• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pulse generation of erbium-doped fiber laser based onliquid-exfoliated FePS3?

    2019-08-16 01:20:38QingYin陰晴JinWang汪進(jìn)XinYaoShi史鑫堯TaoWang王濤JieYang楊潔XinXinZhao趙新新ZhenJiangShen沈振江JianWu吳堅(jiān)
    Chinese Physics B 2019年8期
    關(guān)鍵詞:陰晴楊潔王濤

    Qing Yin(陰晴), Jin Wang(汪進(jìn)), Xin-Yao Shi(史鑫堯), Tao Wang(王濤),Jie Yang(楊潔), Xin-Xin Zhao(趙新新), Zhen-Jiang Shen(沈振江), Jian Wu(吳堅(jiān)),?,

    Kai Zhang(張凱)3,§, Pu Zhou(周樸)2, and Zong-Fu Jiang(姜宗福)2

    1Nano Science and Technology Institute,University of Science and Technology of China,Suzhou 215123,China

    2College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    3i-Lab,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China

    4College of Physics and Electronic Engineering,Hainan Normal University,Haikou 571158,China

    Keywords: fiber laser,Q-switched,FePS3

    1. Introduction

    In the past decade, pulsed fiber lasers have been widely used, such as optical communication, military, material processing, and so on.[1,2]To achieve a simple structure, high beam qualities, and high stability pulsed laser, the saturable absorbers (SAs) have been used. Since the discovery of graphene in 2004, two-dimensional (2D) materials have attracted great attention because of their unique layered structures with weak van-der-Waals forces and excellent mechanical, electrical, and optical properties. In the past few years,various novel 2D materials have achieved rapid development and could be performed as promising SA for ultrafast broadband laser generation on account of their simple fabrication, outstanding saturable laser generation, and outstanding saturable absorption properties, such as ultrafast recovery time and controllable modulation depth.[1,3,4]There are already a series of 2D materials,such as graphene,black phosphorus (BP),[5-8]transition metal chalcogenides (TMDCs,e.g.,MoS2and WS2),[9,10]transition metal carbide(MXenes,e.g., Ti3C2Tx),[11-13]and topological insulators (TIs, e.g.,Bi2Se3).[14]

    According to different bandgaps and crystal structures of these 2D materials, it is possible to generate mode-locked or Q-switched pulses at different bands, such as 1 μm, 1.5 μm,2 μm, 2.8 μm, and 3.4 μm.[15-19]For example, in 2009,Bao et al. first used graphene as an SA to achieve modelocked fiber lasers with broadband and short recovery time.[20]However,graphene is a zero-band-gap material with poor absorption of light (single layer absorption coefficient is only 2.3%), which severely limits its light modulation capability and its application in the field of strong light and matter interactions.[21]Then,TMDC semiconductors represented by MoS2have also been widely used as SA in fiber lasers.TMDCs have broadband tunable band gaps and exhibit excellent third-order nonlinear optical properties,but the optical response occurs mainly in the visible to the near-infrared range,which limits its further application.[22,23]In recent years, BP has become a promising candidate for SAs in wide spectral range due to its tunable direct band gap by adjusting the number of layers(from 0.3 eV(bulk)to 1.73 eV(monolayer),corresponding to a wavelength range from 4μm to 0.7μm).[24-26]However, black phosphorus is very easily oxidized, which makes it difficult to be widely used in the semiconductor industry and optoelectronic devices.[27,28]Therefore, it makes sense to develop other new and superior 2D materials used as SA in mode-locked and Q-switched fiber laser.

    More interestingly, the ternary layered 2D materials are highly expected to exhibit more novel electrical, optical, and magnetic properties compared with those unary and binary 2D layered materials because of higher chemical diversity and structural complexity.[29]As a family of representative ternary layered 2D materials, metal phosphorus trichalcogenides (MPX3, M = Fe, Ni, Mn, Co, Zn, Cd, etc., and X =S or Se) have received tremendous attention and could be applied in various fields.[30,31]There are several obvious characteristics for MPX3. (i) These materials show a layered monoclinic crystal structure and each unit cell includes two cations and one[P2X6]4-cluster,forming a hexagonal lattice.(ii)Anisotropic properties and magnetic or antiferromagnetic properties.[32](iii)Due to the changes of the metal and chalcogenide atoms, the band gaps of MPX3bulks can range from 1.3 eV to 3.5 eV (FePS3: 1.5 eV,[33]MnPS3: 3.0 eV,[34,35]NiPS3: 1.6 eV,[36]ZnPS3: 3.4 eV,[37]CdPS3: 3.5 eV,[37]FePSe3: 1.3 eV,[38]MnPSe3: 2.5 eV[39,40]), which suggests their optical and electrical applications of photo-detection and photo-catalysis in a broad wavelength range. However,MPX3has not been used as SA in fiber lasers yet.

    In this work,we report and demonstrate a Q-switched Erdoped fiber laser at 1.5μm based on an innovative FePS3saturable absorber. High-quality single crystals of FePS3are first prepared by chemical vapor transport(CVT)method and then prepared into SA by electrochemical stripping. The experiment demonstrates that the new 2D material FePS3served as SA provides a valid method to realize passively Q-switched laser. When the pump power is in the range of 20 mW-120 mW, the stable pulse train can be observed on the oscilloscope. By properly rotating the polarization controller,we could achieve the output of dual-wavelength pulse,which can be applied extensively in industrial processing and medical devices.[41,42]

    2. Sample preparation and characterization of FePS3 saturable absorber

    2.1. Crystal growth and characterize of FePS3

    The high-quality FePS3crystals were fabricated by a CVT method,using iodine as a transport agent. The stoichiometric amount of iron powder (Fe, 99.99%), red phosphorus(RP,99.999%),and sulfur(S,99.99%)corresponding to 2 g of FePS3and iodine(I2, 1 mg/mL)were put in a quartz ampule(20 mm×150 mm; thickness: 2 mm) and sealed under high vacuum(under 1×10-3Pa)using oxygen/hydrogen welding torch,as shown in Fig.1(a). Then,the ampule was placed in a tube furnace with dual temperature zones and heated at 700°C for two weeks. Both the heating rate and the cooling rate were 2°C/min. After it cooled down to room temperature, black hexagonal crystal flakes with metallic luster could be obtained.It can be distinctly seen from the scanning electron microscopy(SEM) image in Fig. 1(c) that FePS3has a layered structure and the layers are connected together according to the van der Waals interaction so that the FePS3nanosheet can be obtained by mechanical peeling or liquid phase stripping. To determine the elemental composition of the prepared FePS3crystals, a piece of FePS3is randomly selected (Fig. 1(b) (i)-(iv)), and the energy dispersive spectrometer (EDS) element mappings show that the composition of FePS3is homogenous and the stoichiometric ratio of FePS3is similar to 1:1:3.

    Fig.1. (a)Schematic diagram of the preparation process of FePS3 crystals.(b)EDS element mappings for: (i)Fe,(ii)P,and(iii)S,as well as(iv)SEM image of a randomly selected FePS3 crystal. (c)The side view SEM image of single-crystalline FePS3.

    To further determine the crystal quality of FePS3, the microstructure information and composition information of FePS3were detected by transmission electron microscopy(TEM) and EDS. The TEM image in Fig. 2(a) shows that the FePS3nanosheet has a regular shape, consistent with the SEM results. The high-resolution TEM (HRTEM) image in Fig.2(b)exhibits clear lattice points and the interplanar spacing is 2.84 A?, corresponding to (131) planes of FePS3. Figure 2(c)is the corresponding selected area electron diffraction(SAED)pattern recorded along the[101]zone axis;the regular diffraction spots imply that FePS3flakes are single crystals with excellent quality. Moreover,the high-angle annular dark field(HADDF)image(Fig.2(c))and EDS element mappings for Fe, P, and S (Figs. 2(e)-2(g)) indicate that FePS3flakes have homogeneously composition in the whole scanning area(marked by the yellow region in Fig.2(d)).

    A Raman spectrum is also used to characterize the FePS3flakes, as shown in Fig. 3(a). Obviously, there are fvie characteristic vibration modes located at 154 cm-1, 222 cm-1,244 cm-1,276 cm-1,and 377 cm-1. The Egvibration mode at 154 cm-1is attributed to the vibration of the Fe atoms inside the crystal, while the vibration modes of the remaining four positions including the two Egvibrations and the two A1gvibrations are caused by the vibration of the [P2S6]4-cluster, which is consistent with those reported in previous experiments.[43]Figure 3(b)is an x-ray diffraction(XRD)pattern of FePS3flakes,which is in full agreement with the standard powder diffraction file(PDF)card 30-0663.[44]The most dominant diffraction planes in Fig. 3(b) are at 13.8°, 27.7°,42.4°,and 57.6°,which correspond to the(001),(002),(003),and(004)crystal planes of FePS3,respectively. This indicates that FePS3flakes have good crystallinity. To estimate the optical properties of the FePS3flakes grown by a two-step CVT method,the ultraviolet-visible absorption spectrum was used.The results (shown in Fig. 3(c)) show that the FePS3flakes have a large amount of absorption of ultraviolet light,and these flakes also have a certain absorption at the wavelength near 1550 nm.

    Fig. 2. (a) The TEM image of a piece of FePS3 nanosheet by random search. (b) The HRTEM image for this FePS3 nanosheet. (c) The corresponding SAED pattern. (d)The corresponding HAADF image of the FePS3 nanosheet. (e)-(g)EDS element mappings for Fe,P,and S.

    (g)

    Fig. 3. (a) Raman spectrum and (b) XRD of FePS3 flakes grown by a two-step CVT method. (c) The ultraviolet-visible absorption spectrum of FePS3 nanosheets.

    Fig. 4. Nonlinear transmission of the FePS3 film under different incident power intensities.

    The saturable absorption properties of FePS3thin film were also characterized. As illustrated in Fig. 4, the transmittance of the SA under different incident light power intensity was recorded. The laser source we used is a home-made mode-locked Er-doped fiber laser, which has the wavelength of 1559.5 nm, the repetition rate of 150.2 MHz, and a pulse duration of 1 ps. The fitted modulation depth and saturated intensities are 5%and 0.16 MW/cm2,respectively.

    2.2. Preparation of FePS3 SA

    The crystals were soaked in ethanol for 2 h to remove the transport agent I2. After that, clean crystals were put in about 30-mL N-methyl-2-pyrrolidone (NMP) and then sonicated for at least 2 hours. Then, the solution of few-layers FePS3nanoflakes could be obtained. Finally, NMP solvent was removed by centrifugation and FePS3nanoflakes were redistributed in ethanol.The obtained FePS3nanoflakes solution was then dripped onto the end face of a fiber adapter to form the SA device.

    Figure 5(a)is an atomic force microscopy(AFM)image of FePS3nanoflakes. The FePS3nanoflakes not only have a size of about 5μm and a uniform thickness, but also the surface of the samples is clean and free of holes or impurities.The thickness of the sample,as shown in Fig.5(b),is approximately 31 nm.

    Fig. 5. (a) AFM image of FePS3 nanoflakes; (b) the corresponding height and optical microscope image.

    3. Generation of an ultrashort fiber laser

    3.1. Experiment setup

    A schematic of the configuration of the passively Q-switched ring fiber laser is shown in Fig.6. The total length of the ring cavity is 15 m,including a piece of 2-m-long erbiumdoped fiber (EDF) which plays the role as the gain medium.The fiber laser is pumped by a 980-nm laser diode (LD)with the maximum output power of 900 mW. As a connector, a 980/1550-nm wavelength division multiplexer (WDM)links the seed laser and the EDF together. At the same time,the WDM is connected to the laser cavity, ensuring that the light can propagate in the fiber laser. After the EDF, the polarization-insensitive isolator (ISO) is connected. On the one hand, the ISO ensures the generated signal laser spread through single direction;while on the other hand,it can reduce the filtering effect which exists in the ring cavity with the cavity birefringence. In order to change the polarization state of the circulating,we can adjust the polarization controller(PC)by properly rotating it. At the end of the PC, a 10/90-output coupler is connected to the saturable absorber,the structure of which looks like a sandwich device by smearing the FePS3on the adapter of the fiber connector. 10% of the energy enters a 20/80-output coupler which is used to test the signal laser by the optical spectrum analyzer and an oscilloscope. Meanwhile, the remaining 90% of the energy passes through the SA.

    Fig.6. Schematic diagram of the Er-doped all-fiber ring cavity pulsed laser based on FePS3 thin-film SA.

    3.2. Single wavelength output

    In the experiment, when the pump power is increased to 20 mW,the pulse trains can be observed on the oscilloscope.By increasing the pump power, stable passively Q-switched performance is realized when the pump power is in the range of 20 mW-120 mW. However, the passively Q-switched operation would become unstable if we continue to increase the pump power. In our previous publication, we identified some of the reasons for this phenomenon,including the oversaturation of the FePS3SA at high pump power. Another possible reason is that the SA has been damaged under the high pump power.The experiment has been repeated six times to examine whether the FePS3SA is destroyed. Through repeated experiments,when the pump power is between 20 mW and 120 mW,the stable passively Q-switched performance can always be obtained, which means that the over-saturation of the SA at high incident intensity leads to the instability.

    Figure 7 illustrates the performance of the output pulse at a pump power of 100 mW.As shown in Fig.7(a), the central wavelength is 1559.9 nm with the 3-dB bandwidth of 0.04 nm.Figures 7(b) and 7(c) show the pulse trains and single pulse profile, respectively. The period of pulse trains is 16.67 μs with the single pulse duration of 2.74 μs, giving a repetition rate of 60 kHz (Fig. 7(d)). Figure 7(d) shows the stability of the passively Q-switched pulse with a signal-to-noise ratio of~62.98 dB. And the inset of Fig. 7(d) shows the radio frequency (RF) spectrum over a large range of 600 kHz. Figure 8(a)shows the relationship between the output power and the pump power. It is found that there is a positive correlation between them.Figure 8(b)illustrates the changes in the repetition rate and pulse duration as the pump power increases. This shows that the repetition rate rises as the pump power rises.In contrast, the pulse duration decreases as the pump power increases.

    Fig.7. The performance of the output pulse at a pump power of 100 mW.(a)Emission spectrum of single wavelength. (b)Pulse trains. (c)Single-pulse shape. (d)RF spectrum at f =60 kHz;inset: RF spectrum over a large range of 600 kHz.

    Fig.8. The properties of the single wavelength pulse: (a)output power as a function of pump power;(b)pulse repetition rate and pulse duration as a function of pump power.

    3.3. Dual-wavelength output

    In the experiment,when we change the polarization state of the circulating by adjusting the PC, the pulse train can be observed in the oscilloscope with the dual-wavelength displayed on the OSA when the pump power increases to 5 mW.However,the pulse train is unstable because of the low pump power. To the best of our knowledge,the SA has a modulation depth. When the pump power is under 15 mW, the modulation is unstable and the pump power is too low to provide enough energy to generate a stable pulse train. As the pump power increases to 15 mW, stable passively Q-switched performance is achieved and the output power increases linearly as the pump power increases,which is illustrated in Fig.10(a).Simultaneously,similar phenomenons have been described in the previous articles.[45,46]To gain a stable dual-wavelength,the pump power continues to increase. At a pump power of 15 mW,we obtain a stable dual-wavelength Q-switched laser.Figure 9(a) shows the dual-wavelength at the pump power of 35 mW, and the output pulse has two peak wavelengths 1559.7 nm and 1560.3 nm with the 3-dB bandwidth of 0.04 nm and 0.03 nm, respectively. As illustrated in Fig. 9(b), the interval of the pulse trains is 27.33μs with the full width at half maximum (FWHM) of 5.66 μs (Fig. 9(c)). Figure 9(d) displays the RF spectrum which demonstrates the temporal stability of the passively Q-switched pulse with a signal-to-noise ratio of ~58.72 dB.

    Figure 10(a) illustrates the linear fit of the output power and pump power, and Fig. 10(b) displays the repetition rate,which increases from 19.21 kHz to 48.94 kHz as the pump power increases from 15 mW to 50 mW.

    Fig.9. The properties of pulse at the power pump of 35 mW.(a)Emission spectrum of dual-wavelength. (b)Pulse trains. (c)Single pulse shape. (d)RF spectrum of the dual-wavelength at f =36.6 kHz;inset: RF spectrum over a large range of 280 kHz.

    Fig. 10. The properties of the dual-wavelength pulse. (a) The output power as a function of pump power. (b)Pulse repetition rate and pulse duration as a function of pump power.

    4. Conclusion and perspectives

    In summary, the new 2D material FePS3has been successfully prepared and employed in a passively Q-switched erbium-doped fiber laser. By repeated experiments, we confirm that the single wavelength pulse signal can always be received when the pump power is in the range of 20 mW to 120 mW. Meanwhile, the dual-wavelength pulse has been achieved by adjusting the state of the PC.The FePS3film SA is sandwiched between two fiber ferrules to be used as a passively Q-switched device.

    Under the condition of single wavelength pulse,the minimum pulse duration of Q-switched pulse is about 2.37 μs and the repetition rate can be varied from 18.36 kHz to 59.98 kHz, which changes completely as the pump power increases. When the pump power is 100 mW, the central wavelength is 1559.9 nm and the signal-to-radio of RF spectrum is measured to be 62.98 dB, which shows high stability of the passively Q-switched pulse. Under the condition of dual-wavelength pulse, the minimum pulse duration is about 5.27 μs with 8.33 μs as the maximum duration. For the repetition rate, it changes from 19.21 kHz to 48.94 kHz as the pump power increases. Moreover, one of the central wavelength is 1559.7 nm and another is 1560.3 nm with the pump power at 25 mW. At the same time, the signal-to-noise radio of RF spectrum is measured to be 58.72 dB. The experiment demonstrates that the new 2D material FePS3served as SA provides a valid method to realize passively Q-switched laser.The highlight is the achievement of a dual-wavelength pulse,which can be applied extensively in industrial processing and medical devices.

    Acknowledgment

    We off our thanks for thesupport provided by the Suzhou Institute of Nano-bionics,Nano-tech and Platform for Characterization&Test,Chinese Academy of Sciences(CAS).

    猜你喜歡
    陰晴楊潔王濤
    綿師學(xué)人
    ——王濤
    月有陰晴
    Transition to chaos in lid–driven square cavity flow?
    忘憂草
    Humanistic Learning and Its Application in Community Language Learning
    王濤作品
    淡天刷墨曉陰晴
    丹青少年(2017年3期)2018-01-22 02:50:16
    楊潔書法作品
    詩歌月刊(2016年10期)2016-12-16 00:51:50
    動物知陰晴
    小布老虎(2016年10期)2016-12-01 05:46:39
    STABILITY OF VISCOUS SHOCK WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES E QUATIONS WITH DENSITY-DEPENDENT VISCOSITY?
    成人性生交大片免费视频hd| 亚洲欧美日韩东京热| 99热网站在线观看| 卡戴珊不雅视频在线播放| 在线免费十八禁| 国产在线一区二区三区精| 精品久久久久久久久久久久久| 国产高清三级在线| 午夜久久久久精精品| 亚洲真实伦在线观看| 一个人观看的视频www高清免费观看| 青青草视频在线视频观看| 欧美最新免费一区二区三区| 国产乱人视频| 看黄色毛片网站| 99热这里只有精品一区| 男人和女人高潮做爰伦理| 亚洲内射少妇av| 午夜福利在线观看免费完整高清在| 国产亚洲精品av在线| 在线免费十八禁| 国产亚洲精品久久久com| 一级毛片 在线播放| 亚洲性久久影院| 亚洲美女搞黄在线观看| 在线免费观看不下载黄p国产| 又爽又黄无遮挡网站| 国产女主播在线喷水免费视频网站 | 亚洲av.av天堂| 自拍偷自拍亚洲精品老妇| av.在线天堂| 麻豆av噜噜一区二区三区| 亚洲最大成人手机在线| 亚洲四区av| 最近手机中文字幕大全| av女优亚洲男人天堂| 丰满乱子伦码专区| 午夜亚洲福利在线播放| 一夜夜www| 日韩av在线大香蕉| 免费看美女性在线毛片视频| 国产综合精华液| 欧美日韩视频高清一区二区三区二| 99九九线精品视频在线观看视频| 国产亚洲午夜精品一区二区久久 | 啦啦啦啦在线视频资源| 18+在线观看网站| 22中文网久久字幕| 亚洲精品国产成人久久av| 国产老妇伦熟女老妇高清| 真实男女啪啪啪动态图| 国产免费一级a男人的天堂| 日韩大片免费观看网站| 午夜精品在线福利| 国产探花在线观看一区二区| 91午夜精品亚洲一区二区三区| 午夜激情久久久久久久| 亚洲精品日本国产第一区| 十八禁国产超污无遮挡网站| 国内精品美女久久久久久| 亚州av有码| 亚洲va在线va天堂va国产| 九九爱精品视频在线观看| 色综合色国产| 亚洲国产av新网站| 国产亚洲精品久久久com| 丝袜喷水一区| 国产精品一区二区性色av| 菩萨蛮人人尽说江南好唐韦庄| 两个人视频免费观看高清| 亚洲成人一二三区av| av在线亚洲专区| av在线观看视频网站免费| 亚洲最大成人av| 99热6这里只有精品| 亚洲av中文字字幕乱码综合| 日本与韩国留学比较| 激情 狠狠 欧美| 国产中年淑女户外野战色| 成人午夜精彩视频在线观看| av在线观看视频网站免费| 嫩草影院精品99| 日韩一区二区三区影片| 天天一区二区日本电影三级| 亚洲怡红院男人天堂| 日日摸夜夜添夜夜爱| 午夜精品国产一区二区电影 | 肉色欧美久久久久久久蜜桃 | 久久久色成人| 国产成人午夜福利电影在线观看| 日本色播在线视频| 能在线免费看毛片的网站| 国产乱人偷精品视频| 九九在线视频观看精品| 国产精品一区二区三区四区久久| 在线免费观看不下载黄p国产| 18+在线观看网站| 2021天堂中文幕一二区在线观| 18禁在线播放成人免费| av线在线观看网站| 亚洲av日韩在线播放| 一级片'在线观看视频| 男人和女人高潮做爰伦理| 大又大粗又爽又黄少妇毛片口| 永久网站在线| 激情 狠狠 欧美| 欧美丝袜亚洲另类| 国产一区二区三区综合在线观看 | 神马国产精品三级电影在线观看| 午夜亚洲福利在线播放| 午夜久久久久精精品| 日本-黄色视频高清免费观看| 爱豆传媒免费全集在线观看| 久久人人爽人人片av| 亚洲欧美成人精品一区二区| 看非洲黑人一级黄片| 男女视频在线观看网站免费| 国产成人精品一,二区| 你懂的网址亚洲精品在线观看| av又黄又爽大尺度在线免费看| 久久久久网色| 熟妇人妻久久中文字幕3abv| 日韩大片免费观看网站| 免费在线观看成人毛片| 一个人看视频在线观看www免费| 免费观看a级毛片全部| 免费观看无遮挡的男女| 国产成人a区在线观看| 国产永久视频网站| 91在线精品国自产拍蜜月| 精品99又大又爽又粗少妇毛片| 少妇高潮的动态图| 亚洲熟妇中文字幕五十中出| 国产亚洲一区二区精品| 欧美日韩综合久久久久久| 国产精品国产三级国产av玫瑰| 亚洲四区av| 少妇的逼水好多| 亚洲欧美精品专区久久| 男插女下体视频免费在线播放| 中文字幕久久专区| 亚洲熟女精品中文字幕| 亚洲欧美清纯卡通| 国产一区二区在线观看日韩| 一个人免费在线观看电影| 欧美高清性xxxxhd video| 国产熟女欧美一区二区| 我要看日韩黄色一级片| 高清毛片免费看| 一级毛片黄色毛片免费观看视频| 日韩强制内射视频| 晚上一个人看的免费电影| 免费av不卡在线播放| 久久久久久伊人网av| 亚洲国产精品成人久久小说| 岛国毛片在线播放| 床上黄色一级片| 少妇人妻精品综合一区二区| .国产精品久久| 久久久久久久久久黄片| 亚洲一区高清亚洲精品| 免费观看av网站的网址| 国产黄色小视频在线观看| 国产精品蜜桃在线观看| 国内精品美女久久久久久| 搡老乐熟女国产| 国产精品蜜桃在线观看| 国产爱豆传媒在线观看| 午夜福利在线观看吧| 久久精品熟女亚洲av麻豆精品 | 毛片女人毛片| av在线亚洲专区| 国产精品av视频在线免费观看| 2021少妇久久久久久久久久久| 国产激情偷乱视频一区二区| 亚洲伊人久久精品综合| 久久久久性生活片| 亚洲色图av天堂| 国产精品人妻久久久影院| 最近的中文字幕免费完整| 久久精品国产亚洲av涩爱| 九九久久精品国产亚洲av麻豆| 五月天丁香电影| 亚洲丝袜综合中文字幕| 国内揄拍国产精品人妻在线| 免费黄色在线免费观看| 全区人妻精品视频| 18禁在线播放成人免费| 久久久久久久亚洲中文字幕| 欧美日韩在线观看h| 亚洲国产最新在线播放| 人妻一区二区av| 亚洲av男天堂| 又爽又黄无遮挡网站| 插逼视频在线观看| 一级毛片久久久久久久久女| 久久久久久久亚洲中文字幕| 看非洲黑人一级黄片| 一本一本综合久久| 看免费成人av毛片| 男女边吃奶边做爰视频| 天堂影院成人在线观看| 美女大奶头视频| 欧美成人一区二区免费高清观看| 亚洲国产日韩欧美精品在线观看| 黑人高潮一二区| 99热这里只有是精品在线观看| .国产精品久久| 国产精品日韩av在线免费观看| 国产精品蜜桃在线观看| 亚洲av国产av综合av卡| 亚洲四区av| 亚洲在久久综合| 国产一区亚洲一区在线观看| 三级国产精品片| 亚洲经典国产精华液单| 乱人视频在线观看| 日本一本二区三区精品| 深夜a级毛片| 男插女下体视频免费在线播放| 欧美日本视频| 亚洲熟妇中文字幕五十中出| 直男gayav资源| 91午夜精品亚洲一区二区三区| 国产精品久久久久久av不卡| 国产伦在线观看视频一区| 国产精品一及| 久久久久久久大尺度免费视频| 免费观看在线日韩| 女人十人毛片免费观看3o分钟| 国产日韩欧美在线精品| 日韩精品有码人妻一区| 午夜激情欧美在线| 国产午夜福利久久久久久| 亚洲精品久久午夜乱码| 秋霞伦理黄片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品456在线播放app| 精品熟女少妇av免费看| 久久97久久精品| 亚洲三级黄色毛片| www.色视频.com| 韩国av在线不卡| 一级毛片黄色毛片免费观看视频| 亚洲国产精品成人综合色| 成人一区二区视频在线观看| 久久久久久伊人网av| 国产乱来视频区| 三级经典国产精品| freevideosex欧美| 看非洲黑人一级黄片| 少妇的逼好多水| 成人无遮挡网站| 亚洲无线观看免费| 亚洲欧洲日产国产| 国产一区有黄有色的免费视频 | 国产亚洲av嫩草精品影院| 一个人看视频在线观看www免费| 久久人人爽人人爽人人片va| 最近最新中文字幕大全电影3| 91aial.com中文字幕在线观看| 亚洲四区av| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 久久这里有精品视频免费| 婷婷六月久久综合丁香| 一级av片app| 国产高潮美女av| 97热精品久久久久久| 欧美日本视频| 国产视频首页在线观看| a级一级毛片免费在线观看| 国产精品一及| 亚洲国产精品国产精品| 久久久久精品久久久久真实原创| 国产单亲对白刺激| 蜜臀久久99精品久久宅男| 好男人在线观看高清免费视频| 大香蕉久久网| 国产av国产精品国产| 国产在线男女| 高清av免费在线| 蜜桃久久精品国产亚洲av| 自拍偷自拍亚洲精品老妇| av女优亚洲男人天堂| 人体艺术视频欧美日本| 欧美成人一区二区免费高清观看| 三级经典国产精品| 91久久精品国产一区二区成人| 久久久久免费精品人妻一区二区| 久久久精品94久久精品| 亚洲在线观看片| 久久99热这里只有精品18| 色视频www国产| 国产乱人视频| 亚洲国产色片| 日本黄大片高清| av卡一久久| 国产探花极品一区二区| 一个人免费在线观看电影| 午夜免费男女啪啪视频观看| 国产黄a三级三级三级人| 中文字幕人妻熟人妻熟丝袜美| 日本午夜av视频| 永久网站在线| 99久久精品国产国产毛片| 色综合色国产| 午夜福利视频精品| 成年版毛片免费区| 校园人妻丝袜中文字幕| 国产午夜精品论理片| 国国产精品蜜臀av免费| 啦啦啦韩国在线观看视频| 我的女老师完整版在线观看| 欧美成人午夜免费资源| 最新中文字幕久久久久| 国产91av在线免费观看| 日韩中字成人| 国产91av在线免费观看| 最新中文字幕久久久久| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 啦啦啦啦在线视频资源| 精品人妻视频免费看| 免费黄色在线免费观看| 久久久午夜欧美精品| 久久久久精品性色| 永久免费av网站大全| 免费观看的影片在线观看| .国产精品久久| 日韩av在线大香蕉| 久久久久久久久久久免费av| 性插视频无遮挡在线免费观看| 日日摸夜夜添夜夜添av毛片| 国产亚洲最大av| 啦啦啦韩国在线观看视频| 亚洲精品色激情综合| 老师上课跳d突然被开到最大视频| 国内揄拍国产精品人妻在线| 99久久人妻综合| 少妇丰满av| 国产精品久久久久久久久免| 午夜福利在线在线| 青春草国产在线视频| 亚洲精品日韩在线中文字幕| 韩国av在线不卡| 亚洲av中文av极速乱| 国产麻豆成人av免费视频| 午夜福利网站1000一区二区三区| 精品人妻熟女av久视频| 久久久亚洲精品成人影院| 国产在视频线精品| 少妇熟女aⅴ在线视频| 一级毛片电影观看| 国产单亲对白刺激| 18禁在线播放成人免费| 青春草国产在线视频| www.av在线官网国产| 最新中文字幕久久久久| 偷拍熟女少妇极品色| 在线观看人妻少妇| 婷婷色麻豆天堂久久| 亚洲高清免费不卡视频| 久久久久久久久中文| 亚洲伊人久久精品综合| 一级黄片播放器| 亚洲av二区三区四区| 激情 狠狠 欧美| 免费黄频网站在线观看国产| 自拍偷自拍亚洲精品老妇| 国产亚洲精品久久久com| 天天一区二区日本电影三级| 国产黄a三级三级三级人| 内地一区二区视频在线| 亚洲精品日韩在线中文字幕| 亚洲va在线va天堂va国产| 人妻一区二区av| 久久人人爽人人爽人人片va| 午夜福利成人在线免费观看| 亚洲精品亚洲一区二区| 欧美成人一区二区免费高清观看| 国产伦一二天堂av在线观看| 欧美精品国产亚洲| 晚上一个人看的免费电影| 亚洲精品日韩在线中文字幕| 欧美3d第一页| 精品久久久久久久久亚洲| 成人亚洲精品av一区二区| 少妇丰满av| 丝瓜视频免费看黄片| 免费av毛片视频| 久久精品国产鲁丝片午夜精品| 亚洲伊人久久精品综合| 国产亚洲av片在线观看秒播厂 | 亚洲国产精品成人综合色| 免费无遮挡裸体视频| 91精品伊人久久大香线蕉| 免费av不卡在线播放| 午夜老司机福利剧场| 亚洲国产高清在线一区二区三| 国产亚洲av嫩草精品影院| 我的老师免费观看完整版| 在线免费十八禁| 久久精品人妻少妇| 成人鲁丝片一二三区免费| 久久国产乱子免费精品| 色尼玛亚洲综合影院| 色吧在线观看| 国产色婷婷99| 搡老乐熟女国产| 欧美人与善性xxx| 女人十人毛片免费观看3o分钟| 国产黄片美女视频| 毛片女人毛片| 亚洲精品日韩在线中文字幕| 久热久热在线精品观看| 亚洲国产精品专区欧美| 99热这里只有是精品50| 精品久久国产蜜桃| 麻豆成人av视频| 啦啦啦中文免费视频观看日本| 国产精品一区二区三区四区免费观看| 好男人视频免费观看在线| 亚洲电影在线观看av| 一本一本综合久久| 久久久午夜欧美精品| 男人狂女人下面高潮的视频| 菩萨蛮人人尽说江南好唐韦庄| av在线老鸭窝| 综合色av麻豆| 久久鲁丝午夜福利片| 国产精品久久视频播放| 人妻夜夜爽99麻豆av| 免费黄色在线免费观看| 美女主播在线视频| 亚洲精品一区蜜桃| 一级片'在线观看视频| 久久久久久久久中文| 日本av手机在线免费观看| 网址你懂的国产日韩在线| 插阴视频在线观看视频| 22中文网久久字幕| 亚洲精品456在线播放app| 亚洲av成人精品一二三区| 亚洲天堂国产精品一区在线| 日本猛色少妇xxxxx猛交久久| 人人妻人人看人人澡| 一夜夜www| 三级男女做爰猛烈吃奶摸视频| 国内精品宾馆在线| 国产乱人视频| 亚洲av不卡在线观看| 亚洲伊人久久精品综合| av专区在线播放| 乱人视频在线观看| 亚洲成色77777| 久久久色成人| 亚洲成人精品中文字幕电影| 日日啪夜夜爽| 色综合站精品国产| 大香蕉久久网| 日韩亚洲欧美综合| 国产极品天堂在线| 欧美高清性xxxxhd video| 国产欧美另类精品又又久久亚洲欧美| 99热网站在线观看| 国产 一区 欧美 日韩| 亚洲熟妇中文字幕五十中出| 日日摸夜夜添夜夜添av毛片| 六月丁香七月| 午夜福利高清视频| 建设人人有责人人尽责人人享有的 | 极品教师在线视频| 黄片wwwwww| 亚洲成人一二三区av| av播播在线观看一区| 亚洲怡红院男人天堂| 国产黄片视频在线免费观看| 亚洲国产日韩欧美精品在线观看| 久久久国产一区二区| 欧美一级a爱片免费观看看| 精品午夜福利在线看| 亚洲在线自拍视频| 日日撸夜夜添| 卡戴珊不雅视频在线播放| 一级毛片aaaaaa免费看小| 99久久精品热视频| 亚洲国产成人一精品久久久| 91aial.com中文字幕在线观看| 国产成人aa在线观看| 久久热精品热| 亚洲精品日本国产第一区| 亚洲欧美精品自产自拍| 一区二区三区乱码不卡18| 国产精品一区二区在线观看99 | 久久久久网色| 国产午夜福利久久久久久| 最近手机中文字幕大全| 欧美区成人在线视频| 性插视频无遮挡在线免费观看| 伦理电影大哥的女人| 成人午夜高清在线视频| 日韩成人伦理影院| av在线天堂中文字幕| 久久亚洲国产成人精品v| 一级毛片电影观看| 国产欧美日韩精品一区二区| 精品午夜福利在线看| 免费人成在线观看视频色| 亚洲欧洲日产国产| 18+在线观看网站| 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 欧美xxxx黑人xx丫x性爽| 精品国产露脸久久av麻豆 | 免费观看精品视频网站| 亚洲欧洲国产日韩| 亚洲激情五月婷婷啪啪| 亚洲精品成人av观看孕妇| 在线观看av片永久免费下载| 激情 狠狠 欧美| 黄色欧美视频在线观看| 高清av免费在线| 小蜜桃在线观看免费完整版高清| 亚洲最大成人av| 亚洲精品一二三| 麻豆国产97在线/欧美| 日日摸夜夜添夜夜添av毛片| 视频中文字幕在线观看| 久久久久国产网址| 天天躁日日操中文字幕| 一个人看的www免费观看视频| videossex国产| 亚洲电影在线观看av| 国产淫片久久久久久久久| ponron亚洲| 简卡轻食公司| 免费高清在线观看视频在线观看| 国产精品一二三区在线看| 亚洲国产精品sss在线观看| 一级av片app| 草草在线视频免费看| videos熟女内射| 亚洲18禁久久av| 免费人成在线观看视频色| 男女边吃奶边做爰视频| 亚洲精华国产精华液的使用体验| 欧美性感艳星| 久久鲁丝午夜福利片| 国产精品久久久久久av不卡| 最近中文字幕2019免费版| 亚洲最大成人手机在线| 国产精品一区二区性色av| 狂野欧美白嫩少妇大欣赏| 国产真实伦视频高清在线观看| 成人二区视频| 又大又黄又爽视频免费| 精品亚洲乱码少妇综合久久| 免费不卡的大黄色大毛片视频在线观看 | 97超碰精品成人国产| 国产视频首页在线观看| 国产伦一二天堂av在线观看| 成人午夜高清在线视频| 免费av不卡在线播放| 高清欧美精品videossex| 男的添女的下面高潮视频| 一级黄片播放器| 97人妻精品一区二区三区麻豆| 别揉我奶头 嗯啊视频| 亚洲精品色激情综合| 99久久精品一区二区三区| 亚洲最大成人av| 成人高潮视频无遮挡免费网站| 一二三四中文在线观看免费高清| 国产高清不卡午夜福利| 好男人在线观看高清免费视频| 日韩av在线免费看完整版不卡| 亚洲成人一二三区av| 久久这里只有精品中国| 亚洲av成人精品一区久久| 精品久久久久久久久av| 国产成人午夜福利电影在线观看| 日韩成人av中文字幕在线观看| 色综合色国产| 久久国内精品自在自线图片| 精品人妻偷拍中文字幕| 超碰97精品在线观看| 热99在线观看视频| 国产成人精品一,二区| 色综合站精品国产| 熟妇人妻久久中文字幕3abv| 国产成人a∨麻豆精品| 亚洲欧美精品自产自拍| 水蜜桃什么品种好| 亚洲欧美精品专区久久| 九九爱精品视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲av中文字字幕乱码综合| 日韩成人av中文字幕在线观看| av福利片在线观看| 五月天丁香电影| 中文欧美无线码| 特大巨黑吊av在线直播| 国产精品国产三级国产av玫瑰| 小蜜桃在线观看免费完整版高清| 一个人免费在线观看电影| 在线a可以看的网站| 国产精品美女特级片免费视频播放器| 人人妻人人澡欧美一区二区| 九九爱精品视频在线观看| 777米奇影视久久| 18+在线观看网站| 日韩av在线大香蕉| 亚洲欧美精品自产自拍| 久久99热6这里只有精品|