• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thin-film growth behavior of non-planar vanadium oxidephthalocyanine?

    2019-08-16 01:20:48TianJiaoLiu劉天嬌HuaYanXia夏華艷BiaoLiu劉標(biāo)TimJonesMeiFang方梅andJunLiangYang陽軍亮
    Chinese Physics B 2019年8期

    Ti an-Jiao Liu(劉天嬌), Hua-Yan Xia(夏華艷), Biao Liu(劉標(biāo)),Tim S Jones, Mei Fang(方梅), and Jun-Liang Yang(陽軍亮),?

    1Hunan Key Laboratory for Super-microstructure and Ultrafast Process,School of Physics and Electronics,Central South University,Changsha 410083,China

    2Department of Chemistry,University of Warwick,Coventry,CV4 7AL,United Kingdom

    Keywords: organic semiconductor,thin film,vanadyl phthalocyanine(VOPc),growth behavior

    1. Introduction

    Organic semiconductor film plays an increasingly vital role in next generation thin film devices. Among them, metallophthalocyanines (MPcs) have been widely used as organic functional materials in photoconductive and electroluminescence devices,[1]nonlinear optical devices,[2,3]gas and humidity sensors,[4,5]solar cells,[6,7]organic field-effect transistors,[8,9]organic light emitting diodes,[10]etc. Due to the variety of van der Waals force, MPcs assemble in different stacking structures, inevitably leading to the polymorphs phenomenon.[11]The film morphology and structure greatly influence the device performance.[12,13]Thus,it is very important to grow high-quality MPc film with controllable properties.

    Unlike planar MPcs, non-planar vanadyl phthalocyanine(VOPc) presents a pyramidal molecular structure with a C4v symmetry due to the deviation of the center V=O from the molecular plane.[14]Normally, it is more difficult to obtain high-quality VOPc film than planar phthalocyanines. Several techniques have been employed to prepare VOPc film, such as organic molecular beam deposition (OMBD),[15]epitaxial growth,[16]spin-coating,[17]physical vapour deposition,[18]and Langmuir-Blodgett techniques.[19]OMBD is one of the most successful techniques for preparing highly ordered organic film, and the OMBD sublimated VOPc molecules on transparent conductive indium tin oxide (ITO) film, widely used silicon dioxide(SiO2),and flexible kapton substrates are very important for the development of rigid and flexible organic electronics. A deep understanding of VOPc film growth mechanism will provide vital information for fabricating highperformance devices.[20,21]

    In this paper, the film growth behavior of non-planar VOPc on the rigid substrates of ITO, SiO2, and the flexible substrate of kapton are systematically studied through atomic force microscope (AFM) and x-ray diffraction (XRD). The VOPc film growth is strongly influenced by the in situ substrate temperature or post-annealing treatment. Meanwhile,3, 4, 9, 10-perylene-tetracarboxylic dianhydride (PTCDA)molecule is used as the templating layer to induce the growth of high-quality VOPc film,and the stacking structure of VOPc coincidentally presents the phase I arrangement.

    2. Experimental section

    2.1. VOPc film deposition

    The polycrystalline VOPc films were prepared by OMBD in a high vacuum chamber(10-5Pa-10-6Pa)on the rigid substrate of ITO,SiO2,and the flexible substrate of kapton. Prior to the film deposition,the substrates were cleaned in an ultra-sonic bath using deionized water, acetone, and isopropyl alcohol for 10 minutes,respectively,and then blown dried with nitrogen. VOPc powder was bought from Aldrich Co. (USA)and used directly.The deposition rate of VOPc film monitored by a quartz oscillator was about 0.1 ?A/s-0.2 ?A/s. The ITO substrate was set at room-temperature, 180°C, and 250°C,respectively. The VOPc films deposited on room-temperature ITO substrate proceed to be annealed for 2 hours at 255°C and 275°C,respectively. The same process except that all of the substrates maintained at room-temperature was employed to grow VOPc film on SiO2or kapton substrate. The PTCDA was deposited via OMBD and used as the template layer for inducing the growth of VOPc.

    2.2. VOPc film characterization

    The morphologies and height profiles were characterized by AFM (Asylum Research MFP-3D, Santa Barbara, USA)with a tapping mode in air. Wide-angle x-ray diffraction was carried out by an X’Pert PRO (PANalytical, Netherlands) instrument with Cu Kα radiation(α =1.54056 ?A).[22]The rate was set as 0.4°/min to scan from 5°to 28°.

    3. Results and discussion

    3.1. VOPc film grown on ITO substrate

    ITO is well known for its usage as transparent conductive electrode in liquid crystal displays (LCD), organic light emitting diodes(OLED),solar cells,and touch panels.[23]The ITO film coated glass used in this experiment is commercially available, which consists of randomly oriented nanometersize crystal grains resulting from low-temperature(<200°C)of glass substrate in the magnetron sputtering process. In this part, we systematically investigated the growth behavior of vacuum evaporated VOPc films with different film thicknesses,in situ substrate temperature,and post-annealing temperature. Figure 1(a)-1(f) show the AFM morphologies of VOPc film grown on the ITO substrate. The corresponding height profile along the black line is shown below the morphology image.

    As shown in Figs. 1(a) and 1(b), the root-mean-square(RMS) roughness becomes larger as the film thickness increases. The RMS roughness of 80-nm-thick VOPc film is 4.99 nm, while for the 160-nm-thick film, the RMS roughness increases to 9.99 nm. In this case, VOPc exhibits an island growth mode since the VOPc molecules are randomly deposited on the disordered VOPc film which has been formed on the ITO substrate, resulting in an increased RMS roughness. It is also found that the 275°C post-annealed VOPc film has larger grains and smaller roughness than the film postannealed at 255°C(RMS is 7.60 nm at 275°C while 9.90 nm at 255°C, as shown in Figs. 1(c) and 1(d)). It is probably because VOPc film is recrystallized during high-temperature annealing to produce larger grain size.

    Fig. 1. AFM images showing the morphologies of VOPc thin films grown on the ITO substrate. (a) 80-nm VOPc with an RMS of 4.99 nm, (b)160-nm VOPc with an RMS of 9.99 nm, (c)160-nm VOPc with a post-treatment at 255 °C for 2 hours and with an RMS of 9.90 nm, (d)160-nm VOPc with a post-treatment at 275°C for 2 hours and with an RMS of 7.60 nm,(e)160-nm VOPc deposited at 180°C and with an RMS of 16.06 nm,and(f)160-nm VOPc deposited at 250°C and with an RMS of 37.26 nm.The height profile in each case corresponds to the black lines in the images.

    As discussed above, the substrate temperature during vacuum deposition has an important effect on the morphology and structure of the film. Therefore, the ITO substrate is maintained at 180°C and 250°C for comparison during film deposition. Although VOPc grains are arranged irregularly (Figs. 1(e) and 1(f)), the two VOPc films on hightemperature substrate feature larger crystal grains than the films on room-temperature substrate or high-temperature postannealing treatments. Similar to the cases in Figs. 1(c)and 1(d), the crystalline grains of 160-nm-thick VOPc film deposited at 180°C are closely packed, with an RMS of 16.06 nm, while the VOPc film with the same thickness deposited at 250°C exhibits a mixture of platelet-shaped and seed-shaped crystallites. This phenomenon may attribute to longer diffusing distance of VOPc molecules before their nucleation of a stable island, which correspondingly results in a lower island nucleation density and thus larger island sizes. In the present case,the interaction between the organic molecules and the substrate is smaller than that among the organic molecules themselves, thus forming three-dimensional islands (Fig. 1(f)). Pinholes appearing near the small disordered grains can be ascribed to the desorption of VOPc molecules on the high-temperature substrate. The morphologies of the VOPc films prepared by our method differ from that reported in the literature which was lamellae-shaped or step-shaped,[24]probably resulting from the relatively fast deposition rate. It has been reported that VOPc films demonstrate varied grain sizes at the identical substrate temperature by changing the deposition rate.[25]

    There are three modes in the crystal growth on a bulk substrate,i.e.,layer-by-layer mechanism(Frank-Vander Mercue), island mechanism (Volmer Weber), and layer-by-layer followed by island mechanism (Stranski-Karstanov).[26]Inspired by the growth theory of inorganic semiconductor,it can be speculated that the VOPc films grown on room-temperature rigid ITO, SiO2, and flexible kapton substrates (VOPc films grown on SiO2and kapton substrates will be discussed below) exhibit the island mechanism. When directly grown on high-temperature (160°C and 250°C) ITO substrate, VOPc film obeys the layer-by-layer followed by island growth. In the process of VOPc vacuum deposition, the gas molecules are physically absorbed on the substrate surface. As time goes on,many three-dimensional cores accumulate on the substrate.Until the condensed crystal nucleus reaches saturation,instead of forming a new nucleus, the newly vaporized molecules of the gas phase will condense onto the existing nucleus to form crystals. The VOPc nucleus grows to form islands. This threedimensional island structure usually has the crystal of VOPc,so ultimately it becomes microcrystalline. On the 160-°C and 250-°C ITO substrates,owing to the similar lattice constant between VOPc and ITO,the binding tendency of VOPc and ITO substrate is higher than that of VOPc molecules themselves.However,the VOPc film does not spread out on the ITO substrate thoroughly and accompanies with the formation of small crystalline grains because of the roughness of ITO surface.Therefore,the film from the nucleation stage takes only a partially two-dimensional expansion mode and conforms to the layer-by-layer followed by island mechanism. In general,the grain size of VOPc grown on ITO heavily relies on the treatment temperature. Below the critical evaporation temperature of VOPc film, higher temperature leads to longer molecules diffuse length on the substrate and larger domain size.

    Fig.2. XRD curves of VOPc thin films grown on the ITO substrate. Curve a: 80-nm VOPc pristine thin film,curve b: 160-nm pristine thin film,curve c:160-nm VOPc with a post-treatment at 255°C for 2 hours,curve d:VOPc thin film treated at 275 °C for 2 hours,curve e: VOPc deposited at the substrate with a temperature of 180 °C, and curve f: VOPc deposited at the substrate with a temperature of 250 °C.

    For understanding the molecular assembly in VOPc film,XRD measurements are performed. Figure 2 is XRD patterns of VOPc films grown on the ITO substrates under different conditions. Curve a in Fig. 2 shows XRD curve of 80-nm VOPc film deposited on room-temperature ITO. The diffraction peak located at 2θ =21.3°is assigned to the(221)plane of ITO, and it could be used as a diffraction peak for comparison. Another relatively weak diffraction peak located at 26.13°(d=0.34 nm)is indexed as(231)lattice plane of VOPc(phase I type,[27]monoclinic structure, space group P21/c,a=1.42 nm, b=1.31 nm, c=1.27 nm, β =103.2°, and γ = α = 90°). It is suggested that VOPc molecules prefer to grow in the crystalline structure of phase I on roomtemperature ITO.Meanwhile,the really weak diffraction peak indicates that the VOPc film grown on room-temperature ITO is poorly crystalline. As the thickness of VOPc increases to 160 nm,the VOPc film takes a similar crystalline structure for the characteristic diffraction peak is almost preserved (curve b). For the 160-nm-thick VOPc films post-annealed at 255°C on the ITO substrate, it appears a new peak at 7.48°in the XRD diagram,which shows the change of crystalline packing of VOPc (curve c). The 160 nm films show a new diffraction peak at 7.48°with d = 1.18 nm, indexed as (010) of VOPc (phase II type,[28-30]the triclinic structure belongs to space group Pˉ1, a = 1.20 nm, b = 1.25 nm, c = 8.69 nm,α =96.04°,β =94.8°,and γ =68.2°). It means that for the 160-nm-thick VOPc films post-annealed at 255°C, not only the distance of the molecular layer increases,but also another molecular structure (phase II type) emerges. Interestingly, a higher temperature (275°C) treatment can change the crystalline packing of VOPc as well. As shown in Fig.2(curve d),the disappearing diffraction peak of 26.1°indicates that VOPc film shows a single crystalline structure type of phase II at a higher post-annealing temperature, and it has totally changed the VOPc crystalline structure from phase I to phase II compared with the VOPc film deposited on room-temperature ITO.The curves e and f in Fig. 2 show the XRD diffraction patterns of 160-nm-thick VOPc films deposited on 180°C and 250°C ITO substrates, respectively. The only one diffraction peaks at 7.48°clearly indicates that the VOPc molecules are in phase II crystalline structure. It suggests that the VOPc film prepared on in situ 180°C and 250°C ITO substrates are dominated by phase II crystalline structure. In addition,the diffraction peak intensity at 7.48°is significantly enhanced as compared with the films deposited on room-temperature and postannealed, confirming the increased crystallinity in the VOPc films (Fig. 1). Thus, the VOPc films with phase I or phase II can be modulated by the post-annealing and in situ annealing temperature,which will enhance our understanding of the growth behavior of VOPc film on the ITO substrate.

    3.2. VOPc film grown on rigid SiO2 and flexible kapton substrate

    In order to investigate the effect of substrate material on the growth of VOPc film,we deposit the VOPc molecules on rigid SiO2and flexible kapton substrate by OMBD method.Figure 3 is their AFM morphologies and height profiles.The 80-nm-thick VOPc film grown on the SiO2substrate has an RMS roughness of 5.63 nm, while the RMS of 160-nm-thick film grown under the same condition is 11.06 nm(Figs. 3(a) and 3(b)), which indicates that at the same evaporation rate, the longer deposition time results in a thicker and slightly rougher film. Therefore, it complies with the island growth mode. Influenced by the amorphous state and non-directional property of kapton substrate,the 160-nm-thick VOPc film grown on the kapton features the maximum roughness with an RMS of 12.02 nm. Unlike metals that are provided with a close-packed structure, semiconductors have an open structure.[31]In this open structure, the gap between molecules is relatively greater. Additionally, the voidage of non-planar VOPc molecules after sublimated into film is increased,which is determined by the orientation and saturation of covalent bond. Thus,the increased surface fluctuation leads to a rougher film.

    Fig.3. AFM images showing the morphologies of VOPc thin films. (a)80-nm VOPc grown on the SiO2 substrate with an RMS of 5.63 nm,(b)160-nm VOPc grown on the SiO2 substrate with an RMS of 11.06 nm,(c)160-nm VOPc grown on the kapton substrate with an RMS of 12.02 nm,(d)80-nm VOPc grown by PTCDA templating on the SiO2 substrate with an RMS of 5.54 nm, (e) 160-nm VOPc grown by PTCDA templating on the SiO2 substrate with an RMS of 8.31 nm,and(f)160-nm VOPc grown by PTCDA templating on the kapton substrate with an RMS of 10.61 nm. The height profile in each case corresponds to the black lines in the images.

    Molecular templating method is widely used to grow high-quality organic semiconductor thin films.[32]Due to the high stability of inducing template layer and good interaction between narrow domains, the size and morphology of target molecules can be strictly controlled. Here, the PTCDA templating layer regarded as a model system in OMBD is used to grow VOPc thin films.[33]As shown in Fig. 3(d), the 80-nmthick VOPc film grown by PTCDA templating on SiO2substrate demonstrates uniformly small grain characteristics with an RMS of 5.54 nm. Then,thicker VOPc film of 160 nm has sublimated on the SiO2substrate by PTCDA templating. Its morphology can be seen from Fig. 3(e). The nano-crystals have grown up during the longer time evaporating process through molecular aggregates or merging neighbouring grains.Therefore, the 160-nm-thick VOPc film grown by PTCDA template has a larger RMS of 8.31 nm than the 80-nm-thick one. However, under the same growth condition, VOPc film grown on PTCDA template layer has a small roughness compared with the VOPc film directly grown on the SiO2substrate. Thus, the PTCDA templating inducing layer is beneficial to improve the film smoothness. The PTCDA templating method is also utilized to prepare VOPc films on flexible kapton substrate. In Fig. 3(f), the 160-nm VOPc film grown by PTCDA templating on the kapton substrate demonstrates enlarged grains than that on the SiO2substrate, and the RMS roughness increases to 10.61 nm. On the surface of unmodified SiO2, due to the interactions between VOPc and polar hydroxyl groups that originate from the oxidation of Si, the molecular diffusion length is shortened and the crystal size decreases. The situation is different for amorphous kapton substrate. Poor interaction between VOPc and kapton contributes to longer molecular diffusion length and facilitates the formation of larger crystals. Similarly, comparing Fig. 3(f)with Fig.3(c),it can be found that the PTCDA template layer is conducive to reduce the roughness of VOPc film.Therefore,on the flexible substrate,relatively uniform and large grain size VOPc film can be obtained, proving that VOPc film can be well applied to flexible devices.

    The XRD patterns from VOPc films on the SiO2and kapton substrates are plotted in Fig. 4. Four different peaks at 2θ =6.84°, 7.48°, 13.0°, and 26.13°are indexed as (100),(010),(002),and(231)plane,respectively.The corresponding interstack distances are 12.91 ?A, 11.84 ?A, 6.8 ?A, and 3.4 ?A.For the 80-nm VOPc film grown on the SiO2substrate, a strong diffraction peak located at 7.48°can be observed in Fig. 4(a) (curve 1), corresponding to the (010) lattice plane of phase II with a monlayer of 1.184 nm. Simultaneously,the exclusive appearance of (010) peak indicates that the VOPc molecules preferentially stand on the SiO2substrate,[18,32]and the orientation of the VOPc molecules is presented with the a axis parallel to the substrate surface plane (Fig. 5(a)). The curve 2 in Fig. 4(a) shows the representative XRD curve of 160-nm VOPc film.The main diffraction peaks show a change at 26.13°where this new peak emerges with the film thickness increased from 80 nm to 160 nm. The diffraction peak at 26.13°has d =0.34 nm, indexed as (231) lattice plane of phase I.[34]It means that as the thickness increases, phase II and phase I co-exist,[35]in which phase I is arranged along the geometrical(010)direction,while molecule clusters of phase II are arranged along the geometrical (231) direction. Since the diffraction peak at 7.48°is stronger than 26.13°, most of the VOPc molecular plane is parallel to the(010)direction and partly arranged in the(231)channel with the a axis inclined at 28°to the substrate surface plane,as shown in Fig.5(c). Generally,on the SiO2substrate,the crystalline phases and molecular orientations of the VOPc film are greatly affected by the thin film thickness,which is very different from the VOPc film grown on the ITO.

    Fig. 4. XRD results of VOPc thin films grown on the (a) SiO2 and (b)kapton substrates, respectively. Curve 1: 80-nm VOPc grown on the SiO2 substrate, curve 2: 160-nm VOPc grown on the SiO2 substrate, curve 3:80-nm VOPc grown by PTCDA templating on the SiO2 substrate,curve 4:160-nm VOPc grown by PTCDA templating on the SiO2 substrate,curve 5:160-nm VOPc grown on the kapton substrate, and curve 6: 160-nm VOPc grown by PTCDA templating on the kapton substrate.

    In contrast, the XRD pattern of the 80-nm-thick VOPc films grown on PTCDA template layer is shown by curve 3 in Fig. 4. The most intense peak located at 26.13°suggests that most of the VOPc molecules are arranged in phase I type along the geometrical(231)direction,in which the axis is inclined by 28°with respect to the substrate surface plane.Other VOPc molecules are arranged in the(100)channel with the c axis parallel to the substrate surface plane. The really weak signal of 13.0°diffraction peak indicates just a small part of the molecules lying down on the substrate with the(002)zone parallel to the substrate. As indicated by the molecular orientation in Fig. 5(b), the PTCDA template molecular layer can induce the growth of VOPc thin film with three orientations of phase I. This indicates that a pre-deposited PTCDA template layer can change the crystalline stacking behavior,[36]and tune the molecular orientation from phase II to phase I successfully.Besides,the VOPc films with thickness of 160 nm are formed by the same method. As shown by curve 4 in Fig. 4, the increase of the film thickness does not change the structure of phase I for the VOPc film on the PTCDA template molecular layer,and the peak of 26.1°is significantly enhanced.It means that the molecular orientation arranged along the geometrical channels(231)is enhanced as the thickness increases. Thus,a greater proportion of the VOPc molecules are arranged along the(231)orientations.

    Furthermore,the XRD patterns of VOPc films fabricated on the flexible kapton substrate are displayed in Fig.4(b).Owing to the amorphous state of kapton, its baseline is significantly higher than that of the SiO2substrate. On the flexible substrate,the PTCDA template molecular layer can also tune the growth behavior of the VOPc films to phase I structure,which is similar to the SiO2substrate (Figs. 5(c) and 5(d)).This obviously indicates that the structural templating effect exists in both SiO2and flexible kapton substrates, implying that the molecular structure of non-planar VOPc films can be modulated by PTCDA template growth.

    Fig. 5. Schematic of VOPc molecular orientations for: (a) and (b) 80-nm VOPc deposited on SiO2 substrate with and without the PTCDA template layer,(c)and(d)160-nm VOPc grown on SiO2 or kapton substrate with and without the PTCDA template layer.

    4. Conclusion

    In summary, the growth behaviors of VOPc films on rigid ITO, SiO2substrate, and flexible kapton substrate have been studied with AFM and XRD characterization. The effects on the growth of VOPc film are analyzed and generalized, including the material type of the substrate, in situ and post-annealing temperature, film thickness, and template layer PTCDA. Although the VOPc film deposited on hightemperature substrate or via high-temperature post-annealed treatment has larger grain size,the amorphous and rough ITO surface is not suitable for the formation of VOPc films with high crystallinity.Meanwhile,it is found that the PTCDA template molecule layer contributes to improving the film smoothness and tuning the molecular orientation from phase I to phase II.Furthermore,high-quality and large grain size VOPc films can be formed on flexible kapton substrate,which shows great application potential in flexible electronics. In a word,it is of great significance to realize the controllable and optimal growth of VOPc film because high-quality organic semiconductor film is an indispensable component of improving device performance.

    人人妻人人添人人爽欧美一区卜| 成年美女黄网站色视频大全免费| 老汉色∧v一级毛片| 久久人人爽人人片av| 日日爽夜夜爽网站| 欧美另类一区| 欧美激情久久久久久爽电影 | 蜜桃国产av成人99| 在线永久观看黄色视频| 亚洲av日韩精品久久久久久密| 美女高潮喷水抽搐中文字幕| 日韩视频在线欧美| 在线观看舔阴道视频| 99久久精品国产亚洲精品| 69av精品久久久久久 | 在线精品无人区一区二区三| 亚洲人成电影观看| 黄色a级毛片大全视频| 99久久99久久久精品蜜桃| 色婷婷久久久亚洲欧美| 中文精品一卡2卡3卡4更新| 性高湖久久久久久久久免费观看| 十八禁高潮呻吟视频| 少妇粗大呻吟视频| 欧美日韩黄片免| 少妇精品久久久久久久| 欧美精品高潮呻吟av久久| 韩国高清视频一区二区三区| 丰满迷人的少妇在线观看| 国产成人免费观看mmmm| 视频区图区小说| 精品国产一区二区久久| 国产亚洲午夜精品一区二区久久| 午夜激情av网站| 乱人伦中国视频| 高清视频免费观看一区二区| 人人妻人人爽人人添夜夜欢视频| 欧美av亚洲av综合av国产av| 狂野欧美激情性bbbbbb| 国产精品欧美亚洲77777| 满18在线观看网站| 亚洲国产日韩一区二区| 久久久欧美国产精品| 免费观看av网站的网址| 欧美精品一区二区大全| 久久久水蜜桃国产精品网| 日韩欧美一区二区三区在线观看 | 日韩视频在线欧美| 一边摸一边抽搐一进一出视频| 国产成人免费观看mmmm| 99精品久久久久人妻精品| cao死你这个sao货| 两个人看的免费小视频| 精品久久久久久电影网| 国产成人精品无人区| 精品国产一区二区三区久久久樱花| 欧美av亚洲av综合av国产av| 欧美 日韩 精品 国产| 不卡一级毛片| 欧美日韩黄片免| 久久人人97超碰香蕉20202| 日本黄色日本黄色录像| 国产国语露脸激情在线看| 丁香六月欧美| 91成人精品电影| 久久女婷五月综合色啪小说| 99热国产这里只有精品6| 桃花免费在线播放| 欧美黄色淫秽网站| 男人操女人黄网站| 日韩大码丰满熟妇| 亚洲国产欧美一区二区综合| 久久精品国产亚洲av高清一级| 99国产综合亚洲精品| 亚洲人成电影免费在线| 国产精品欧美亚洲77777| 一区二区三区四区激情视频| 老司机午夜福利在线观看视频 | 丝袜美足系列| 亚洲色图综合在线观看| 九色亚洲精品在线播放| 日本91视频免费播放| 1024香蕉在线观看| 好男人电影高清在线观看| 色婷婷久久久亚洲欧美| 亚洲国产精品一区三区| 丰满迷人的少妇在线观看| 黄色毛片三级朝国网站| 久久久精品区二区三区| 亚洲av电影在线进入| 国产精品偷伦视频观看了| 成人手机av| 丝袜人妻中文字幕| 日韩,欧美,国产一区二区三区| 日韩欧美国产一区二区入口| 久久精品国产亚洲av香蕉五月 | 18禁黄网站禁片午夜丰满| 国产免费视频播放在线视频| 97在线人人人人妻| 亚洲性夜色夜夜综合| 国产色视频综合| 久久久久久亚洲精品国产蜜桃av| 男人操女人黄网站| 国产一区二区激情短视频 | 亚洲欧美精品自产自拍| 国产av精品麻豆| 十八禁人妻一区二区| 青春草亚洲视频在线观看| 777久久人妻少妇嫩草av网站| 啦啦啦免费观看视频1| 99国产精品一区二区蜜桃av | 免费观看a级毛片全部| 我的亚洲天堂| 狠狠精品人妻久久久久久综合| 一二三四社区在线视频社区8| 一区二区三区精品91| 丰满人妻熟妇乱又伦精品不卡| 少妇 在线观看| 他把我摸到了高潮在线观看 | 丰满人妻熟妇乱又伦精品不卡| 亚洲专区国产一区二区| 国产欧美亚洲国产| 国产97色在线日韩免费| 亚洲av成人一区二区三| 国产一级毛片在线| 老熟妇仑乱视频hdxx| 国产精品影院久久| 一级黄色大片毛片| 久热爱精品视频在线9| 免费在线观看影片大全网站| www.自偷自拍.com| 久久久欧美国产精品| tocl精华| 欧美性长视频在线观看| 欧美人与性动交α欧美精品济南到| 亚洲成国产人片在线观看| 高清欧美精品videossex| 午夜福利视频在线观看免费| 亚洲精华国产精华精| 精品第一国产精品| 女人被躁到高潮嗷嗷叫费观| 国产一区二区三区在线臀色熟女 | 亚洲欧美一区二区三区黑人| 男人操女人黄网站| 亚洲免费av在线视频| 欧美精品一区二区免费开放| 国产成人精品无人区| 电影成人av| 亚洲国产av新网站| 日韩中文字幕视频在线看片| 亚洲欧洲精品一区二区精品久久久| 国产成人免费无遮挡视频| 欧美性长视频在线观看| 99精品欧美一区二区三区四区| 后天国语完整版免费观看| 黄色毛片三级朝国网站| 嫩草影视91久久| 亚洲精品美女久久久久99蜜臀| 香蕉丝袜av| 国产成人精品无人区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品成人av观看孕妇| 一区福利在线观看| 日本wwww免费看| 免费在线观看视频国产中文字幕亚洲 | 亚洲九九香蕉| 99精品久久久久人妻精品| 亚洲国产av影院在线观看| 欧美日韩一级在线毛片| 国产精品偷伦视频观看了| 免费高清在线观看视频在线观看| 国产欧美日韩一区二区精品| svipshipincom国产片| 老司机靠b影院| 久久中文字幕一级| 色婷婷av一区二区三区视频| 一级毛片女人18水好多| 久久久久网色| 啦啦啦视频在线资源免费观看| 高清av免费在线| 国产精品一区二区在线不卡| 我要看黄色一级片免费的| 久久久久久免费高清国产稀缺| 欧美97在线视频| 亚洲精品自拍成人| 日本av手机在线免费观看| 老熟女久久久| 国产黄色免费在线视频| 欧美国产精品一级二级三级| a级毛片黄视频| 欧美亚洲日本最大视频资源| 91字幕亚洲| 欧美日韩亚洲高清精品| 蜜桃国产av成人99| 欧美激情 高清一区二区三区| 免费女性裸体啪啪无遮挡网站| 欧美精品一区二区免费开放| 欧美大码av| 丝瓜视频免费看黄片| 免费观看人在逋| 法律面前人人平等表现在哪些方面 | 男女午夜视频在线观看| 日韩,欧美,国产一区二区三区| 久久女婷五月综合色啪小说| 日韩三级视频一区二区三区| 五月开心婷婷网| 久久久国产精品麻豆| 一级,二级,三级黄色视频| 在线av久久热| 9191精品国产免费久久| 久久中文看片网| 夜夜夜夜夜久久久久| 国产日韩欧美视频二区| 男女免费视频国产| 欧美中文综合在线视频| 久久人人爽人人片av| 一区福利在线观看| 久久国产精品大桥未久av| 亚洲久久久国产精品| 亚洲精品美女久久av网站| 少妇裸体淫交视频免费看高清 | 国产在线观看jvid| 大香蕉久久网| 视频区欧美日本亚洲| 欧美激情高清一区二区三区| 久久久久久久久久久久大奶| 欧美黄色淫秽网站| 精品卡一卡二卡四卡免费| 黑人巨大精品欧美一区二区mp4| 日韩欧美国产一区二区入口| 两性夫妻黄色片| 一本大道久久a久久精品| 午夜福利,免费看| 久久久久久亚洲精品国产蜜桃av| 婷婷色av中文字幕| 国产亚洲精品久久久久5区| 久久久国产一区二区| 美女福利国产在线| 在线 av 中文字幕| 人妻人人澡人人爽人人| 国产精品久久久久久精品电影小说| 在线观看www视频免费| 热99久久久久精品小说推荐| 51午夜福利影视在线观看| 久久午夜综合久久蜜桃| 欧美性长视频在线观看| 五月开心婷婷网| 中文字幕色久视频| 亚洲精品一区蜜桃| 制服诱惑二区| 夜夜骑夜夜射夜夜干| 丝袜喷水一区| 国产精品一区二区在线观看99| 午夜福利免费观看在线| 99国产精品一区二区蜜桃av | 少妇的丰满在线观看| 久久人人爽av亚洲精品天堂| 亚洲精品中文字幕在线视频| 亚洲,欧美精品.| 国产福利在线免费观看视频| 久久久久视频综合| 日韩欧美国产一区二区入口| 别揉我奶头~嗯~啊~动态视频 | 久久99一区二区三区| 成人影院久久| 蜜桃国产av成人99| 91精品三级在线观看| 天堂中文最新版在线下载| 十八禁人妻一区二区| 午夜老司机福利片| 国产成人免费无遮挡视频| 亚洲一区中文字幕在线| 亚洲欧美色中文字幕在线| 又大又爽又粗| 亚洲午夜精品一区,二区,三区| 老汉色av国产亚洲站长工具| 久久久久久久久免费视频了| 精品一品国产午夜福利视频| 精品欧美一区二区三区在线| 波多野结衣av一区二区av| 亚洲色图 男人天堂 中文字幕| 五月天丁香电影| 国产在线免费精品| 黄片播放在线免费| 免费在线观看完整版高清| 亚洲avbb在线观看| 在线观看一区二区三区激情| 美女主播在线视频| 亚洲精品成人av观看孕妇| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区在线不卡| 日韩欧美一区二区三区在线观看 | 国产91精品成人一区二区三区 | 一级,二级,三级黄色视频| 少妇人妻久久综合中文| 美女主播在线视频| 亚洲av男天堂| 久久综合国产亚洲精品| 97人妻天天添夜夜摸| 国产又色又爽无遮挡免| 日本撒尿小便嘘嘘汇集6| 12—13女人毛片做爰片一| 国产黄色免费在线视频| 手机成人av网站| 国产精品自产拍在线观看55亚洲 | 最近中文字幕2019免费版| av福利片在线| 午夜精品久久久久久毛片777| 成人黄色视频免费在线看| 亚洲av日韩在线播放| 99香蕉大伊视频| 看免费av毛片| 亚洲成人免费电影在线观看| 欧美黑人欧美精品刺激| 国产精品秋霞免费鲁丝片| 亚洲中文日韩欧美视频| 亚洲精品美女久久久久99蜜臀| 欧美中文综合在线视频| 男人添女人高潮全过程视频| 18在线观看网站| 真人做人爱边吃奶动态| 国产在线一区二区三区精| 亚洲成人国产一区在线观看| 狠狠婷婷综合久久久久久88av| 青草久久国产| 中文字幕最新亚洲高清| 亚洲中文字幕日韩| 亚洲男人天堂网一区| 黄色片一级片一级黄色片| 午夜91福利影院| 国产淫语在线视频| 美女大奶头黄色视频| 欧美乱码精品一区二区三区| 久久中文字幕一级| 高清欧美精品videossex| 久热这里只有精品99| 日本av免费视频播放| 午夜福利视频精品| 99热全是精品| 女人高潮潮喷娇喘18禁视频| 99精品欧美一区二区三区四区| 精品免费久久久久久久清纯 | 国产精品一二三区在线看| 免费在线观看完整版高清| 大片电影免费在线观看免费| 久久久国产欧美日韩av| 操美女的视频在线观看| 午夜福利视频在线观看免费| 桃花免费在线播放| 国产成人系列免费观看| 亚洲综合色网址| 午夜福利视频在线观看免费| av又黄又爽大尺度在线免费看| av线在线观看网站| 午夜老司机福利片| 国产日韩欧美亚洲二区| 精品一区二区三区四区五区乱码| 91字幕亚洲| 操出白浆在线播放| av线在线观看网站| 亚洲国产av新网站| 欧美成人午夜精品| 久久国产精品大桥未久av| 操美女的视频在线观看| 亚洲专区字幕在线| 欧美日韩黄片免| 久久天堂一区二区三区四区| 男女下面插进去视频免费观看| 少妇的丰满在线观看| 黑人巨大精品欧美一区二区mp4| 欧美97在线视频| 久久精品国产亚洲av高清一级| 国产片内射在线| 巨乳人妻的诱惑在线观看| 日韩中文字幕视频在线看片| 久久精品熟女亚洲av麻豆精品| 国产97色在线日韩免费| 久久国产精品男人的天堂亚洲| 性少妇av在线| 波多野结衣av一区二区av| 亚洲成国产人片在线观看| 国产精品麻豆人妻色哟哟久久| 大香蕉久久成人网| 黄色视频在线播放观看不卡| av有码第一页| 国产亚洲欧美精品永久| 国产免费一区二区三区四区乱码| 18禁观看日本| 一二三四社区在线视频社区8| 欧美精品一区二区大全| 久久久久久亚洲精品国产蜜桃av| 亚洲中文日韩欧美视频| 国产精品久久久av美女十八| 亚洲精品久久久久久婷婷小说| 久久ye,这里只有精品| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 电影成人av| 女性被躁到高潮视频| 欧美精品一区二区大全| av免费在线观看网站| 中文字幕人妻丝袜制服| 91精品国产国语对白视频| av欧美777| 久久性视频一级片| 丰满人妻熟妇乱又伦精品不卡| 天天躁日日躁夜夜躁夜夜| 成人av一区二区三区在线看 | 桃花免费在线播放| 国产精品久久久久久精品电影小说| 欧美97在线视频| 两性夫妻黄色片| 人妻人人澡人人爽人人| 捣出白浆h1v1| 亚洲av片天天在线观看| 亚洲欧美一区二区三区黑人| 亚洲专区国产一区二区| 国产精品成人在线| 黄色 视频免费看| 久久久久国内视频| 男人爽女人下面视频在线观看| 亚洲精品美女久久久久99蜜臀| 国产一区二区在线观看av| av国产精品久久久久影院| 丝袜脚勾引网站| 国产在线观看jvid| 大香蕉久久成人网| 欧美国产精品va在线观看不卡| 久久久欧美国产精品| 亚洲伊人久久精品综合| 国产精品99久久99久久久不卡| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 黄色视频,在线免费观看| 国产在视频线精品| 亚洲国产精品一区二区三区在线| 97人妻天天添夜夜摸| 桃红色精品国产亚洲av| 国产高清视频在线播放一区 | 乱人伦中国视频| 少妇的丰满在线观看| 日本91视频免费播放| 亚洲国产av影院在线观看| 国产高清视频在线播放一区 | 国产人伦9x9x在线观看| 精品国产超薄肉色丝袜足j| 欧美日韩黄片免| 伊人亚洲综合成人网| 一区二区三区乱码不卡18| 久久亚洲精品不卡| 国产区一区二久久| 一本综合久久免费| 老汉色av国产亚洲站长工具| 亚洲欧洲日产国产| 亚洲精品国产av蜜桃| 老鸭窝网址在线观看| 国精品久久久久久国模美| 欧美97在线视频| 久9热在线精品视频| 亚洲五月色婷婷综合| 狠狠婷婷综合久久久久久88av| 91九色精品人成在线观看| 男女免费视频国产| 动漫黄色视频在线观看| 日本av免费视频播放| 麻豆乱淫一区二区| 中亚洲国语对白在线视频| 一本久久精品| 欧美黄色片欧美黄色片| 人妻久久中文字幕网| 亚洲精品国产区一区二| 精品免费久久久久久久清纯 | 自线自在国产av| 在线观看免费日韩欧美大片| 下体分泌物呈黄色| 精品久久久久久久毛片微露脸 | 亚洲精品在线美女| 国产极品粉嫩免费观看在线| 搡老岳熟女国产| 亚洲av电影在线观看一区二区三区| 十八禁网站网址无遮挡| 一本大道久久a久久精品| 久久天躁狠狠躁夜夜2o2o| 欧美亚洲日本最大视频资源| 在线av久久热| 亚洲精品一二三| 看免费av毛片| 国产免费福利视频在线观看| 美女国产高潮福利片在线看| 狠狠狠狠99中文字幕| 中文字幕精品免费在线观看视频| 欧美日本中文国产一区发布| 欧美另类亚洲清纯唯美| 精品亚洲成国产av| 亚洲精品自拍成人| 窝窝影院91人妻| 国产主播在线观看一区二区| 视频区图区小说| 亚洲五月色婷婷综合| 性色av乱码一区二区三区2| 窝窝影院91人妻| 国产伦理片在线播放av一区| 狂野欧美激情性xxxx| 精品亚洲成a人片在线观看| 亚洲国产欧美在线一区| 亚洲精品一二三| 日日夜夜操网爽| 天堂中文最新版在线下载| 日韩中文字幕欧美一区二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲第一av免费看| 国产精品欧美亚洲77777| 久久亚洲精品不卡| 久久女婷五月综合色啪小说| 久久久久久久久免费视频了| 久久精品国产亚洲av香蕉五月 | 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费午夜福利视频| 精品少妇一区二区三区视频日本电影| 中文字幕另类日韩欧美亚洲嫩草| av天堂久久9| 亚洲国产看品久久| 人妻久久中文字幕网| 99re6热这里在线精品视频| 亚洲av片天天在线观看| 麻豆av在线久日| 国产深夜福利视频在线观看| 久久久精品94久久精品| 久久女婷五月综合色啪小说| 少妇 在线观看| 欧美日韩一级在线毛片| avwww免费| 亚洲 欧美一区二区三区| 欧美激情极品国产一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美一区二区三区在线观看 | 久久国产亚洲av麻豆专区| 日本欧美视频一区| 菩萨蛮人人尽说江南好唐韦庄| 另类精品久久| 亚洲五月婷婷丁香| 黄网站色视频无遮挡免费观看| 91av网站免费观看| 久久精品国产综合久久久| av超薄肉色丝袜交足视频| 欧美+亚洲+日韩+国产| 免费av中文字幕在线| 人人妻人人澡人人爽人人夜夜| 免费日韩欧美在线观看| 一区在线观看完整版| videos熟女内射| 两人在一起打扑克的视频| 搡老岳熟女国产| 美女扒开内裤让男人捅视频| 美女中出高潮动态图| 久久久久国产一级毛片高清牌| 韩国精品一区二区三区| 久久香蕉激情| 老司机靠b影院| 波多野结衣一区麻豆| 黄网站色视频无遮挡免费观看| 一级片免费观看大全| 水蜜桃什么品种好| 大型av网站在线播放| 黑人巨大精品欧美一区二区mp4| 青草久久国产| 日韩视频在线欧美| 看免费av毛片| 老鸭窝网址在线观看| 精品亚洲乱码少妇综合久久| 一级毛片电影观看| 色94色欧美一区二区| 国产精品免费视频内射| 国产一区二区三区av在线| 国产成人欧美| 老司机午夜十八禁免费视频| 乱人伦中国视频| 女人精品久久久久毛片| 国产日韩欧美亚洲二区| 视频区图区小说| 成人av一区二区三区在线看 | 免费在线观看日本一区| 在线天堂中文资源库| 亚洲中文日韩欧美视频| 天天添夜夜摸| 欧美国产精品va在线观看不卡| 最近最新中文字幕大全免费视频| 欧美精品啪啪一区二区三区 | 成年人午夜在线观看视频| 日本av免费视频播放| 男人操女人黄网站| 好男人电影高清在线观看| 亚洲精品乱久久久久久| 男人添女人高潮全过程视频| 男女高潮啪啪啪动态图| 久久中文看片网| 国产1区2区3区精品| 久久精品人人爽人人爽视色| 精品久久久精品久久久| 成在线人永久免费视频| 亚洲专区字幕在线| 亚洲av日韩在线播放| 在线 av 中文字幕| 国产成人精品久久二区二区91| 两性午夜刺激爽爽歪歪视频在线观看 | 日本精品一区二区三区蜜桃| 亚洲欧美日韩高清在线视频 | 美女高潮喷水抽搐中文字幕| 脱女人内裤的视频| 日韩欧美免费精品| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品 欧美亚洲| 高清视频免费观看一区二区| 91精品国产国语对白视频| 精品免费久久久久久久清纯 |