一区二区三区| 精品少妇一区二区三区视频日本电影| 91av网站免费观看| 久久青草综合色| 天天躁狠狠躁夜夜躁狠狠躁| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久成人av| 在线免费观看的www视频| x7x7x7水蜜桃| 久久香蕉精品热| 久久精品人人爽人人爽视色| 窝窝影院91人妻| 99热只有精品国产| 精品第一国产精品| 天天影视国产精品| 久久午夜亚洲精品久久| 欧美不卡视频在线免费观看 | 天天操日日干夜夜撸| 久久热在线av| tube8黄色片| 69av精品久久久久久| 精品国产乱子伦一区二区三区| 国产在线一区二区三区精| 久久天躁狠狠躁夜夜2o2o| 黑人操中国人逼视频| 午夜免费观看网址| 亚洲精品乱久久久久久| 悠悠久久av| 亚洲av日韩在线播放| 国产99久久九九免费精品| 无遮挡黄片免费观看| 亚洲五月婷婷丁香| 两性午夜刺激爽爽歪歪视频在线观看 | 看免费av毛片| 91字幕亚洲| 国产伦人伦偷精品视频| 欧美另类亚洲清纯唯美| 国产亚洲一区二区精品| 俄罗斯特黄特色一大片| 久久人人爽av亚洲精品天堂| 亚洲全国av大片| 免费看十八禁软件| 咕卡用的链子| 精品国产美女av久久久久小说| 国产欧美日韩综合在线一区二区| 一级毛片女人18水好多| 国产蜜桃级精品一区二区三区 | 91九色精品人成在线观看| 他把我摸到了高潮在线观看| 国产极品粉嫩免费观看在线| 精品福利观看| 国产高清激情床上av| 日本一区二区免费在线视频| netflix在线观看网站| 精品视频人人做人人爽| 99香蕉大伊视频| 精品国产国语对白av| 黄片小视频在线播放| 国产区一区二久久| 建设人人有责人人尽责人人享有的| 天天添夜夜摸| 中文字幕av电影在线播放| 国产成人系列免费观看| 热99re8久久精品国产| 少妇 在线观看| 午夜福利在线免费观看网站| 黑人欧美特级aaaaaa片| 国产免费男女视频| 久久久久精品人妻al黑| 免费一级毛片在线播放高清视频 | 一级a爱片免费观看的视频| 欧美成人免费av一区二区三区 | aaaaa片日本免费| 人人妻,人人澡人人爽秒播| av片东京热男人的天堂| 国产不卡一卡二| 欧美另类亚洲清纯唯美| 国产免费av片在线观看野外av| 夫妻午夜视频| www.自偷自拍.com| 国产av又大| 老司机深夜福利视频在线观看| 十八禁网站免费在线| 亚洲国产中文字幕在线视频| 亚洲少妇的诱惑av| 一级作爱视频免费观看| 麻豆乱淫一区二区| 大型av网站在线播放| 少妇猛男粗大的猛烈进出视频| 亚洲,欧美精品.| 中出人妻视频一区二区| 久久精品国产a三级三级三级| 成年人黄色毛片网站| 亚洲国产精品合色在线| 欧美激情高清一区二区三区| 久久 成人 亚洲| 欧美午夜高清在线| 婷婷丁香在线五月| 日韩欧美国产一区二区入口| 在线观看免费日韩欧美大片| 777久久人妻少妇嫩草av网站| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久久久久免费视频 | 日韩免费高清中文字幕av| 亚洲精品美女久久av网站| 法律面前人人平等表现在哪些方面| 99国产极品粉嫩在线观看| 国产色视频综合| 美女国产高潮福利片在线看| 国产精品.久久久| 两个人看的免费小视频| 精品一品国产午夜福利视频| 女人精品久久久久毛片| 99国产极品粉嫩在线观看| 后天国语完整版免费观看| 手机成人av网站| 欧美日韩中文字幕国产精品一区二区三区 | 国产熟女午夜一区二区三区| 中文字幕人妻丝袜一区二区| 黑人猛操日本美女一级片| 在线观看一区二区三区激情| 色婷婷av一区二区三区视频| 国产精品98久久久久久宅男小说| 视频在线观看一区二区三区| 国产精品国产高清国产av | 免费不卡黄色视频| 丝袜在线中文字幕| 国产精品偷伦视频观看了| 免费日韩欧美在线观看| 国产欧美亚洲国产| 超色免费av| 久久精品国产综合久久久| 天堂动漫精品| 久久人妻av系列| 国产高清激情床上av| 91麻豆av在线| avwww免费| 大码成人一级视频| 天天躁夜夜躁狠狠躁躁| 免费在线观看亚洲国产| 免费看a级黄色片| 中文字幕色久视频| 99re在线观看精品视频| 少妇的丰满在线观看| av天堂在线播放| 国产极品粉嫩免费观看在线| 国产深夜福利视频在线观看| 视频区图区小说| 美女视频免费永久观看网站| 久9热在线精品视频| 午夜两性在线视频| 久久精品国产亚洲av高清一级| 精品卡一卡二卡四卡免费| av有码第一页| 在线观看免费高清a一片| 十八禁网站免费在线| 精品第一国产精品| 国产一区二区激情短视频| av国产精品久久久久影院| 高清视频免费观看一区二区| 制服人妻中文乱码| 午夜福利免费观看在线| 9191精品国产免费久久| 国产av精品麻豆| 一级毛片高清免费大全| 狠狠婷婷综合久久久久久88av| 久久久久久久久免费视频了| 免费黄频网站在线观看国产| 法律面前人人平等表现在哪些方面| 婷婷精品国产亚洲av在线 | 一本大道久久a久久精品| 久久精品91无色码中文字幕| 成人av一区二区三区在线看| 大码成人一级视频| 一二三四社区在线视频社区8| 久久精品亚洲精品国产色婷小说| 久久精品成人免费网站| 女人被躁到高潮嗷嗷叫费观| 一级作爱视频免费观看| 女同久久另类99精品国产91| 十八禁人妻一区二区| 久久久久国产精品人妻aⅴ院 | 不卡av一区二区三区| 90打野战视频偷拍视频| 色播在线永久视频| 天天添夜夜摸| 91九色精品人成在线观看| 91成年电影在线观看| 一级毛片精品| 免费在线观看完整版高清| 国产99久久九九免费精品| 99精品欧美一区二区三区四区| 男女高潮啪啪啪动态图| 亚洲精品久久成人aⅴ小说| 99热网站在线观看| 国产日韩欧美亚洲二区| 久久久国产成人精品二区 | 国产乱人伦免费视频| 亚洲中文av在线| 99精品在免费线老司机午夜| av有码第一页| 久久国产亚洲av麻豆专区| 久久久久精品人妻al黑| 成人精品一区二区免费| 欧美激情极品国产一区二区三区| 一区二区三区国产精品乱码| 久久国产精品大桥未久av| 午夜福利影视在线免费观看| 成在线人永久免费视频| 男男h啪啪无遮挡| 国产一区二区三区在线臀色熟女 | 国产成人系列免费观看| 一进一出好大好爽视频| 高清在线国产一区| 1024香蕉在线观看| 精品一区二区三区av网在线观看| 精品人妻熟女毛片av久久网站| xxx96com| 亚洲熟妇中文字幕五十中出 | 婷婷丁香在线五月| 18禁观看日本| 法律面前人人平等表现在哪些方面| 他把我摸到了高潮在线观看| svipshipincom国产片| 一本一本久久a久久精品综合妖精| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品美女久久av网站| 精品卡一卡二卡四卡免费| 一夜夜www| 欧美日韩精品网址| 亚洲精品自拍成人| 亚洲欧美激情在线| 欧美日韩福利视频一区二区| 日本五十路高清| 日本一区二区免费在线视频| 精品亚洲成a人片在线观看| 国内久久婷婷六月综合欲色啪| 免费在线观看完整版高清| 精品久久蜜臀av无| 日韩三级视频一区二区三区| 一级毛片高清免费大全| 久久国产精品大桥未久av| 成人特级黄色片久久久久久久| 国产欧美日韩综合在线一区二区| 极品少妇高潮喷水抽搐| 亚洲一区高清亚洲精品| 亚洲av成人av| 亚洲午夜理论影院| 亚洲国产精品一区二区三区在线| 一边摸一边抽搐一进一出视频| 欧美日韩一级在线毛片| 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| 精品一区二区三卡| 热re99久久国产66热| 午夜亚洲福利在线播放| 国产精品一区二区精品视频观看| 在线观看午夜福利视频| 乱人伦中国视频| 婷婷丁香在线五月| 午夜免费观看网址| 自线自在国产av| www.熟女人妻精品国产| 国产有黄有色有爽视频| 日本黄色视频三级网站网址 | 久久精品亚洲熟妇少妇任你| 国产成人精品久久二区二区91| 少妇粗大呻吟视频| 国产高清videossex| 天堂中文最新版在线下载| 999久久久国产精品视频| 欧美国产精品一级二级三级| 精品国产一区二区三区久久久樱花| 久久精品亚洲精品国产色婷小说| 波多野结衣av一区二区av| 91老司机精品| 母亲3免费完整高清在线观看| 伊人久久大香线蕉亚洲五| 久久人妻av系列| 久久久久久久精品吃奶| 乱人伦中国视频| 亚洲在线自拍视频| 亚洲国产欧美一区二区综合| av中文乱码字幕在线| 精品国内亚洲2022精品成人 | 亚洲欧洲精品一区二区精品久久久|