• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The mechanism of flapping propulsion of an underwater glider*

    2016-12-06 08:15:47YongchengLI李永成DingyiPAN潘定一ZhengMA馬崢

    Yong-cheng LI (李永成), Ding-yi PAN (潘定一), Zheng MA (馬崢)

    1. China Ship Scientific Research Center, Wuxi 214082, China, E-mail:liyongcheng702@163.com

    2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

    The mechanism of flapping propulsion of an underwater glider*

    Yong-cheng LI (李永成)1, Ding-yi PAN (潘定一)2, Zheng MA (馬崢)1

    1. China Ship Scientific Research Center, Wuxi 214082, China, E-mail:liyongcheng702@163.com

    2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

    To develop a bionic maneuverable propulsion system to be applied in a small underwater vehicle, a new conceptual design of the bionic propulsion is applied to the traditional underwater glider. The numerical simulation focuses on the autonomous underwater glider (AUG)'s flapping propulsion at Re=200 by solving the incompressible viscous Navier-Stokes equations coupled with the immersed boundary method. The systematic analysis of the effect of different motion parameters on the propulsive efficiency of the AUG is carried out, including the hydrofoil's heaving amplitude, the pitching amplitude, the phase lag between heaving and pitching and the flapping frequency. The results obtained in this study can provide some physical insights into the propulsive mechanisms in the flapping -based locomotion.

    autonomous underwater glider, flapping propulsion, immersed boundary method

    The autonomous underwater glider (AUG) is a new type of underwater vehicles and it is driven by its own buoyancy. Compared with the traditional underwater vehicle, it has the advantages of low noise, low energy consumption, and long range[1].

    Despite these advantages, some problems regarding the AUG should be given serious consideration. One of the most crucial problems is the “drift”. For collecting intense data, the gliding speed of the AUG has to be relatively low, which is only about 0.5 knot(0.25 m/s). Under such a low speed, the movement of the AUG would be easily influenced by the ocean current, and it is not easy to continually follow the initially determined route.

    In order to solve this problem, a conceptual design of the bionic propulsion method is adopted for the design of the AUG. In this paper, the bionic propulsion of a newly designed underwater glider is investigated by numerically solving the incompressible viscous Navier-Stokes equations coupled with the immersed boundary method to reveal the effect of hydrofoil's motion parameters on the propulsive efficiency, including the heaving amplitude, the pitching amplitude, the phase lag between heaving and pitching and the flapping frequency and to have an improved understanding of physical mechanisms of the flapping-based locomotion adopted by swimming animals.

    As shown in Fig.1, the computational model is composed of the hull and the hydrofoils. The total length of the model is 1.200 m, where the middle part is a cylinder of 0.250 m in diameter and 0.625 m in length. The front part is a semi-ellipsoid of 0.175 m in semi-major axis, and the rear part is also a semi-ellipsoid of 0.400 m in semi-major axis. The hydrofoil is in the NACA0015 profile with a span length of 0.300 m and a chord length of 0.300 m, which is chosen as the characteristic length C.

    Fig.1 Schematic diagram of the computational model

    The bionic propulsion method is introduced into the design of the AUG, and and the hydrofoil's flapping is used to increase the AUG's advancing speed. The hydrofoil's motion is the combination of the heaving motion along the Y axis and the pitching motion around the Z axis, both directions of motion are sinusoidal, with a phase lag in the same motion cycle. The equations of the heave motion and the pitch motion are, respectively:

    where0h is the heaving amplitude,0θ the pitching amplitude, f the flapping frequency and0ψ the phase lag. As a result of the hydrofoil's flapping, the underwater glider can move quickly. The schematic diagram of the movement is shown in Fig.2.

    Fig.2 Schematic diagram of the motion process

    The surrounding water around the AUG is considered as incompressible and viscous, and the Navier-Stokes equations of fluid motion is employed as[2,3]

    where u is the velocity vector, p is the pressure,Re is the Reynolds number, which can be calculated as Re=U0L/ν with U0and L being the characteristic velocity and length scales, and f is the additional body force. To discretize the Navier-Stokes equations for numerical solutions, the Crank-Nicolson scheme is used for viscous terms and the Adams-Bashforth scheme is applied for other terms in Eq.(3). In addition, the finite difference projection method is used to obtain the velocity and pressure fields. For simplification, the Reynlods number in the current study is chosen as 200, without any additional turbulent model to be applied.

    The immersed boundary (IB) method is applied to capture the flapping motion of the hydrofoil.The additional body force f of the IB method near the moving boundary is modified according to the “direct forcing” approach[2], in which the body force can be derived as

    It is worth mentioning that unlike other bionic propulsion studies, this paper focuses on the practical application, to maintain a balance between the hull's average resistance and the hydrofoil's average thrust. Thus a glider can maintain a constant moving speed. The formula of balance is defined as

    where D represents the drag experienced by the hull,F(xiàn) represents the thrust generated by the hydrofoils,and T is a motion period.

    We here present some typical results on the bionic propulsion of the underwater glider. Based on the measurements and the modeling of the animal locomotion,the governing parameters used in this study are chosen as follows: the flapping frequency f=0.3Hz-1.0Hz, the phase lag between heaving and pitching ψ0=30o-110o, the heaving amplitude=0.05C-0.5C, the pitching amplitude θ=30oand the moving velocity V =0.5m/s-1.2m/s.

    In order to characterize the propulsive efficiency of the underwater glider, the ratio of the kinetic energy of the body and the input work is usually employed[3,4]and defined as

    where T is a movement period, and P the input power, which represents the energy required by the AUG to overcome the fluid force in the unit time and it consists of two parts, which arewhere1P is the power required by the hull to overcome the fluid resistance,2P is the power required by the hydrofoils to overcome the fluid dynamics, V is the average advancing speed, ()Lt is the vertical force acted on the hydrofoils and ()Mt is the torque around the Z axis.

    Figure 3 shows the propulsive efficiency η versus the phase lag with the fixed pitching amplitude θ=30oand the flapping frequency f=0.6Hz .

    Fig.3 Propulsive efficiency versus phase lag

    It is seen from Fig.3 that the propulsive efficiency for each moving velocity increases to its maximum and then decreases with0ψ, the best phase lag increases constantly while the highest propulsive efficiency sees a slight change with the increase of the moving velocity. When the phase lag is aroundo90, the maximum value of the propulsive efficiency is obtained. So, in the following calculation, the phase lag is set aso90.

    Figure 4 shows the curve of the propulsive efficiency versus the pitching amplitude and the moving velocity with the fixed flapping frequency f=0.6Hz and the phase lago90.

    Fig.4 Propulsive efficiency versus pitching amplitude and moving velocity

    As shown in Fig.4, similarly, the propulsive efficiency increases to its maximum and then gradually decreases with the increase of θ at several moving velocities. Furthermore, with the increase of the moving velocity, the highest propulsive efficiency experiences a sharp decline while the pitching amplitude corresponding to the maximum propulsive efficiency shows a slight change, abouto30. So it is recommended that the pitching amplitude is chosen aso30.

    Figure 5 shows the propulsive efficiency versus the heaving amplitude and the moving velocity with the fixed pitching amplitude θ=30oand the phase lag ψ0=90o.

    Fig.5 Propulsive efficiency versus heaving amplitude and moving velocity

    As shown in Fig.5, there exists a certain heaving amplitude leading to the highest propulsive efficiency for a specified moving velocity and the best heaving amplitude increases constantly with the increase of the moving velocity while the corresponding propulsive efficiency shows a gradual decrease, which means that to obtain a high moving velocity means a sacrifice of the propulsive efficiency, and therefore the loss of the long range and the high duration.

    Figure 6 shows the propulsive efficiency versus flapping frequency and the moving velocity with the fixed pitching angle 30oand the phase lag 90o.

    Fig.6 Propulsive efficiency versus flapping frequency and moving velocity

    As can be seen from Fig.6, at different moving velocities, the propulsive efficiency increases to itsmaximum and then gradually decreases with the increase of the flapping frequency. Besides that, the best flapping frequency increases constantly with the increase of the moving velocity while the maximum propulsive efficiency in the corresponding case decreases with the increase of the moving velocity.

    Fig.7 (Color online) Instantaneous vortex structures for =f0.4 Hz, 0.6 Hz and 1.0 Hz

    The propulsive behaviors of the flapping propulsion are closely associated with the vortex structures around the hydrofoils. In order to explain the above phenomenon, the vortex structures are obtained for three flapping frequencies =f0.4 Hz, 0.6 Hz and 1.0 Hz with V =1.2m/s , θ=30oand ψ0=90o. The instantaneous vortex structures are shown in Fig.7.

    As shown in Figs.7(a)-7(c) for f=0.6Hz , the leading-edge vortex first moves along the upper surface of the hydrofoil to the trailing edge and falls off while a new leading-edge vortex emerges on the leading edge of the hydrofoil. The shedding leading-edge vortex is then connected with the tip vortices, lying in the two sides of the flapping hydrofoil, and is eventually closed with the trailing edge leading to vortex loops in the tail flow field. This phenomenon is consistent with the experimental observations of Von Ellenrieder[5,6].

    In the case of f=0.4Hz , Figs.7(d)-(7f) show that the shedding vortices in the upper and lower surfaces of the hydrofoil separate from each other in the tail flow field, therefore, there is no vortex loop exists. In the case of a higher frequency f=1.0Hz ,F(xiàn)igs.7(g)-7(i) show that the vortices in the upper and lower surfaces of the hydrofoil separate earlier and they are overlapping with each other, so it is more difficult to form a vortex loop. Since the energy required for the propulsion is mainly derived from the vortex loop, so that may explain the results we have obtained above.

    References

    [1]CHEN Ya-jun, CHEN Hong-xun and Ma zheng Hydrodynamic analyses of typical underwater gliders[J]. Journal of Hydrodynamics, 2015, 27(4): 556-561

    [2]HUA R. N., ZHU L. and LU X. Y. Locomotion of a flapping flexible plate[J].Physics of Fluids, 2003, 25(12): 121901.

    [3]SHAO Xue-ming, PAN Ding-yi and DENG Jian et al. Numerical studies on the propulsive and wake structure of finite-span flapping hydrofoils with different aspect ratios[J]. Journal of Hydrodynamics, 2010, 22(2): 147-154.

    [4]PAN D., DENG J. and SHAO X. et al. On the propulsive performance of tandem flapping hydrofoils with a modified immersed boundary method[J]. International Journal of Computational Method, 2016, 13: 1650025.

    [5]Von ELLENRIEDER K., PARKER K. and SORIA J. Flow structures behind a heaving and pitching finite-span wing[J]. Journal of Fluid Mechanics, 2003, 490: 129-138.

    [6]TANG Chao, LU Xi-yun. Self-propulsion of a threedimensional flapping flexible plate[J]. Journal of Hydrodynamics, 2016, 28(1): 1-9.

    (August 18, 2016, Revised September 10, 2016)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51279184).

    Biography: Yong-cheng LI (1992-), Male, Master Candidate

    Ding-yi PAN,

    E-mail: dpan@zju.edu.cn

    九色成人免费人妻av| 日韩大尺度精品在线看网址| 99精品久久久久人妻精品| 亚洲av第一区精品v没综合| 黄片小视频在线播放| 女人高潮潮喷娇喘18禁视频| 国产精品98久久久久久宅男小说| 久久午夜综合久久蜜桃| 麻豆av在线久日| 久久久久久久久久黄片| 午夜福利欧美成人| 免费在线观看影片大全网站| 我的老师免费观看完整版| 久久精品91蜜桃| 欧美乱码精品一区二区三区| www国产在线视频色| 18禁黄网站禁片午夜丰满| 日本 欧美在线| 国产精品av久久久久免费| 国产精品日韩av在线免费观看| 色噜噜av男人的天堂激情| 神马国产精品三级电影在线观看 | 手机成人av网站| svipshipincom国产片| 首页视频小说图片口味搜索| 最近在线观看免费完整版| 日本免费a在线| 19禁男女啪啪无遮挡网站| 他把我摸到了高潮在线观看| 亚洲真实伦在线观看| 国产亚洲精品久久久久久毛片| 搞女人的毛片| 91大片在线观看| 久久这里只有精品19| 国产成人aa在线观看| 麻豆av在线久日| 日本a在线网址| 成在线人永久免费视频| 日韩欧美一区二区三区在线观看| 亚洲精品在线观看二区| 亚洲av成人不卡在线观看播放网| 欧美又色又爽又黄视频| 久久久久久九九精品二区国产 | 一区福利在线观看| 97碰自拍视频| 窝窝影院91人妻| 给我免费播放毛片高清在线观看| 性色av乱码一区二区三区2| av有码第一页| 精品乱码久久久久久99久播| 少妇被粗大的猛进出69影院| 日韩 欧美 亚洲 中文字幕| 女人高潮潮喷娇喘18禁视频| 男女午夜视频在线观看| 久久精品人妻少妇| 亚洲精品中文字幕在线视频| 国产乱人伦免费视频| 国语自产精品视频在线第100页| 欧美激情久久久久久爽电影| 久久久久国产精品人妻aⅴ院| 国产精品乱码一区二三区的特点| 熟妇人妻久久中文字幕3abv| 在线国产一区二区在线| 色综合婷婷激情| 99国产精品99久久久久| 黄色毛片三级朝国网站| 一级毛片高清免费大全| 黑人操中国人逼视频| 欧美 亚洲 国产 日韩一| 9191精品国产免费久久| 国产午夜精品论理片| 无限看片的www在线观看| 中文资源天堂在线| 99久久99久久久精品蜜桃| 好看av亚洲va欧美ⅴa在| 欧美高清成人免费视频www| 国产伦在线观看视频一区| 久久久久久久久中文| 国产1区2区3区精品| 亚洲 欧美一区二区三区| 美女扒开内裤让男人捅视频| 久久精品国产99精品国产亚洲性色| 首页视频小说图片口味搜索| 久久久国产成人精品二区| 国产亚洲欧美98| 久久精品国产99精品国产亚洲性色| 欧美3d第一页| 国产成人欧美在线观看| 首页视频小说图片口味搜索| 精品熟女少妇八av免费久了| 久久久国产成人免费| 国产欧美日韩一区二区精品| 久久久国产成人免费| 后天国语完整版免费观看| av超薄肉色丝袜交足视频| a在线观看视频网站| 欧美日韩一级在线毛片| 欧美乱妇无乱码| 国产精华一区二区三区| 亚洲色图 男人天堂 中文字幕| 99在线视频只有这里精品首页| 国产成人av教育| bbb黄色大片| 欧美色视频一区免费| a在线观看视频网站| 午夜免费激情av| 两性夫妻黄色片| av超薄肉色丝袜交足视频| 国产精品自产拍在线观看55亚洲| 色噜噜av男人的天堂激情| 草草在线视频免费看| 男女下面进入的视频免费午夜| 啦啦啦免费观看视频1| 欧美av亚洲av综合av国产av| 搡老岳熟女国产| 男女下面进入的视频免费午夜| 国产91精品成人一区二区三区| 日韩欧美一区二区三区在线观看| 久久99热这里只有精品18| 日韩欧美一区二区三区在线观看| 男女下面进入的视频免费午夜| avwww免费| 久久国产乱子伦精品免费另类| 亚洲自拍偷在线| 成人三级黄色视频| 国产精品av视频在线免费观看| 草草在线视频免费看| 哪里可以看免费的av片| 欧美日韩亚洲综合一区二区三区_| 日韩欧美免费精品| 成人午夜高清在线视频| 1024视频免费在线观看| 俺也久久电影网| 国产真实乱freesex| 国产亚洲欧美98| 亚洲av电影不卡..在线观看| 国产日本99.免费观看| 欧美一级毛片孕妇| 国产激情久久老熟女| 级片在线观看| 亚洲在线自拍视频| 精品高清国产在线一区| 特级一级黄色大片| 成人永久免费在线观看视频| 欧美大码av| 久久这里只有精品19| 老司机午夜福利在线观看视频| svipshipincom国产片| 国产99久久九九免费精品| 一区二区三区国产精品乱码| 搞女人的毛片| 欧美乱色亚洲激情| 日韩国内少妇激情av| 国产亚洲精品久久久久久毛片| 午夜福利高清视频| 美女免费视频网站| 久久中文看片网| 变态另类丝袜制服| 久久人妻福利社区极品人妻图片| 久久精品国产亚洲av高清一级| 给我免费播放毛片高清在线观看| 久久久久性生活片| 亚洲欧美精品综合久久99| 日韩欧美在线二视频| 一级毛片女人18水好多| 在线观看舔阴道视频| 日韩中文字幕欧美一区二区| 亚洲电影在线观看av| 国产成人系列免费观看| 亚洲成人国产一区在线观看| 国产一区二区在线av高清观看| 日本免费a在线| www.www免费av| bbb黄色大片| 精品欧美一区二区三区在线| 国产高清videossex| 亚洲中文日韩欧美视频| 色老头精品视频在线观看| 中文亚洲av片在线观看爽| 中文亚洲av片在线观看爽| 午夜福利在线在线| 宅男免费午夜| 日本a在线网址| 久久午夜亚洲精品久久| 国产成人欧美在线观看| 国产高清videossex| 国产伦一二天堂av在线观看| 妹子高潮喷水视频| 欧美在线黄色| 国产黄a三级三级三级人| 日韩av在线大香蕉| 精品无人区乱码1区二区| 久久热在线av| 成年版毛片免费区| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆国产97在线/欧美 | 99精品久久久久人妻精品| 国产又黄又爽又无遮挡在线| 日韩欧美在线乱码| 精品不卡国产一区二区三区| 国产在线观看jvid| 九色成人免费人妻av| 久久九九热精品免费| 久久久久国产一级毛片高清牌| 窝窝影院91人妻| 成人特级黄色片久久久久久久| 亚洲国产精品sss在线观看| 天堂动漫精品| 久久久久久久久久黄片| 亚洲欧美日韩东京热| 亚洲精品色激情综合| 97碰自拍视频| 欧美国产日韩亚洲一区| 啦啦啦韩国在线观看视频| a级毛片a级免费在线| 18禁国产床啪视频网站| 亚洲片人在线观看| 亚洲精品久久成人aⅴ小说| 亚洲成人中文字幕在线播放| 亚洲乱码一区二区免费版| 久久人人精品亚洲av| 久久久久久久久中文| 欧美日本视频| 亚洲国产日韩欧美精品在线观看 | 国产激情欧美一区二区| 亚洲人成网站高清观看| 欧美色欧美亚洲另类二区| 亚洲成人久久爱视频| 免费在线观看成人毛片| 国内精品久久久久久久电影| 成人国语在线视频| 亚洲欧美精品综合久久99| 国产精品亚洲av一区麻豆| 免费看日本二区| 可以免费在线观看a视频的电影网站| 欧美3d第一页| 一本一本综合久久| 操出白浆在线播放| 欧美丝袜亚洲另类 | av超薄肉色丝袜交足视频| 九九热线精品视视频播放| 亚洲精品粉嫩美女一区| 美女高潮喷水抽搐中文字幕| 久久中文看片网| 亚洲精品美女久久久久99蜜臀| 国产成年人精品一区二区| 99热只有精品国产| 嫩草影视91久久| 人人妻人人澡欧美一区二区| 国产亚洲欧美在线一区二区| 欧美日韩亚洲综合一区二区三区_| 两个人视频免费观看高清| 久久香蕉激情| 国产av又大| 午夜老司机福利片| 国产单亲对白刺激| 午夜成年电影在线免费观看| 亚洲国产精品合色在线| 久热爱精品视频在线9| 免费在线观看影片大全网站| 久久久久亚洲av毛片大全| avwww免费| 一a级毛片在线观看| 国产精品九九99| 51午夜福利影视在线观看| 欧美成人一区二区免费高清观看 | 美女大奶头视频| 久久中文看片网| 亚洲狠狠婷婷综合久久图片| 51午夜福利影视在线观看| 日韩大码丰满熟妇| 亚洲五月婷婷丁香| www.www免费av| 搡老妇女老女人老熟妇| 少妇裸体淫交视频免费看高清 | www.999成人在线观看| 嫩草影院精品99| 亚洲一码二码三码区别大吗| 久久精品91无色码中文字幕| 欧美人与性动交α欧美精品济南到| 最近在线观看免费完整版| av片东京热男人的天堂| 亚洲精品国产一区二区精华液| 最新美女视频免费是黄的| 中文字幕av在线有码专区| 国产伦一二天堂av在线观看| 三级男女做爰猛烈吃奶摸视频| 午夜免费成人在线视频| 欧美黑人精品巨大| 精品久久久久久久毛片微露脸| 午夜激情福利司机影院| 91大片在线观看| 国产伦在线观看视频一区| 天天躁狠狠躁夜夜躁狠狠躁| 国产高清视频在线观看网站| 人成视频在线观看免费观看| 久久久久性生活片| 日本撒尿小便嘘嘘汇集6| 亚洲第一电影网av| 国产精品野战在线观看| 国产精品国产高清国产av| 18禁观看日本| 免费看a级黄色片| 欧美成人性av电影在线观看| 18禁裸乳无遮挡免费网站照片| 黄色片一级片一级黄色片| 欧美成人免费av一区二区三区| 高潮久久久久久久久久久不卡| 国语自产精品视频在线第100页| 欧美av亚洲av综合av国产av| 黄色女人牲交| 日韩欧美精品v在线| 亚洲精品在线观看二区| 国产亚洲精品第一综合不卡| avwww免费| www.999成人在线观看| 亚洲性夜色夜夜综合| 桃红色精品国产亚洲av| 非洲黑人性xxxx精品又粗又长| 校园春色视频在线观看| 夜夜躁狠狠躁天天躁| 老司机深夜福利视频在线观看| 大型黄色视频在线免费观看| 国产主播在线观看一区二区| 久久精品国产清高在天天线| 一a级毛片在线观看| 久久精品影院6| 久久精品国产亚洲av高清一级| 亚洲黑人精品在线| 国产成人av教育| 无人区码免费观看不卡| 99riav亚洲国产免费| 69av精品久久久久久| 午夜福利视频1000在线观看| 日韩有码中文字幕| 日本三级黄在线观看| 黄色丝袜av网址大全| 欧美日韩亚洲国产一区二区在线观看| 99热这里只有精品一区 | 午夜免费成人在线视频| 国内揄拍国产精品人妻在线| 欧美+亚洲+日韩+国产| 欧美日韩亚洲综合一区二区三区_| 精华霜和精华液先用哪个| 日韩欧美一区二区三区在线观看| 黄频高清免费视频| 免费在线观看亚洲国产| 免费在线观看日本一区| 日本熟妇午夜| 日韩欧美一区二区三区在线观看| 久久人妻福利社区极品人妻图片| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品久久男人天堂| 亚洲中文字幕日韩| 一级a爱片免费观看的视频| 天堂动漫精品| 亚洲av电影在线进入| 首页视频小说图片口味搜索| 丁香六月欧美| 两个人的视频大全免费| 色噜噜av男人的天堂激情| 天堂动漫精品| 黄色片一级片一级黄色片| 国产人伦9x9x在线观看| 成人欧美大片| 欧美日韩精品网址| 欧美一区二区精品小视频在线| 少妇人妻一区二区三区视频| 亚洲激情在线av| 黄色视频,在线免费观看| 午夜福利视频1000在线观看| 在线看三级毛片| 国产1区2区3区精品| 黄色成人免费大全| 日韩欧美精品v在线| 99久久精品热视频| 日韩欧美免费精品| 国产成人影院久久av| 在线观看免费午夜福利视频| 亚洲成人久久爱视频| 久久这里只有精品19| 最近最新中文字幕大全电影3| 亚洲国产精品合色在线| 亚洲专区中文字幕在线| 国产成年人精品一区二区| 精品免费久久久久久久清纯| 热99re8久久精品国产| 欧美日韩亚洲国产一区二区在线观看| 麻豆一二三区av精品| 五月伊人婷婷丁香| 俺也久久电影网| 91在线观看av| 国内揄拍国产精品人妻在线| 午夜精品久久久久久毛片777| 搡老熟女国产l中国老女人| 在线永久观看黄色视频| 久9热在线精品视频| 成人高潮视频无遮挡免费网站| 亚洲精品色激情综合| 国内精品久久久久久久电影| 在线a可以看的网站| 女生性感内裤真人,穿戴方法视频| 十八禁人妻一区二区| 国内久久婷婷六月综合欲色啪| 熟女少妇亚洲综合色aaa.| 日日爽夜夜爽网站| 麻豆久久精品国产亚洲av| 在线永久观看黄色视频| 人成视频在线观看免费观看| 母亲3免费完整高清在线观看| 精品久久久久久久人妻蜜臀av| 村上凉子中文字幕在线| or卡值多少钱| 蜜桃久久精品国产亚洲av| 欧美日韩精品网址| 在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 亚洲人成电影免费在线| 中文字幕久久专区| 亚洲国产高清在线一区二区三| 国产精品久久久人人做人人爽| 精品国产乱码久久久久久男人| 法律面前人人平等表现在哪些方面| 一本综合久久免费| 欧美黄色片欧美黄色片| 嫁个100分男人电影在线观看| 男女那种视频在线观看| 一进一出抽搐gif免费好疼| 久久久精品欧美日韩精品| 长腿黑丝高跟| 午夜精品久久久久久毛片777| 丁香六月欧美| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清 | 18美女黄网站色大片免费观看| 欧美成人免费av一区二区三区| 欧美精品啪啪一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲黑人精品在线| 在线播放国产精品三级| 婷婷精品国产亚洲av| 国产精品香港三级国产av潘金莲| 国产av又大| xxx96com| 国产真人三级小视频在线观看| 免费人成视频x8x8入口观看| 婷婷亚洲欧美| 欧美精品啪啪一区二区三区| 久久国产乱子伦精品免费另类| 国产成年人精品一区二区| 久久精品国产99精品国产亚洲性色| 又黄又爽又免费观看的视频| www日本黄色视频网| 久久精品91无色码中文字幕| 97超级碰碰碰精品色视频在线观看| 欧美黄色片欧美黄色片| 日本撒尿小便嘘嘘汇集6| 天天一区二区日本电影三级| 日本五十路高清| 两个人视频免费观看高清| √禁漫天堂资源中文www| 一二三四在线观看免费中文在| 亚洲,欧美精品.| 欧美色视频一区免费| 婷婷亚洲欧美| 国产亚洲精品第一综合不卡| 一个人免费在线观看的高清视频| x7x7x7水蜜桃| 精品高清国产在线一区| 国产一区二区三区视频了| 国产91精品成人一区二区三区| 国产精品精品国产色婷婷| aaaaa片日本免费| 国产成+人综合+亚洲专区| 91字幕亚洲| 男女下面进入的视频免费午夜| 欧美黑人欧美精品刺激| av福利片在线| 高清在线国产一区| 久久久久久人人人人人| 亚洲国产欧洲综合997久久,| 麻豆成人午夜福利视频| 亚洲 欧美一区二区三区| 91字幕亚洲| 国产精品av久久久久免费| 狂野欧美白嫩少妇大欣赏| 成人精品一区二区免费| 美女黄网站色视频| 别揉我奶头~嗯~啊~动态视频| 久久国产精品影院| 日本 av在线| 日韩大码丰满熟妇| 观看免费一级毛片| 在线观看www视频免费| videosex国产| 色综合欧美亚洲国产小说| 一二三四在线观看免费中文在| 搡老岳熟女国产| 老司机午夜十八禁免费视频| 日韩精品中文字幕看吧| 黄片小视频在线播放| 成人av在线播放网站| 成人18禁高潮啪啪吃奶动态图| 欧美日韩黄片免| 中亚洲国语对白在线视频| 国产又黄又爽又无遮挡在线| 精品一区二区三区视频在线观看免费| 黄色女人牲交| 国产欧美日韩一区二区精品| 丁香六月欧美| 在线视频色国产色| a在线观看视频网站| 成人欧美大片| 日韩精品免费视频一区二区三区| 亚洲免费av在线视频| 在线a可以看的网站| 日本精品一区二区三区蜜桃| 中国美女看黄片| 成人国产综合亚洲| 亚洲精品色激情综合| 国产精品亚洲av一区麻豆| 日韩免费av在线播放| 大型av网站在线播放| 欧美大码av| 99久久久亚洲精品蜜臀av| 一本久久中文字幕| 午夜日韩欧美国产| 他把我摸到了高潮在线观看| 99热这里只有精品一区 | 一进一出好大好爽视频| 麻豆av在线久日| 日韩大尺度精品在线看网址| 一进一出抽搐gif免费好疼| 性色av乱码一区二区三区2| 中文字幕高清在线视频| 美女午夜性视频免费| 1024手机看黄色片| 亚洲av成人一区二区三| 亚洲国产欧美人成| 国产区一区二久久| 成人特级黄色片久久久久久久| 久久久国产精品麻豆| 精品日产1卡2卡| 99久久久亚洲精品蜜臀av| 亚洲片人在线观看| 亚洲成a人片在线一区二区| 国产精品1区2区在线观看.| 午夜福利免费观看在线| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线观看二区| 这个男人来自地球电影免费观看| 精品高清国产在线一区| 国产在线观看jvid| 给我免费播放毛片高清在线观看| 在线a可以看的网站| 亚洲九九香蕉| 欧美一级a爱片免费观看看 | 五月伊人婷婷丁香| 国产视频内射| 老司机深夜福利视频在线观看| 欧美黄色片欧美黄色片| 美女 人体艺术 gogo| 日韩精品中文字幕看吧| 欧美zozozo另类| 国产又黄又爽又无遮挡在线| 97碰自拍视频| 黄色片一级片一级黄色片| 18禁观看日本| 美女 人体艺术 gogo| 午夜免费成人在线视频| 99久久精品国产亚洲精品| 亚洲精品一区av在线观看| 国产亚洲欧美98| av国产免费在线观看| 婷婷丁香在线五月| 国产又色又爽无遮挡免费看| 熟女少妇亚洲综合色aaa.| 久久亚洲精品不卡| 中文在线观看免费www的网站 | 1024手机看黄色片| 999精品在线视频| 欧美日韩福利视频一区二区| 国内少妇人妻偷人精品xxx网站 | 麻豆成人午夜福利视频| 日韩精品青青久久久久久| 在线观看免费日韩欧美大片| 老汉色∧v一级毛片| 久久久国产精品麻豆| 一级作爱视频免费观看| 99国产精品一区二区三区| 人人妻,人人澡人人爽秒播| x7x7x7水蜜桃| 亚洲成人中文字幕在线播放| av福利片在线| 亚洲一区中文字幕在线| 欧美黑人巨大hd| 国内精品一区二区在线观看| 国产成人精品无人区| 一级毛片高清免费大全| 亚洲男人天堂网一区| 观看免费一级毛片| 美女午夜性视频免费| 99在线视频只有这里精品首页| 精品久久久久久久末码| 一本大道久久a久久精品| 欧美性猛交黑人性爽| 色综合婷婷激情| 99热只有精品国产| 国产97色在线日韩免费| 搡老岳熟女国产| 久久久精品国产亚洲av高清涩受| 欧美激情久久久久久爽电影| 一级片免费观看大全| 一本综合久久免费| 欧美黄色片欧美黄色片|