李都,牛長纓,李峰奇,羅晨
斑翅果蠅氣味結(jié)合蛋白OBP56h與小分子化合物的結(jié)合特征
李都1,2,牛長纓1,李峰奇2,羅晨2
(1華中農(nóng)業(yè)大學(xué)植物科學(xué)技術(shù)學(xué)院,武漢 430070;2北京市農(nóng)林科學(xué)院植物保護(hù)環(huán)境保護(hù)研究所北方果樹病蟲害綠色防控北京市重點(diǎn)實(shí)驗(yàn)室,北京 100097)
【】克隆斑翅果蠅()氣味結(jié)合蛋白56h(odorant binding protein 56h,OBP56h)基因,誘導(dǎo)表達(dá)斑翅果蠅OBP56h重組蛋白(DsuzOBP56h),研究其與小分子化合物的結(jié)合特性?!尽客ㄟ^RT-PCR并設(shè)計(jì)特異性引物克隆斑翅果蠅ORF全長,從NCBI數(shù)據(jù)庫中下載相似度高的昆蟲氣味結(jié)合蛋白序列,進(jìn)行序列比對(duì)和分析。以Ⅰ和Ⅰ為酶切位點(diǎn),將OBP56h連入pET-30a(+)原核表達(dá)載體,將重組質(zhì)粒轉(zhuǎn)入BL21(DE3)大腸桿菌感受態(tài)細(xì)胞。擴(kuò)大培養(yǎng)陽性菌株,并用IPTG誘導(dǎo)表達(dá)DsuzOBP56h重組蛋白。收集菌液,通過超聲波破碎細(xì)胞得到蛋白,利用Ni-NTA柱純化蛋白,進(jìn)行Tris-HCl透析,用BCA法測(cè)定蛋白濃度。蛋白用50 mmol·L-1Tris-HCl(pH 7.4)稀釋至終濃度2 μmol·L-1,配基用色譜級(jí)甲醇稀釋至終濃度1 mmol·L-1,以4,4′-二苯胺基-1,1′-聯(lián)萘-5,5′-二磺酸二鉀鹽(4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid dipotassium salt,bis-ANS)熒光探針為報(bào)告子,利用熒光競爭結(jié)合試驗(yàn)檢測(cè)DsuzOBP56h蛋白與18種候選小分子化合物配基的結(jié)合特性?!尽靠寺~@得了斑翅果蠅的ORF全長,共405 bp,N-端含有19個(gè)氨基酸組成的信號(hào)肽,具有6個(gè)保守半胱氨酸位點(diǎn),符合OBP的典型特征,與其同屬的黑腹果蠅OBP56h進(jìn)化關(guān)系最近。成功連入pET-30a(+)表達(dá)載體,在1 mmol·L-1IPTG、28℃條件下誘導(dǎo)DsuzOBP56h蛋白表達(dá),并過柱純化得到目的蛋白。熒光光譜試驗(yàn)顯示,熒光探針bis-ANS與DsuzOBP56h的解離常數(shù)為0.9568 μmol·L-1,適合作為本試驗(yàn)中競爭性熒光結(jié)合試驗(yàn)的報(bào)告子;進(jìn)一步的熒光競爭結(jié)合試驗(yàn)表明,在18種候選配基中,苦味物質(zhì)鹽酸小蘗堿和香豆素與DsuzOBP56h的結(jié)合親和性較強(qiáng),解離常數(shù)分別為12.16和17.93μmol·L-1,柚皮素與DsuzOBP56h的解離常數(shù)為25.32 μmol·L-1,草莓葉片產(chǎn)生的一種對(duì)斑翅果蠅具有吸引作用的揮發(fā)性氣味物質(zhì)-環(huán)檸檬醛也能與DsuzOBP56h結(jié)合,其解離常數(shù)為31.37 μmol·L-1?!尽堪叱峁墯馕督Y(jié)合蛋白OBP56h能與測(cè)試的多種植物苦味物質(zhì)和揮發(fā)性氣味物質(zhì)結(jié)合,表明DsuzOBP56h很有可能參與斑翅果蠅對(duì)食物味覺和嗅覺的識(shí)別行為,研究結(jié)果可為理解斑翅果蠅的取食行為提供理論依據(jù),并為開展斑翅果蠅的生態(tài)防控提供新思路。
斑翅果蠅;氣味結(jié)合蛋白;原核表達(dá);競爭結(jié)合
【研究意義】斑翅果蠅()是雙翅目(Diptera)果蠅科(Drosophilidae)果蠅屬()昆蟲,雌蟲特化有鋸齒狀產(chǎn)卵器,可將卵直接產(chǎn)于成熟或即將成熟的草莓、藍(lán)莓、樹莓、櫻桃、葡萄、桃等果皮較軟的果實(shí)內(nèi),幼蟲在果實(shí)內(nèi)取食,給水果產(chǎn)業(yè)造成嚴(yán)重?fù)p失[1-2]。研究斑翅果蠅嗅覺相關(guān)蛋白與取食果品相關(guān)小分子化合物的識(shí)別結(jié)合機(jī)理,對(duì)深入認(rèn)識(shí)該蟲的取食選擇和產(chǎn)卵定位以及進(jìn)一步建立斑翅果蠅的生態(tài)防控技術(shù)具有重要理論意義?!厩叭搜芯窟M(jìn)展】昆蟲氣味結(jié)合蛋白(odorant binding protein,OBP)分布于感器淋巴液,氣味分子經(jīng)OBP識(shí)別后運(yùn)輸至感覺神經(jīng)元膜上刺激氣味受體,引發(fā)動(dòng)作電位,進(jìn)而影響昆蟲相關(guān)行為反應(yīng)[3],因此OBP是嗅覺系統(tǒng)中識(shí)別化學(xué)物質(zhì)的第一步,對(duì)昆蟲接收外界化學(xué)信息至關(guān)重要[4-6]。雙翅目昆蟲中對(duì)OBP蛋白的功能研究多為其與不同化合物的結(jié)合特性[7-8]。果蠅屬昆蟲大多數(shù)種類以腐爛水果為寄主,在上面取食和產(chǎn)卵,因而對(duì)水果產(chǎn)業(yè)危害不大,而斑翅果蠅不同,雖然也喜食腐爛水果,但在產(chǎn)卵時(shí)更喜歡以即將成熟的水果為寄主[9],對(duì)水果品質(zhì)和產(chǎn)量危害巨大。斑翅果蠅1916年最先報(bào)道于日本,后陸續(xù)被多國報(bào)道,自2008年在歐美地區(qū)暴發(fā)以來,對(duì)軟皮水果產(chǎn)業(yè)造成了嚴(yán)重威脅。在我國山東、湖北、河南、廣西、云南等22個(gè)?。ㄗ灾螀^(qū))均有發(fā)現(xiàn),其發(fā)生危害呈加重和蔓延趨勢(shì),國內(nèi)關(guān)于斑翅果蠅的研究十分滯后,亟需加強(qiáng)[10-11]。目前,斑翅果蠅的防治方法主要以化學(xué)防治為主,但由于該蟲卵和幼蟲在果實(shí)內(nèi),化學(xué)防治有很大局限,且不利于環(huán)境保護(hù)和食品安全。基于昆蟲行為學(xué)習(xí)性的生態(tài)調(diào)控是控制害蟲種群的有效措施。基于果蠅對(duì)腐爛水果的趨性,以發(fā)酵產(chǎn)物如蘋果醋、酒、酵母等為誘餌對(duì)斑翅果蠅進(jìn)行防控具有很好的效果[12-13],但也會(huì)誘到其他種類的果蠅和寄生性天敵[14]。Feng等[15]根據(jù)新鮮和發(fā)酵蘋果汁的氣味發(fā)現(xiàn),乙偶姻、辛酸乙酯、乙酸、乙酸乙酯和苯乙醇5種化合物組成的混合液對(duì)斑翅果蠅的引誘更有效,更有針對(duì)性。此外,利用驅(qū)避劑防止害蟲危害,也是一種有效措施;Wallingford等[16]研究發(fā)現(xiàn),二甲萘烷醇和1-辛烯-3-醇對(duì)斑翅果蠅具有趨避作用。昆蟲對(duì)物質(zhì)的正反趨向行為都與其寄主選擇有關(guān),明確斑翅果蠅的寄主選擇機(jī)制,將有利于開發(fā)更加有效、更有針對(duì)性的引誘劑或驅(qū)避劑,對(duì)于斑翅果蠅的防治至關(guān)重要?!颈狙芯壳腥朦c(diǎn)】黑腹果蠅()中氣味結(jié)合蛋白的研究較為深入,其中在嗅覺和味覺感受器均有表達(dá)[17],且在味覺中具有重要作用[18],而斑翅果蠅的相關(guān)研究尚未見報(bào)道,推測(cè)斑翅果蠅OBP56h在其取食行為中具有重要作用。本研究通過克隆斑翅果蠅,采用原核表達(dá)和熒光競爭結(jié)合試驗(yàn),研究其與18種小分子化合物的結(jié)合特性?!緮M解決的關(guān)鍵問題】研究斑翅果蠅OBP56h與相關(guān)化合物的結(jié)合特性,解析其在斑翅果蠅定位和取食行為中的作用,為斑翅果蠅的生態(tài)調(diào)控技術(shù)提供新的思路和理論依據(jù)。
試驗(yàn)于2018年6—12月分別在華中農(nóng)業(yè)大學(xué)和北京市農(nóng)林科學(xué)院進(jìn)行。
斑翅果蠅采自湖北省十堰市,在華中農(nóng)業(yè)大學(xué)植物科學(xué)技術(shù)學(xué)院建立室內(nèi)種群,用香蕉和人工飼料飼養(yǎng)于人工氣候箱[19],溫度為(25±1)℃,相對(duì)濕度為(70±5)%,光周期L﹕D=16 h﹕8 h。
總RNA提取RNAiso Plus、反轉(zhuǎn)錄試劑盒PrimeScriptTMRT reagent Kit with gDNA Eraser、pMD18-T載體、限制性核酸內(nèi)切酶、T4 DNA連接酶購自TaKaRa公司。Trans 5、BL21 (DE3)感受態(tài)細(xì)胞、IPTG、卡那霉素、膠回收試劑盒EasyPure Quick Gel Extraction Kit、質(zhì)粒提取試劑盒EasyPure Plasmid MiniPrep Kit等購自北京全式金公司。bis-ANS及配體小分子化合物購自Sigma-Aldrich公司和欣博盛公司。
取羽化5—7 d的斑翅果蠅雌雄成蟲各10頭,于液氮中速凍,參照RNAiso Plus說明書進(jìn)行總RNA的提取。cDNA的合成采用PrimeScriptTMRT reagent Kit with gDNA Eraser試劑盒,取2 μL gDNA Eraser Buffer、1 μL gDNA Eraser、1 μg RNA,加RNase Free dH2O至10 μL,42℃ 2 min后放冰上,加PrimeScript RT Enzyme Mix 1 μL、RT Primer Mix 1 μL、PrimerScript Buffer 4 μL、RNase Free dH2O 4 μL。反應(yīng)條件:37℃ 15 min,85℃ 5 s。合成的cDNA保存于-20℃?zhèn)溆谩?/p>
從斑翅果蠅基因組數(shù)據(jù)庫(http://spottedwingflybase. org/)分析序列(數(shù)據(jù)庫基因 ID:DS1000009134,GenBank登錄號(hào):XM_017086371.1),用在線網(wǎng)站(http://www.cbs.dtu.dk/services/SignalP/)進(jìn)行信號(hào)肽預(yù)測(cè)。根據(jù)該序列用Primer Premier 5設(shè)計(jì)去信號(hào)肽序列引物并加上Ⅰ和Ⅰ酶切位點(diǎn)(下劃線表示)。上下游引物分別為:5′-GGAATTCG ATTCGGACTTCCGGCAG-3′;5′-CCGGTG ATGTCCTGGCATGGC-3′。
用高保真酶進(jìn)行PCR擴(kuò)增:5×PrimeSTAR Buffer10 μL、dNTP Mixture 4 μL、上下游引物各1 μL、cDNA 0.5 μL、PrimeSTAR HS DNA Polymerase 0.5 μL、ddH2O 33 μL。PCR程序?yàn)?4℃ 3 min,94℃ 15 s、60℃ 5 s、72℃ 1 min共30個(gè)循環(huán),72℃延伸10 min。PCR產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳檢測(cè),回收目的片段,連入pMD18-T克隆載體,經(jīng)菌液PCR鑒定后進(jìn)行測(cè)序驗(yàn)證。
從NCBI數(shù)據(jù)庫下載相似度較高的昆蟲氣味結(jié)合蛋白的序列,包括黑腹果蠅OBP56h(ABW78078.1)、橘小實(shí)蠅()OBP56h(AKI29012.1)、銅綠蠅()OBP56h(KNC21653.1)、蔥蠅()OBP4(BAI82444.1)、灰地種蠅()OBP4(BAS69444.1)、柑橘大實(shí)蠅()OBP56g(AYN70642.1)、柑橘大實(shí)蠅OBP56h1(AYN70643.1)、棗實(shí)蠅()OBP1(AMY98992.1)、華北大黑鰓金龜()OBP10(AZK90214.1)和南亞實(shí)蠅()OBP56h(ALS40429.1),利用軟件MEGA 5中的ClustalW和Maximum Likelihood方法分別進(jìn)行序列比對(duì)和系統(tǒng)發(fā)育樹構(gòu)建。
將的陽性克隆質(zhì)粒與pET-30a (+)表達(dá)載體同時(shí)用Ⅰ和Ⅰ進(jìn)行雙酶切,用T4 DNA連接酶進(jìn)行連接,并轉(zhuǎn)化至5感受態(tài)細(xì)胞中,經(jīng)菌液PCR與質(zhì)粒雙酶切驗(yàn)證后,將陽性質(zhì)粒轉(zhuǎn)入大腸桿菌BL21 (DE3)感受態(tài)細(xì)胞中。挑選陽性菌培養(yǎng)至OD600為0.4—0.6,加入終濃度為1 mmol·L-1的IPTG,28℃,180 r/min誘導(dǎo)蛋白表達(dá)10 h。 離心收集菌體,加入細(xì)菌裂解液,進(jìn)行超聲波破碎(工作30 min,其中破碎3 s,停5 s)。破碎后離心收集上清和沉淀,經(jīng)SDS-PAGE電泳檢測(cè)蛋白表達(dá)情況。
將蛋白上清加入HisTrap親和層析柱,用梯度咪唑緩沖液(0、20、50、100、250、500 mmol·L-1)洗脫,將目的蛋白洗脫液于50 mmol·L-1Tris-HCl(pH 7.4)進(jìn)行透析24 h,用SDS-PAGE進(jìn)行蛋白檢測(cè),用BCA法測(cè)定蛋白濃度。
以bis-ANS作為OBP56h熒光競爭結(jié)合試驗(yàn)探針,并將所選用的配基,用色譜級(jí)甲醇稀釋至終濃度1 mmol·L-1,蛋白用50 mmol·L-1Tris-HCl(pH 7.4)稀釋至終濃度2 μmol·L-1。熒光分光光度計(jì)激發(fā)波長設(shè)為295 nm,掃描范圍300—550 nm,向裝有蛋白的石英皿中逐漸加入bis-ANS使其趨近飽和,根據(jù)Scatchard[20]方程,測(cè)定OBP56h和熒光探針bis-ANS的結(jié)合解離常數(shù)Kbis-ANS。在石英皿中加入OBP56h和bis-ANS(終濃度均為2 μmol·L-1),逐漸加入配基,測(cè)定OBP56h和配基的結(jié)合能力,計(jì)算解離常數(shù)Ki,公式為Ki=[IC50]/(1+[bis-ANS]/Kbis-ANS),其中[IC50]為熒光強(qiáng)度降低一半時(shí)的配基濃度,[bis-ANS]為游離的bis-ANS濃度。
經(jīng)總RNA提取、cDNA合成、PCR擴(kuò)增及測(cè)序后,得到斑翅果蠅序列,與斑翅果蠅數(shù)據(jù)庫中序列一致。開放閱讀框(ORF)全長405 bp,經(jīng)信號(hào)肽預(yù)測(cè)顯示,含有從N-端開始的19個(gè)氨基酸組成的信號(hào)肽。斑翅果蠅OBP56h具有6個(gè)保守半胱氨酸位點(diǎn)(圖1),符合OBP的典型特征。
將斑翅果蠅OBP56h與其他昆蟲的OBP氨基酸序列進(jìn)行序列比對(duì)與系統(tǒng)發(fā)育樹構(gòu)建,結(jié)果顯示斑翅果蠅OBP56h與其同屬的黑腹果蠅OBP56h進(jìn)化關(guān)系最近(圖2),序列一致度高達(dá)82.84%,Score為242,E-value為e-80。
6個(gè)保守半胱氨酸用黑色標(biāo)出
圖2 斑翅果蠅OBP56h與其他昆蟲OBP的系統(tǒng)發(fā)育樹
構(gòu)建pET30a-OBP56h重組質(zhì)粒并轉(zhuǎn)入BL21 (DE3)感受態(tài)細(xì)胞,在1 mmol·L-1IPTG、28℃、180 r/min條件下誘導(dǎo)蛋白表達(dá)。用SDS-PAGE電泳檢測(cè)蛋白的表達(dá),經(jīng)Ni-NTA過柱后能得到單一目的蛋白條帶(圖3),透析24 h后用BCA法檢測(cè)蛋白濃度。
用分子熒光光譜儀檢測(cè)OBP56h與熒光探針bis-ANS的結(jié)合特性(圖4),結(jié)合曲線經(jīng)Scatchard方程線性化后為=-2.102+4.277(2=0.9601),擬合效果較好,解離常數(shù)為0.9568 μmol·L-1,表明bis-ANS探針可用于后續(xù)熒光競爭結(jié)合試驗(yàn)研究。
將所選配基依次加入濃度均為2 μmol·L-1的OBP56h和bis-ANS混合液中,進(jìn)行熒光競爭結(jié)合試驗(yàn),記錄熒光強(qiáng)度隨配基濃度的改變并計(jì)算IC50,根據(jù)公式計(jì)算出解離常數(shù)Ki。在所選的18種候選配基中,鹽酸小蘗堿、香豆素、柚皮素、-環(huán)檸檬醛能將熒光強(qiáng)度競爭至初始值的50%以下(圖5),其中鹽酸小蘗堿和香豆素與OBP56h的結(jié)合親和性較強(qiáng),解離常數(shù)Ki分別為12.16和17.93 μmol·L-1;柚皮素和-環(huán)檸檬醛與OBP56h的結(jié)合親和性相對(duì)較弱,解離常數(shù)Ki分別為25.32和31.37 μmol·L-1(表1)。
M:蛋白Marker Protein molecular weight;1:未誘導(dǎo)的pET30a-OBP56h的BL21菌體Bacterial products containing pET30a-OBP56h without induction;2:BL21菌體中DsuzOBP56h蛋白誘導(dǎo)表達(dá)Expression products after induction;3:純化后的OBP56h蛋白Purified recombinant protein OBP56h
斑翅果蠅與黑腹果蠅一樣趨向于在腐爛水果上取食,但在產(chǎn)卵時(shí)卻趨向于即將成熟的軟皮水果[9]。昆蟲需要找到適合的寄主才能完成正常的生活史,繁衍種群,其寄主選擇和定位過程需依靠嗅覺和味覺等[21]。氣味結(jié)合蛋白在果蠅的寄主選擇中具有重要作用,例如果蠅的OBP57d和OBP57e會(huì)影響其對(duì)寄主諾麗果()產(chǎn)生的植物源毒物己酸和辛酸的識(shí)別,進(jìn)而影響寄主選擇行為[22]。本研究克隆出斑翅果蠅并進(jìn)行序列分析,原核表達(dá)蛋白,分析其與味覺物質(zhì)和氣味化合物的結(jié)合特性,為防治斑翅果蠅尋找新靶標(biāo)提供理論依據(jù)。
熒光結(jié)合試驗(yàn)中常以1-NPN(-Phenyl-1- naphthylamine)、1-AMA(1-aminoanthracene)、ANS(8-Anilino-1-naphthalenesulfonic acid)和bis-ANS為熒光配基[23],本研究曾嘗試以1-NPN為熒光報(bào)告子,但與斑翅果蠅OBP56h蛋白結(jié)合較差,后以bis-ANS探針作為熒光報(bào)告子[24],與OBP56h蛋白結(jié)合能力較強(qiáng),后續(xù)相關(guān)研究可以此參考。
對(duì)昆蟲氣味結(jié)合蛋白的研究多為嗅覺方面,包括與寄主揮發(fā)物或性信息素的作用等[25-27]。在本研究中,斑翅果蠅OBP56h能與-環(huán)檸檬醛結(jié)合。-環(huán)檸檬醛是草莓葉片產(chǎn)生的一種揮發(fā)性氣味物質(zhì),對(duì)斑翅果蠅具有吸引作用[28]。測(cè)試了同樣對(duì)斑翅果蠅有吸引作用的揮發(fā)性氣味物質(zhì)乙偶姻和乙酸乙酯[29],但不能與OBP56h結(jié)合。斑翅果蠅嗅覺系統(tǒng)靈敏,可能還有其他嗅覺相關(guān)蛋白參與對(duì)偏嗜寄主揮發(fā)物的識(shí)別。同時(shí),還測(cè)試了果蠅中主要的性信息素cVA、7-T、9-T、棕櫚酸甲酯、月桂酸甲酯和肉豆蔻酸甲酯[30],均不能與OBP56h蛋白結(jié)合,但不能就此否認(rèn)其在斑翅果蠅識(shí)別性信息素中的作用,因?yàn)楣壭孕畔⑺卮嬖诙嘣闆r,在黑腹果蠅中,OBP56h的抑制會(huì)影響其他嗅覺基因的表達(dá),減少果蠅表皮性信息素抑制劑5-tricosene的含量,減少交配潛伏期[31]。未測(cè)試的果蠅性信息素組分能否與斑翅果蠅OBP56h蛋白結(jié)合還有待進(jìn)一步研究。
圖4 斑翅果蠅OBP56h蛋白與bis-ANS的結(jié)合
表1 候選配基與斑翅果蠅OBP56h蛋白的結(jié)合特性
圖5 候選配基與bis-ANS競爭結(jié)合斑翅果蠅OBP56h蛋白
有研究認(rèn)為氣味結(jié)合蛋白在味覺、濕度感覺等非嗅覺方面具有重要作用[32-33]。昆蟲氣味結(jié)合蛋白會(huì)促進(jìn)氣味的運(yùn)輸,而苦味物質(zhì)與氣味物質(zhì)相似,多為小分子疏水性化合物。Swarup等對(duì)黑腹果蠅中的研究發(fā)現(xiàn),抑制OBP56h的表達(dá)會(huì)減少果蠅對(duì)鹽酸小蘗堿、香豆素、苯甲地那銨、-苯基硫脲等苦味化合物的取食行為[18]。在本研究中也有類似發(fā)現(xiàn),斑翅果蠅OBP56h蛋白與苦味化合物鹽酸小蘗堿及香豆素的結(jié)合親和性較強(qiáng),但不能與苯甲地那銨、-苯基硫脲結(jié)合。斑翅果蠅OBP56h與黑腹果蠅OBP56h氨基酸序列一致度高,理論上為直系同源基因,具有類似功能,其差異行為可能與蛋白結(jié)構(gòu)有關(guān),值得進(jìn)一步研究。許多苦味物質(zhì)是有毒的,對(duì)昆蟲來說,識(shí)別這類物質(zhì)至關(guān)重要,這將影響其對(duì)取食寄主及產(chǎn)卵的選擇。OBP56h可能作為苦味物質(zhì)的轉(zhuǎn)運(yùn)載體在斑翅果蠅的味覺系統(tǒng)中起作用,影響其寄主選擇行為。此外,斑翅果蠅OBP56h還能與柚皮素結(jié)合。柚皮素是柚子和番茄中的主要生物類黃酮,在草莓中也存在[34],會(huì)影響黑腹果蠅的取食、壽命等[35],對(duì)斑翅果蠅的影響尚不清楚。
昆蟲氣味結(jié)合蛋白的作用與其表達(dá)部位有關(guān),氣味結(jié)合蛋白表達(dá)范圍廣泛,除了主要的嗅覺感受器觸角,在頭、胸、腹、足、翅均有表達(dá)[36-37],在嗅覺與非嗅覺感受器均有表達(dá)[36]。黑腹果蠅OBP56h在幼蟲及成蟲的嗅覺和味覺感受器均有表達(dá)[17],而斑翅果蠅OBP56h是否存在同樣的表達(dá)部位有待于進(jìn)一步研究。
斑翅果蠅氣味結(jié)合蛋白OBP56h能與測(cè)試的多種植物苦味物質(zhì)和揮發(fā)性氣味物質(zhì)結(jié)合,表明OBP56h很有可能參與斑翅果蠅對(duì)食物味覺和嗅覺的識(shí)別,研究結(jié)果可為理解斑翅果蠅的取食行為提供理論依據(jù),并為斑翅果蠅的生態(tài)防控提供新思路。
[1] Mitsui H, Takahashi K H, Kimura M T. Spatial distributions and clutch sizes ofspecies ovipositing on cherry fruits of different stages., 2006, 48(3): 233-237.
[2] Rota-Stabelli O, Blaxter M, Anfora G.., 2013, 23(1): R8-R9.
[3] Leal W S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes., 2013, 58: 373-391.
[4] Swarup S, Williams T I, Anholt R R. Functional dissection of odorant binding protein genes in., 2011, 10(6): 648-657.
[5] Wang P, Lyman R F, Mackay T F, Anholt R R. Natural variation in odorant recognition among odorant-binding proteins in., 2010, 184(3): 759-767.
[6] Gro?e-Wilde E, Svato? A, Krieger J. A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor., 2006, 31(6): 547-555.
[7] 陳玲, 李紅亮, 周宇翔, 趙磊, 張林雅, 倪翠俠, 商晗武. 桔小實(shí)蠅氣味結(jié)合蛋白BdorOBP2的cDNA克隆、組織表達(dá)及配基結(jié)合特性. 昆蟲學(xué)報(bào), 2013, 56(6): 612-621.
Chen L, Li H L, Zhou Y X, Zhao L, Zhang L Y, Ni C X, Shang H W. cDNA cloning, tissue expression and ligand binding characteristics of odorant-binding protein 2 from the oriental fruit fly,(Diptera: Tephritidae)., 2013, 56(6): 612-621. (in Chinese)
[8] 陳東凱, 張林雅, 邢振龍, 雷仲仁. 美洲斑潛蠅氣味結(jié)合蛋白OBP13的鑒定與功能. 中國農(nóng)業(yè)科學(xué), 2018, 51(5): 893-904.
Chen D K, Zhang L Y, Xing Z L, Lei Z R. Identification and function of the OBP13 protein from the leafminer ()., 2018, 51(5): 893-904. (in Chinese)
[9] Karageorgi M, Br?cker L B, Lebreton S, Minervino C, Cavey M, Siju K P, GRUNWALD Kadow I C, Gompel N, Prud’homme B. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest., 2017, 27(6): 847-853.
[10] 任路明, 秦勝楠, 丁心婷, 萬方浩, 褚棟. 水果害蟲鈴木氏果蠅的入侵及其防控研究進(jìn)展. 生物安全學(xué)報(bào), 2014, 23(3): 142-150.
Ren L M, Qin S N, Ding X T, Wan F H, Chu D. Research on the invasion and control of a fruit insect pest,(Matsumura)., 2014, 23(3): 142-150. (in Chinese)
[11] 張開春, 閆國華, 郭曉軍, 王晶, 張曉明, 周宇. 斑翅果蠅 () 研究現(xiàn)狀. 果樹學(xué)報(bào), 2014, 31(4): 717-721.
Zhang K C, Yan G H, Guo X J, Wang J, Zhang X M, Zhou Y. Research review on spotted wing drosophila ()., 2014,31(4): 717-721. (in Chinese)
[12] Hamby K A, Becher P G. Current knowledge of interactions betweenand microbes, and their potential utility for pest management., 2016, 89(3): 621-630.
[13] Lee J C, Burrack H J, Barrantes L D, Beers E H, Dreves A J, Hamby K A, Haviland D R, Isaacs R, Richardson T A, Shearer P W, Stanley C A, WALSH D B, Walton V M, Zalom F G, BRUCK D J. Evaluation of monitoring traps for(Diptera: Drosophilidae) in North America., 2012, 105(4): 1350-1357.
[14] Wang X G, Stewart T J, Biondi A, Chavez B A, Ingels C, Caprile J, Grant J A, Walton V M , Daane K M. Population dynamics and ecology ofin central California., 2016, 89(3): 701-712.
[15] Feng Y, Bruton R, Park A, Zhang A. Identification of attractive blend for spotted wing drosophila,, from apple juice., 2018, 91(4): 1251-1267.
[16] Wallingford A K, Hesler S P, Cha D H, Loeb G M. Behavioral response of spotted-wing drosophila,Matsumura, to aversive odors and a potential oviposition deterrent in the field., 2016, 72(4): 701-706.
[17] Galindo K, Smith D P. A large family of divergentodorant-binding proteins expressed in gustatory and olfactory sensilla., 2001, 159(3): 1059-1072.
[18] Swarup S, Morozova T V, Sridhar S, Nokes M, Anholt R R. Modulation of feeding behavior by odorant-binding proteins in., 2014, 39(2): 125-132.
[19] Dalton D T, Walton V M, Shearer P W, Walsh D B, Caprile J, Isaacs R. Laboratory survival ofunder simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States., 2011, 67(11): 1368-1374.
[20] Congdon R W, Muth G W, Splittgerber A G. The binding interaction of Coomassie blue with proteins., 1993, 213(2): 407-413.
[21] Knolhoff L M, Heckel D G. Behavioral assays for studies of host plant choice and adaptation in herbivorous insects., 2014, 59: 263-278.
[22] Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y. Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in., 2007, 5(5): e118.
[23] 張帥, 張永軍, 蘇宏華, 高希武, 郭予元. 中紅側(cè)溝繭蜂化學(xué)感受蛋白MmedCSP1的結(jié)合特征. 昆蟲學(xué)報(bào), 2009, 52(8): 838-844.
Zhang S, Zhang Y J, Su H H, Gao X W, Guo Y Y. Binding characterization of chemosensory protein MmedCSP1 in(Hymenoptera: Braconidae)., 2009, 52(8): 838-844. (in Chinese)
[24] L?bel D, Strotmann J, Jacob M, Breer H. Identification of a third rat odorant-binding protein (OBP3)., 2001, 26(6): 673-680.
[25] Xu P, Atkinson R, Jones D N, Smith D P.OBP LUSH is required for activity of pheromone-sensitive neurons., 2005, 45(2): 193-200.
[26] Laughlin J D, Ha T S, Jones D N, Smith D P. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein., 2008, 133(7): 1255-1265.
[27] Zwiebel L J, Takken W. Olfactory regulation of mosquito-host interactions., 2004, 34(7): 645-652.
[28] Keesey I W, Knaden M, Hansson B S. Olfactory specialization insupports an ecological shift in host preference from rotten to fresh fruit., 2015, 41(2): 121-128.
[29] Cha D H, Adams T, Rogg H, Landolt P J. Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing drosophila,., 2012, 38(11): 1419-1431.
[30] Dweck H K, Ebrahim S A, Thoma M, Mohamed A A, Keesey I W, Trona F, Lavista-Llanos S, Svato? A, Sachse S, Knaden M, Hansson B S. Pheromones mediating copulation and attraction in., 2015, 112(21): E2829-E2835.
[31] Shorter J R, Dembeck L M, Everett L J, Morozova T V, Arya G H, Turlapati L, St ARMOUR G E, Schal C, Mackay T F C, Anholt R R H.modulates mating behavior in., 2016, 6(10): 3335-3342.
[32] Jeong Y T, Shim J, Oh S R, Yoon H I, Kim C H, Moon S J, Montell C. An odorant-binding protein required for suppression of sweet taste by bitter chemicals., 2013, 79(4): 725-737.
[33] Sun J S, Larter N K, Chahda J S, Rioux D, Gumaste A, Carlson J R. Humidity response depends on the small soluble protein Obp59a in., 2018, 7: e39249.
[34] Herrera M C, De Castro M D L. Ultrasound-assisted extraction for the analysis of phenolic compounds in strawberries., 2004, 379(7/8): 1106-1112.
[35] Chattopadhyay D, Sen S, Chatterjee R, Roy D, James J, Thirumurugan K. Context- and dose-dependent modulatory effects of naringenin on survival and development of., 2016, 17(2): 383-393.
[36] Gu S H, Wu K M, Guo Y Y, Pickett J A, Field L M, Zhou J J, Zhang Y J. Identification of genes expressed in the sex pheromone gland of the black cutwormwith putative roles in sex pheromone biosynthesis and transport., 2013, 14: 636.
[37] Song Y Q, Sun H Z, Du J. Identification and tissue distribution of chemosensory protein and odorant binding protein genes inDistant (Hemiptera: Lygaeidae)., 2018, 8: 7803.
(責(zé)任編輯 岳梅)
Binding Characterization of Odorant Binding Protein OBP56h inwith Small Molecular Compounds
LI Du1,2, NIU ChangYing1, LI FengQi2, LUO Chen2
(1College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070;2Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097)
【】Theobjective of this study is to clone the odorant binding protein 56h (OBP56h) gene from, get the recombinant DsuzOBP56h protein, and characterize the binding profiles of DsuzOBP56h with some small molecular compounds.【】By means of specific primer, reverse transcription PCR (RT-PCR) was used to clone the full-length ORF of. The sequences of insect OBPs with high similarity were downloaded from NCBI database for sequence alignment and analysis. UsingⅠandⅠas restriction sites, OBP56h was ligated into pET-30a (+) prokaryotic expression vector, and transformed intoBL21 (DE3). IPTG was applied to induce the expression of recombinant DsuzOBP56h protein. The bacterial solution was collected and the protein was obtained through breaking cells by ultrasound, and then the protein was purified by the method of Ni-NTA resin. The purified protein was dialyzed by Tris-HCl and the concentration was determined by the method of BCA. The protein was diluted with 50 mmol·L-1Tris-HCl (pH 7.4) to a final concentration of 2 μmol·L-1, and the ligand was diluted with chromatography-grade methanol to a final concentration of 1 mmol·L-1. The binding characterization of DsuzOBP56h with 18 small molecular compounds was investigated using bis-ANS as fluorescence probe. 【】The full-length ORFofinwas amplified, which is 405 bp in total, including 19 amino acids of signal peptide in the N-terminal. It has 6 conserved cysteine sites, which is consistent with the typical characteristics of OBPs, and has the closest evolutionary relationship withOBP56h. OBP56h was successfully inserted into pET-30a (+) and expressed at 1 mmol·L-1IPTG and 28℃, then purified by the method of Ni-NTA resin. In the competitive fluorescence assay, the dissociation constant Kbis-ANSwas 0.9568 μmol·L-1, indicating that bis-ANS is suitable to be a reporter of competitive fluorescence binding assay. Among 18 ligands, the binding affinity of bitter tastants berberine chloride and coumarin with DsuzOBP56h was strong, and the dissociation constant is 12.16 and 17.93 μmol·L-1, respectively. The dissociation constant of naringenin with DsuzOBP56h is 25.32 μmol·L-1. A volatile odorant-cyclocitral, which is attractive toproduced by strawberry leaves, can also bind to DsuzOBP56h, with the dissociation constant of 31.37 μmol·L-1.【】The OBP56h incan bind with a variety of bitter tastants and volatile odors from plants, indicating that OBP56h may be involved in the gustatory and olfactory recognition of food in. The results can provide a theoretical basis for understanding the feeding behavior of, and provide a new idea for the ecological prevention and control of.
; odorant-binding protein; prokaryotic expression; competitive binding
2019-04-02;
2019-04-29
國家重點(diǎn)研發(fā)計(jì)劃(2017YFD0200900)、國家自然科學(xué)基金(31661143045)、國家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503137)
李都,E-mail:lidu94@163.com。
牛長纓,E-mail:niuchangying88@163.com。通信作者李峰奇,E-mail:pandit@163.com