焦 奎 高 翔 于 佳 魏玉西 高 潔 張雪梅 王金梅 李鈺金
酶解扇貝裙邊制備復(fù)合氨基酸螯合鈣的研究*
焦 奎1高 翔1于 佳1魏玉西1①高 潔1張雪梅1王金梅2李鈺金2
(1. 青島大學(xué)生命科學(xué)學(xué)院 青島 266071;2. 榮成泰祥食品股份有限公司 榮成 264309)
扇貝裙邊富含蛋白質(zhì)、脂質(zhì)等營(yíng)養(yǎng)成分。為了高值化利用扇貝裙邊,本研究選用中性蛋白酶、動(dòng)物蛋白酶、風(fēng)味蛋白酶、木瓜蛋白酶和酸性蛋白酶5種酶,以酶解液中游離氨基酸態(tài)氮為考察指標(biāo),對(duì)扇貝裙邊進(jìn)行酶解工藝條件探討。首先,將5種酶制成復(fù)合蛋白酶進(jìn)行正交實(shí)驗(yàn),確定最佳酶解時(shí)間、溫度、pH及加酶量,經(jīng)檢驗(yàn),氨基酸轉(zhuǎn)化率為77%;然后,通過實(shí)驗(yàn)確定CaCl2為最適鈣源,以貝殼為原料,通過水飛法和酸法轉(zhuǎn)化可制得貝殼源CaCl2。將扇貝裙邊酶解液中復(fù)合氨基酸與來源于貝殼的鈣螯合制備復(fù)合氨基酸螯合鈣,以正交實(shí)驗(yàn)篩選出最佳螯合條件。經(jīng)檢驗(yàn),該螯合反應(yīng)螯合率達(dá)92%。
扇貝裙邊;脫脂;酶解;氨基酸轉(zhuǎn)化率;復(fù)合氨基酸螯合鈣;螯合率
扇貝隸屬珍珠貝目(Pterioida),廣泛分布于世界各個(gè)海域(劉天紅等, 2013)。我國(guó)現(xiàn)在扇貝年產(chǎn)量1400萬(wàn)t,占海水養(yǎng)殖動(dòng)物總產(chǎn)量的22%。扇貝裙邊是扇貝加工后的下腳料(包括扇貝邊、性腺和腸腺等),由于受現(xiàn)有加工技術(shù)水平的限制,尚未得到大規(guī)模高值化利用,是亟待深度開發(fā)利用的重要海洋生物資源(魏玉西等, 2009)。扇貝裙邊蛋白質(zhì)含量高,對(duì)扇貝裙邊進(jìn)行酶解轉(zhuǎn)變?yōu)閺?fù)合氨基酸,可以提高其生物利用率及營(yíng)養(yǎng)價(jià)值。目前,已有學(xué)者將扇貝裙邊用于加工生產(chǎn)海鮮醬油、貝裙脆片和扇貝醬(嚴(yán)超等, 2016)等。關(guān)于蛋白質(zhì)降解制備復(fù)合氨基酸的方法一般采用HCl水解法,但該法破壞某些氨基酸(如色氨酸),且HCl揮發(fā)性強(qiáng),對(duì)設(shè)備的要求較高并容易污染環(huán)境(熊竹, 2016)。因此,利用蛋白酶酶解法制備復(fù)合氨基酸,被認(rèn)為是一種更好的加工方式(桑亞新等, 2012;宋惠平等, 2015)。
Ca是人體必需的營(yíng)養(yǎng)素,占人體體重的1.5%~2.2%,其中大部分(約99%)以Ca3(PO4)2的形式存在于骨中。中國(guó)人的飲食結(jié)構(gòu)以植物性食物為主,不足以滿足人體對(duì)Ca的需求,需要額外補(bǔ)充Ca (趙妍嫣等, 2011),而且對(duì)骨骼正常生長(zhǎng)和體內(nèi)生理調(diào)節(jié)來說,Ca是一種非常重要礦物元素,即使膳食Ca攝入量足夠,但是由于Ca2+在腸道堿性環(huán)境內(nèi)容易形成沉淀(Vavrusova, 2014),從而無(wú)法被小腸吸收,因此,生物利用率較低(Bao, 2008),且對(duì)胃有刺激作用(Straub, 2007)。
研究發(fā)現(xiàn),蛋白質(zhì)酶解得到的氨基酸具有較強(qiáng)的Ca2+結(jié)合活性,如雞蛋殼粉氨基酸螯合鈣(杜冰等, 2011)、羅非魚骨粉氨基酸螯合鈣(胡振珠等, 2010)、米渣蛋白氨基酸螯合鈣(郭艷, 2006)以及文蛤氨基酸螯合鈣(鄭清等, 2009)等。這類補(bǔ)鈣劑可以促進(jìn)鈣離子的生物利用度,因而Ca吸收率較高(丁媛媛等, 2017)。本研究旨在采用復(fù)合蛋白酶酶解法,將扇貝裙邊蛋白質(zhì)酶解成為游離氨基酸,探索最佳酶解條件,并進(jìn)一步將酶解得到的氨基酸與無(wú)機(jī)鈣離子進(jìn)行螯合制備復(fù)合氨基酸螯合鈣,以提高扇貝裙邊利用附加值,為扇貝裙邊作為功能性食品提供基礎(chǔ)資料。
實(shí)驗(yàn)用的扇貝裙邊:櫛孔扇貝,購(gòu)自山東省青島市沙子口;食品級(jí)酶制劑:中性蛋白酶、風(fēng)味蛋白酶、木瓜蛋白酶、動(dòng)物蛋白酶,購(gòu)自廣西南寧龐博生物工程有限公司;酸性蛋白酶,購(gòu)自北京索萊寶生物科技公司。分析純級(jí)試劑:石油醚,NaOH,EDTA-Na2自制復(fù)合酶制作過程:將中性蛋白酶、風(fēng)味蛋白酶、木瓜蛋白酶、動(dòng)物蛋白酶和酸性蛋白酶按等質(zhì)量均勻混合后,放于4℃冰箱直至使用。
索氏脂肪抽提器;PHS-3C pH計(jì),上海雷磁儀器廠;GL-20G-II冷凍離心機(jī),上海安亭科學(xué)儀器廠;真空冷凍干燥機(jī),北京博醫(yī)康實(shí)驗(yàn)儀器有限公司;SYKAM全自動(dòng)氨基酸分析儀S-433D,SYKAM公司,德國(guó);K9840全自動(dòng)凱氏定氮儀,濟(jì)南海能科技有限公司。
1.3.1 貝殼為鈣源的CaCl2制備 將扇貝殼刷洗干凈,先以0.05 mol/L HCl浸泡2 h,以自來水充凈后粉碎至60~80目,水飛法除去密度大的部分后烘干得鈣源貝殼粉。取適量鈣源貝殼粉,先加適量HCl使貝殼粉完全溶解,再繼續(xù)加鈣源貝殼粉至加入的貝殼粉不再溶解為止。過濾,將濾液經(jīng)濃縮、酒精沉淀、烘干即得貝殼源氯化鈣(魏玉西等, 2013)。
1.3.2 氨基酸態(tài)氮的測(cè)定 甲醛滴定法(楊佩榮, 2003);總氮(粗蛋白)的測(cè)定:凱氏定氮法(楊佩榮, 2003);pH測(cè)定:pH酸度計(jì);鈣離子的測(cè)定:EDTA滴定法(金其榮等, 1989);粗脂肪的測(cè)定:索氏抽提法(GB 5009.6-2016)。氨基酸分析方法:茚三酮法(GB 5009.124-2016)。
1.4.1 扇貝裙邊的預(yù)處理 新鮮的扇貝裙邊去雜后加入2倍體積蒸餾水煮沸5 min,瀝干并于96℃干燥6 h,粉碎,過100目篩,即得均勻扇貝裙邊粉末。
1.4.2 裙邊粉末的脫脂 參考羅舜菁等(2017)、鄭建明等(2017)方法并加適當(dāng)改進(jìn)。取3份、每份10 g扇貝裙邊粉,各加入100 ml無(wú)水乙醇,60℃恒溫水浴搖床6 min,抽濾,重復(fù)2次,過濾、晾干即得脫脂后的扇貝裙邊粉末。脂含量測(cè)定結(jié)果取平均值。
1.4.3 酶解工藝流程 酶解工藝參魏玉西等(2009)并加適當(dāng)改進(jìn)。將脫脂后的扇貝裙邊粉末加入20倍體積的蒸餾水,加入自制復(fù)合酶進(jìn)行正交酶解實(shí)驗(yàn)。酶解完畢以后,立即升溫至100℃滅酶5 min,冷卻至室溫以后,3500 r/min離心30 min,上清液即為酶解液。測(cè)定酶解液中氨基酸態(tài)氮含量并計(jì)算氨基酸轉(zhuǎn)化率(楊佩榮, 2003)。
1.4.4 螯合鈣制備工藝流程 首先對(duì)螯合鈣的鈣源的選擇進(jìn)行了優(yōu)化,最后確定以貝殼粉制備的CaCl2為最優(yōu)鈣源,然后對(duì)螯合過程的時(shí)間、pH及溫度因素進(jìn)行了單因素和正交實(shí)驗(yàn)的優(yōu)化,用EDTA滴定法測(cè)螯合率最終,確定了最優(yōu)的螯合工藝。
1.4.5 氨基酸組成分析 分別取扇貝裙邊粉末、酶解液和復(fù)合氨基酸螯合鈣樣品,采用SYKAM全自動(dòng)氨基酸分析儀S-433D進(jìn)行氨基酸組成分析(付萍等, 2016)。
扇貝裙邊脫脂結(jié)果見表1。經(jīng)脫脂處理以后,扇貝裙邊粉末脂肪含量明顯降低,有利于下一步酶解,并且腥臭味消失,呈現(xiàn)出扇貝固有的鮮甜味。
正交實(shí)驗(yàn)選取時(shí)間、加酶量、溫度和pH 4個(gè)因素(劉淇等, 2013),通過預(yù)實(shí)驗(yàn)確定正交實(shí)驗(yàn)的因素和水平,進(jìn)而進(jìn)行正交實(shí)驗(yàn)。自制蛋白酶正交設(shè)計(jì)因素與水平排列見表2,正交實(shí)驗(yàn)結(jié)果見表3??傮w來說,酶解pH的影響最主要,其次是酶解溫度,而酶解時(shí)間和加酶量影響較小,實(shí)驗(yàn)結(jié)果與魏玉西等(2009)的研究結(jié)果相吻合。根據(jù)正交實(shí)驗(yàn)的結(jié)果,最后確定最佳酶解條件為:添加扇貝裙邊粉末量0.15%()自制復(fù)合蛋白酶,介質(zhì)pH=8,溫度65℃,酶解7 h后在100℃水浴加熱10 min滅酶,即得到復(fù)合氨基酸酶解液,氨基酸轉(zhuǎn)化率達(dá)77%。
表1 脫脂次數(shù)與樣品脂肪含量
Tab.1 Degreasing times and sample fat content (%)
表2 蛋白酶正交設(shè)計(jì)因素與水平排列
Tab.2 Protease orthogonal experimental design
表3 蛋白酶正交實(shí)驗(yàn)方案及結(jié)果分析
Tab.3 Orthogonal experiment design and results
2.3.1 鈣源的選擇 不同鈣源參與的鰲合反應(yīng)螯合率見表4。由表4可見,5種不同鈣源對(duì)螯合率的影響差別較大,其中CaCl2參與螯合反應(yīng)螯合率最高(達(dá)89%)。因此,本研究螯合反應(yīng)選用CaCl2為鈣源。這與文獻(xiàn)(甘林火等, 2008)所報(bào)道的結(jié)果一致。同時(shí)為增加貝可利用度,選用貝殼為原料制備CaCl2。將扇貝殼刷洗干凈,先以0.05 mol/L HCl浸泡2 h,以自來水充凈后粉碎至60~80目,水飛法除去密度大的部分后,烘干得鈣源貝殼粉。取適量鈣源貝殼粉,先加適量HCl使貝殼粉完全溶解,再繼續(xù)加鈣源貝殼粉至加入的貝殼粉不再溶解為止。過濾,將濾液經(jīng)濃縮、酒精沉淀、烘干即得貝殼源CaCl2。經(jīng)實(shí)驗(yàn)證明,經(jīng)該方法制備的CaCl2的鰲合率,與分析純級(jí)CaCl2效果相同。因此,以下鰲合實(shí)驗(yàn)均使用貝殼CaCl2為鈣源。
表4 鈣離子與螯合率的關(guān)系
Tab.4 Relationship between calcium and chelation rate (%)
2.3.2 螯合反應(yīng)單因素實(shí)驗(yàn)結(jié)果 鰲合反應(yīng)單因素實(shí)驗(yàn)結(jié)果見圖1、圖2和圖3??梢姡椇线^程的最佳溫度為40℃,最佳時(shí)間為40 min,超過40 min以后,鰲合率下降,最佳pH為9。
圖1 反應(yīng)時(shí)間對(duì)螯合率的影響
圖2 溫度對(duì)螯合率的影響
圖3 pH對(duì)螯合率的影響
2.3.3 螯合反應(yīng)正交實(shí)驗(yàn)結(jié)果 螯合反應(yīng)正交設(shè)計(jì)因素與水平排列見表5,正交實(shí)驗(yàn)方案及結(jié)果見 表6。由表6可見,反應(yīng)時(shí)間和介質(zhì)pH對(duì)螯合率的影響最主要,而溫度影響最小。具體地說,最佳螯合反應(yīng)條件:反應(yīng)溫度為40℃,反應(yīng)時(shí)間為40 min,介質(zhì)pH為9。在此最佳工藝條件下進(jìn)行螯合反應(yīng),螯合率可達(dá)92%。
扇貝裙邊粉末中含有豐富的氨基酸,且含有7種人體必需氨基酸(魏玉西等, 2009)。本研究就扇貝裙邊粉末、扇貝裙邊粉末酶解液以及復(fù)合氨基酸螯合鈣進(jìn)行了氨基酸組成及含量測(cè)定,結(jié)果見表7。由表7可見,在扇貝裙邊粉末酶解液中,末中含有較多谷氨酸和天冬氨酸,因此酶解液有濃郁的鮮味。選用貝殼制備的CaCl2為鈣源,進(jìn)一步提升了扇貝的利用度,降低了生產(chǎn)成本。由于酸性氨基酸(天冬氨酸和谷氨酸)更容易與鈣離子進(jìn)行螯合(Liu, 2013),在復(fù)合氨基酸螯合鈣產(chǎn)品中,酸性氨基酸的含量相對(duì)于酶解液進(jìn)一步提升,使天冬氨酸由10.89%上升到22.23%,谷氨酸由20.32%上升到33.87% ,因而使得復(fù)合氨基酸螯合鈣產(chǎn)品有較顯著的鮮味;但對(duì)于堿性氨基酸,如精氨酸、賴氨酸和組氨酸來說,因它們不易與鈣離子進(jìn)行螯合,所以在復(fù)合氨基酸螯合鈣產(chǎn)品中其含量均有所下降;對(duì)中性氨基酸來說,在復(fù)合氨基酸螯合鈣產(chǎn)品中的含量均無(wú)較大改變。
表5 螯合反應(yīng)正交實(shí)驗(yàn)設(shè)計(jì)因素與水平排列
Tab.5 Factors and levels arrangement of chelation orthogonal experimental design
表6 螯合反應(yīng)正交實(shí)驗(yàn)結(jié)果
Tab.6 Chelating reaction orthogonal experimental design and results
表7 氨基酸組分及含量分析
Tab.7 Analysis of amino acid composition and content
注:色氨酸未測(cè)
Note: Tryptophan is not detected
本研究采用多種蛋白酶,對(duì)扇貝裙邊進(jìn)行復(fù)合蛋白酶酶解,采用正交實(shí)驗(yàn)設(shè)計(jì)進(jìn)行優(yōu)化酶解條件,使最終氨基酸轉(zhuǎn)化率達(dá)到77%,較目前所報(bào)道的酶解條件(Choi, 2012)有更高的氨基酸轉(zhuǎn)化率,且復(fù)合氨基酸中含有較多人體必需氨基酸。因?yàn)榘被岬聂然嬖阝}離子結(jié)合能力(Bao, 2008),在酶解之后將氨基酸酶解液與來源于貝殼的無(wú)機(jī)鈣離子進(jìn)行螯合,制備復(fù)合氨基酸螯合鈣,通過優(yōu)化螯合反應(yīng)條件,最終使螯合率達(dá)到92%,該產(chǎn)品可以提高人體對(duì)鈣離子的生物利用率(Hou, 2015; Jeon2010)。因此,本研究結(jié)果不僅高值化利用扇貝裙邊,將其中氨基酸游離出來并轉(zhuǎn)化為復(fù)合氨基酸螯合鈣,而且利用貝殼將其中鈣質(zhì)作為復(fù)合氨基酸螯合鈣的鈣源,將扇貝加工廢棄物變廢為寶,生產(chǎn)出的復(fù)合氨基酸螯合鈣不僅具有補(bǔ)鈣功能,而且具有鮮美的味感,可以作為補(bǔ)鈣劑或功能性調(diào)味品食用。這對(duì)提高扇貝加工下角料的附加值,同時(shí)也為我們高值化利用其他水產(chǎn)加工廢棄物、減少環(huán)境污染,促進(jìn)藍(lán)色經(jīng)濟(jì)的可持續(xù)健康發(fā)展提供了新的思路和方法。
Bao XL, Lü Y, Yang BC,. A Study of the soluble complexes formed during calcium binding by soybean protein hydrolysates. Journal of Food Science, 2008, 73(3): 117–121
Choi DW, Lee JH, Chun HH,. Isolation of a calcium- binding peptide from bovine serum protein hydrolysates. Food Science and Biotechnology, 2012, 21(6): 1663–1667
Ding YY, Wang L, Zhang XX,. Optimized preparation and structural characterization of calcium-chelating polypeptides from wheat germ protein hydrolysate. Food Science, 2017, 38(10): 215–221 [丁媛媛, 王莉, 張新霞, 等. 麥胚多肽–鈣螯合物制備工藝優(yōu)化及其結(jié)構(gòu)表征. 食品科學(xué), 2017, 38(10): 215–221]
Du B, Cai XK, Xie YC,. Study on preparation technology of
calcium amino acid chelate from eggshell power. Science and Technology of Food Industry, 2011, 32(4): 287–289 [杜冰, 蔡巽楷, 謝伊澄, 等. 蛋殼粉制備氨基酸螯合鈣工藝優(yōu)化. 食品工業(yè)科技, 2011, 32(4): 287–289]
Fu P, Lü JJ, Liu P,. Effects of different salinities on the free amino acids composition in the gill of. Progress in Fishery Sciences, 2016, 37(5): 122–126 [付萍, 呂建建, 劉萍, 等. 鹽度脅迫對(duì)三疣梭子蟹()鰓中游離氨基酸含量的影響. 漁業(yè)科學(xué)進(jìn)展, 2016, 37(5):122–126]
Gan LH, Weng LJ, Deng AH. Progress in preparation of calcium acid chelate. Amino Acids and Biotic Resources, 2008, 30(1): 44–46 [甘林火, 翁連進(jìn), 鄧愛華. 制備氨基酸螯合鈣的研究進(jìn)展. 氨基酸和生物資源, 2008, 30(1): 44–46]
Guo Y. Hydrolysis of rice residue protein and synthesis of complex amino acid with calcium. Master′s Thesis of Sichuan University, 2006, 1–73 [郭艷. 水解米渣蛋白及制備氨基酸螯合鈣的工藝研究. 四川大學(xué)碩士研究生學(xué)位論文, 2006, 1–73]
Hou T, Wang C, Ma ZL,. Desalted duck egg white peptides: Promotion of calcium uptake and structure characterization. Journal of Agricultural and Food Chemistry,2015, 63(37): 8170–8176
Hu ZZ, Yang XQ, Ma HX,. Preparation and antioxidant activity evaluation of amino acid chelated calcium from tilapia scraps. Food Science, 2010, 31(20): 141–145 [胡振珠, 楊賢慶, 馬海霞, 等. 羅非魚骨粉制備氨基酸螯合鈣及其抗氧化性研究. 食品科學(xué), 2010, 31(20): 141–145]
Jeon SJ, Lee JH, Song KB. Isolation of a calcium-binding peptide from chlorella protein hydrolysates. Journal of Food Science and Nutrition2010, 15(4): 282–286
Jin QR, Zhang JM, Xu Q. Organic acid fermentation technology. China Light Industry Press, 1989 [金其榮, 張繼民, 徐勤. 有機(jī)酸發(fā)酵工藝學(xué). 中國(guó)輕工業(yè)出版社, 1989]
Luo SJ, Geng Q, Yan XY,. Structural and functional properties of rice dreg protein prepared by different degreasing methods. Food Science, 2017, 38(5): 202–207 [羅舜菁, 耿勤, 顏小燕, 等. 不同脫脂條件下米渣蛋白的結(jié)構(gòu)及功能性質(zhì). 食品科學(xué), 2017, 38(5): 202–207]
Liu Q, Xie S, Zhao L,. Antimicrobial activity of hydrolysates from. Progress in Fishery Sciences, 2013, 34(2): 109–113 [劉淇, 謝沙, 趙玲, 等. 菲律賓蛤仔酶解產(chǎn)物的抑菌活性. 漁業(yè)科學(xué)進(jìn)展, 2013, 34(2): 109–113]
Liu TH, Yu XQ, Sun FX,. Accumulation and depuration of mercury and MeHg in the tissue of. Progress in Fisheries Science, 2013, 34(5): 119–128 [劉天紅, 于曉清, 孫福新, 等. 汞及甲基汞在櫛孔扇貝全組織內(nèi)的積累與凈化. 漁業(yè)科學(xué)進(jìn)展, 2013, 34(5):119–128]
Straub DA. Calcium supplementation in clinical practice: A review of forms, doses, and indications. Nutrition in Clinical Practice, 2007, 22(3): 286–296
Sang YX, Wang XH, Wang S,. Research on the process optimization of scallop skirt enzymatic hydrolysis and its amino acid analysis. Journal of Chinese Institute of Food Science and Technology, 2012, 12(8): 78–86 [桑亞新, 王向紅, 王蘇, 等. 扇貝裙邊酶解工藝優(yōu)化及其氨基酸分析研究. 中國(guó)食品學(xué)報(bào), 2012, 12(8): 78–86]
Song HP, Yu J, Li S,. The antibacterial activity of peptides from. Progress in Fishery Sciences, 36(2): 140–145 [宋惠平, 于佳, 李釤, 等. 條斑紫菜蛋白酶解多肽的抑菌活性. 漁業(yè)科學(xué)進(jìn)展, 2015, 36(2): 140–145]
Vavrusova M, Skibsted LH. Calcium nutrition. Bioavailability and fortification. LWT-Food Science and Technology2014, 59(2): 1198–1204
Wei YX, Cui YQ, Wang WX,. Preparation technology of calcium bis-L-calcium-pyroglutamate from clam shell. Chinese Journal of Marine Drugs, 2013, 32(6): 83–86 [魏玉西, 崔育倩, 王文秀, 等. 以蛤蜊殼為鈣源的L-焦谷氨酸鈣制備工藝. 中國(guó)海洋藥物, 2013, 32(6): 83–86]
Wei YX, Yin BZ, Liu Q,. Study on the preparation of amino acid nutrition powder with scallop skirt. Progress in Fishery Sciences, 2009, 30(3): 112–116 [魏玉西, 殷邦忠, 劉淇, 等. 扇貝裙邊氨基酸營(yíng)養(yǎng)粉的制備工藝研究. 漁業(yè)科學(xué)進(jìn)展, 2009, 30(3): 112–116]
Xiong Z. Study on preparation of complex amino acid chelated calcium from shrimp powder. Agricultural Techonology Service, 2016, 33(5): 107–107 [熊竹. 蝦粉制備復(fù)合氨基酸螯合鈣工藝研究. 農(nóng)技服務(wù), 2016, 33(5): 107–107]
Yan C, Mu JL, Wang J,. Fermentation technology of scallop bean paste. Food Science and Technology, 2016, 41(12): 245–249 [嚴(yán)超, 牟建樓, 王頡, 等. 扇貝豆醬發(fā)酵工藝條件的研究. 食品科技, 2016, 41(12): 245–249]
Yang PR. Development of compound amino acids. Science and Technology of Food Industry, 2003, 24 (10): 114–115 [楊佩榮. 復(fù)合氨基酸的研制. 食品工業(yè)科技, 2003, 24(10): 114–115]
Zhao YY, Hu LL, Jiang ST. Optimum conditions of producing collagen polypeptide chelated Ca using pig bone. Transactions of the Chinese Society of Agricultural Eneineering, 2011, 27(S2): 277–281 [趙妍嫣, 胡林林, 姜紹通. 豬骨粉制備膠原多肽螯合鈣工藝優(yōu)化. 農(nóng)業(yè)工程學(xué)報(bào),2011, 27 (s2): 277–281]
Zheng JM, Yan JL, Chen SQ,. Effects of dietary skimmed krill meal on the growth, non-specific immunity and serum physiological metabolism indices of juvenile spotted halibut (). Progress in Fishery Sciences, 2017, 38(5) : 107–113 [鄭建明, 嚴(yán)俊麗, 陳四清, 等. 脫脂磷蝦粉對(duì)圓斑星鰈()幼魚生長(zhǎng)、非特異性免疫力和血清生理代謝指標(biāo)的影響. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(5):107–113]
Zheng Q, Wang YQ. Preparation of composite amino acids calcium copper from shell ofLinnaeus. Anhui Chemical Industry, 2009, 35(1): 25–28 [鄭清,王玉琴. 利用文蛤殼制備復(fù)合氨基酸螯合鈣. 安徽化工, 2009, 35(1): 25–28]
Study of the Preparation of Compound Amino Acid-Chelated Calcium by Protease Hydrolysis of Scallop Skirts
JIAO Kui1, GAO Xiang1, YU Jia1, WEI Yuxi1①, GAO Jie1, ZHANG Xuemei1, WANG Jinmei2, LI Yujin2
(1. School of Life Sciences, Qiingdao University, Qingdao 266071; 2. Rongcheng Taixiang Food Co. Ltd, Rongcheng 264309)
Scallop skirts are by-products of scallop processing that are rich in nutrients such as proteins and lipids. Owing to the limitations of the existing processing technology, they have not been used on a large scale and are not currently of much value. In this study, to effectively utilize the scallop skirt, neutral protease, animal-complex protease, flavor protease, papain, and acidic proteinase were used to hydrolyze the scallop skirt. The free amino acid nitrogen content in the hydrolysate was used as an indicator for optimized reaction conditions. First, alcohol was used to degrease the scallop skirt, which increased the degree of enzymatic hydrolysis. Subsequently, single-factor experiments were performed on five enzymes to select the optimize enzymatic hydrolysis time, temperature, pH, and enzyme dosage. Subsequently, orthogonal experiments were performed to determine the optimum hydrolysis conditions for the five enzymes. The results showed that the amino acid conversion rate of the hydrolysate prepared under the optimum hydrolysis conditions was as high as 77%. In previous studies, calcium chloride was determined to be the most suitable calcium source. The scallop shell was used as a raw material to obtain calcium chloride by acid treatment and water flying, and then calcium chloride was mixed with compound amino acids in the hydrolysate to prepare complex amino acid-chelated calcium. The calcium ion content in the chelated calcium was chosen as an index; subsequently, single factor experiments were performed to determine the time, temperature, and pH of the chelation process. The optimum chelating conditions were screened by an orthogonal experiment. A chelation rate of up to 92% was obtained in the final products. The compound amino acid-chelated calcium not only functions as a calcium supplement, but also has a delicious taste; it can be used as a calcium supplement or functional condiment. Our findings will assist in achieving additional value from scallop-processing waste, and also provide us with novel insights and methods for high-value utilization of other aquatic processing waste.
Scallop skirts; Degrease; Enzymatic hydrolysis; Amino acids conversion rate; Amino acid chelated calcium; Chelation rate
WEI Yuxi, E-mail: yuxiw729@163.com
* 山東省重點(diǎn)研發(fā)計(jì)劃(重大關(guān)鍵技術(shù))項(xiàng)目(2016ZDJS06A01)和青島市民生科技計(jì)劃項(xiàng)目(17-3-3-68-nsh)共同資助[This work was supported by Shandong Province Key Research and Development Project (2016ZDJS06A01), and Qingdao People's Livelihood Technology Project (17-3-3-68-nsh)]. 焦 奎,E-mail: 312596995@qq.com
魏玉西,E-mail: yuxiw729@163.com
2018-03-24,
2018-06-02
S985.3
A
2095-9869(2019)04-0178-07
10.19663/j.issn2095-9869.20180324001
焦奎, 高翔, 于佳, 魏玉西, 高潔, 張雪梅, 王金梅, 李鈺金. 酶解扇貝裙邊制備復(fù)合氨基酸螯合鈣的研究. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(4): 178–184
Jiao K, Gao X, Yu J, Wei YX, Gao J, Zhang XM, Wang JM, Li YJ. Study of the preparation of compound amino acid-chelated calcium by protease hydrolysis of scallop skirts.Progress in Fishery Sciences, 2019, 40(4): 178–184
(編輯 陳輝)