• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Renormalized-Hamiltonian-Flow Approach to Eigenenergies and Eigenfunctions?

    2019-07-25 02:01:58WenGeWang王文閣
    Communications in Theoretical Physics 2019年7期
    關(guān)鍵詞:文閣

    Wen-Ge Wang (王文閣)

    Department of Modern Physics,University of Science and Technology of China,Hefei 230026,China

    Abstract We introduce a decimation scheme of constructing renormalized Hamiltonian flows,which is useful in the study of properties of energy eigenfunctions,such as localization,as well as in approximate calculation of eigenenergies.The method is based on a generalized Brillouin-Wigner perturbation theory.Each flow is specific for a given energy and,at each step of the flow,a finite subspace of the Hilbert space is decimated in order to obtain a renormalized Hamiltonian for the next step.Eigenenergies of the original Hamiltonian appear as unstable fixed points of renormalized flows.Numerical illustration of the method is given in the Wigner-band random-matrix model.

    Key words: generalized Brillouin-Wigner perturbation theory,Hamiltonian flow,eigenfunction structure,eigenvalue

    1 Introduction

    Properties of energy eigenvalues and eigenfunctions are of central importance in a variety of fields,from nuclei physics,atomic physics,to condensed matter physics,and so on.[1?12]In particular,they are of relevance to thermalization,[13?21]a topic which has attracted renewed interest in recent years.An important method of studying these properties is the renormalization group method.Various versions of this method have been developed.For example,in calculating energy eigenfunctions in the low energy region,wide use has been made of Wilson’s numerical renormalization group[22?23]and of the density-matrix renormalization group method.[24?25]

    Localization of wavefunctions is one of the most important phenomena discovered in the field of condensed matter physics[26?30]and in the field of quantum chaos.[31?32]A real-space renormalization-group method and its modified versions[33?38]have been found quite successful in the study of localization properties in one-dimensional systems with (effectively) finite range of coupling; while in the case of two and more than two-dimensional systems,they have been found successful only in some special cases such as the Fibonacci quasi-lattices (see,e.g.,Refs.[39–40]).Moreover,recently,the phenomenon of many-body location has attracted wide attention (see,e.g.,Refs.[41–44]).

    Different schemes of constructing renormalized Hamiltonian flows are usually suitable for different types of problems.No scheme has been found universally useful.Hence,it is always of interest to find new schemes of constructing renormalized Hamiltonian flows.

    In this paper we introduce a new method of constructing renormalized Hamiltonian flow,based on a generalized Brillouin-Wigner perturbation theory (GBWPT).[45?49]The GBWPT shows that an arbitrary eigenfunction of a Hamiltonian can be divided into two parts,a perturbative part and a non-perturbative part,with the perturbative part expanded in a convergent perturbation expansion in terms of the non-perturbative part.Making use of this result of the GBWPT,we show that a subspace of the Hilbert space,which is associated with a perturbative part of the eigenfunction,can be decimated.This decimation scheme produces a renormalized Hamiltonian and,following this procedure,a renormalized Hamiltonian flow can be constructed.

    We show that,for a renormalized Hamiltonian flow constructed by the method mentioned above,eigenenergies of the original Hamiltonian appear as(unstable)fixed points of a property of the flow.Furthermore,those eigenfunctions of the renormalized Hamiltonians in the flow,which share the same eigenenergy,have related components.These two properties of the renormalized Hamiltonian flow may be made use of in approximate calculation of eigenenergies and in the study of properties of the eigenfunctions of the original Hamiltonian,e.g.,their localization properties.These predictions are checked numerically in the Wigner-band random-matrix model.

    2 General Theory

    2.1 Generalized Brillouin-Wigner Perturbation Theory

    In this section,we discuss the basic contents of GBWPT.It is a direct generalization of the ordinary Brillouin-Wigner perturbation theory,which can be found in textbooks,e.g.,in Ref.[50].Consider a perturbed HamiltonianH=H0+V,whereH0is an unperturbed Hamiltonian andVis a generic perturbation.In the normalized eigenbasis ofH0,denoted by

    For an energy eigenstate|α〉,let us divide the setinto two subsets,denoted bySαand,respectively.This gives two projection operatorsPandQ,

    Here we useto indicate basis statesinSαandforCorrespondingly,the stateis divided into two parts,

    Multiplying both sides of Eq.(4) byQand noticing thatQH0=H0Q,one has

    where

    Substituting Eq.(5) into Eq.(3) and doing iteration,one finds thatcan be expanded in a convergent perturbation expansion,

    when the following condition is satisfied

    When the setSαincludes only one basis vector,the expansion in Eq.(7) gives the ordinary Brillouin-Wigner perturbation expansion.Since the exact eigenenergyEαappears in the expansion,the expansion can not be immediately employed in numerical computation.However,noticing thathas one component only in the basisand that the componentsCαkshould satisfy certain normalization condition,this problem can be overcome.For example,taking the normalization condition=1 for normalizedand multiplying Eq.(4) from left byone can write the exact energy asEα=E0i+Then,one can writeEαandin the form of two related iterative expansions.[50]

    In the case thatSαincludes more than one vectorsEq.(7) gives a generalization of the (ordinary) Brillouin-Wigner perturbation theory(GBWPT).In this case,since there are at least two componentsCαiin,merely making use of the normalization condition,one can not writeEαandin two related iterative expansions.Therefore,in the GBWPT,Eαandcan not be calculated in a way similar to that discussed above in the ordinary Brillouin-Winger perturbation theory.

    Several applications of the GBWPT have been found.The condition (8) determines the separation ofinto two parts,and.In systems with band structure of the Hamiltonian,usuallycorresponds to the main body of,whilecorresponds to the tail part ofwith small components.[45,48]It has been shown that the expansion in Eq.(7) is useful in deriving analytical expressions for the decaying behavior of the tails of[45,48]This separation ofhas also been found useful in approximate calculation of eigenstates in certain energy region.[47]Further numerical investigation reveals that this separation of energy eigenstates is useful in the study of phenomenon like dynamical localization[46,48]and in the study of the distribution of components of wave functions in quantum chaotic systems.[49]

    In this paper,we discuss a new application of the GBWPT,namely,a general scheme of constructing renormalized Hamiltonian flow.Before doing this,it is useful to give further discussion for the condition of separating an energy eigenstate into the two parts discussed above.A sufficient (unnecessary) condition for Eq.(8) to hold is

    In order to understand better the condition (9),we insert the expression of the projection operatorQgiven in Eq.(2) into Eq.(6) and get

    It is seen that only basis statesgive contribution to the denominator ofTα.Therefore,as long as the setis chosen such that allE0jofare far enough fromEα,Eq.(9) and hence Eq.(7) hold.This gives a convenient way of doing the separation of

    An advantage of using Eq.(9)is that one does not need to know the exact statein advance.Equation (9) is also useful when we treat a HamiltonianHwith a degenerate spectrum.As well known,degenerate spectrum ofHmay bring problem to the ordinary perturbation theory.However,in the GBWPT,Eq.(7)can still hold whenHhas a degenerate spectrum.In fact,since Eq.(9) does not contain any eigenstate,for eigenstates with the same eigenenergyEα,this equation gives the same separation of the basis states,i.e.,the setSα.For such a separation,Eq.(7) holds for all the eigenstates with the eigenenergyEα.In this case,Sαincludes more than one basis vectors.Different eigenstateswith the same eigenvalueEαhave different componentsCαiin,hence,have differentdetermined by Eq.(7).

    For the above reasons,in what follows,we use Eq.(9)to determine the separation ofinto the two partsand

    2.2 Renormalized Hamiltonian

    A renormalized Hamiltonian can be constructed for an eigenstateofH,by decimation of the statesinFor this purpose,making use of Eq.(7),we writeas

    where

    replacingCαjby the right hand side of Eq.(11),one has

    where

    This suggests that a renormalized Hamiltoniancan be introduced,

    which is an operator in the subspace spanned by states∈Sα.The most important relation betweenHandis that the stateis an eigenstate ofwith the eigenenergyEα,as shown in Eq.(14).Note that the elementsare functions ofEα.

    WhenHhas a degenerate spectrum,as discussed in the previous section,degenerate eigenstates with the same eigenenergyEαshare the same separationSα,hence,they have the same quantitiesAα(j →i′).As a result,degenerate eigenstatesare eigenstates of the same renormalized HamiltonianTherefore,the above scheme also works in the case of degenerate spectrum.

    The structure of non-zero off-diagonal elements ofHin the basisis usually different from that ofin.Indeed,Eqs.(12)and(15)show thatis typically nonzero when eitherHii′≠0 or there is a path of coupling fromtothrough statesin the set.Therefore,the number of basis stateswhich are coupled tobyis equal to or larger than that byH.

    We remark that the condition (8),which guarantees the expansion in Eq.(7),can not completely fix the setSα.Hence,one usually has much free space in choosingSαin constructing a renormalized Hamiltonian.

    2.3 Renormalized Hamiltonian Flow

    Repeating the procedure discussed in the previous section,withplaying the role ofH,one can obtain a new renormalized Hamiltonian from ?H.Following this,a renormalized Hamiltonian flow can be constructed,which is specific for the eigenstatewith eigenenergyEαof the original HamiltonianH.However,this method of constructing Hamiltonian flow has a drawback,namely,andEαare usually unknown.(The purpose of constructing a renormalized Hamiltonian flow is usually just to study properties ofandEα.) To avoid this drawback,in what follows we propose a more general method of constructing renormalized Hamiltonian flow,which is not specific for any eigensolution ofH.

    Let us denote byH(0)the original HamiltonianH,byEα(0)andits eigenenergies and eigenstates,respectively.For a set of basis states in the Hilbert space ofH(0),denoted by{|k(0)〉},H(0)is divided into two parts as in Eq.(1),The set of basis states is also divided into two partsS(0)and,with∈S(0)and∈; correspondingly,two projection operatorsP(0)andQ(0)can be introduced in the same way as in Eq.(1).The components ofare denoted by

    In considering the condition for a division of{|k(0)〉},let us write Eq.(9) in the following form,

    where

    HereEis a parameter with energy dimension,which is used in the construction of the renormalized Hamiltonian flow.Note that Eq.(17) gives Eq.(9) forE=Eα.

    Then,we can decimate the basis states inand,similar toin Eq.(16),introduce the first renormalized Hamiltonianin the flow,

    where

    Here

    ForE=Eα(0),similar to Eq.(14),we have

    hence,Eα(0)is an eigenenergy ofH(1)EwithE=Eα(0).IfEis not equal to any ofEα(0),it is usually not an eigenenergy of.Note thatis an operator in the Hilbert space spanned by(0).

    In the above procedure,with the superscript (0) replaced by Eq.(1),the second renormalized Hamiltonianin the flow can be constructed for the same parameterE.Then,with the superscript(1)replaced by Eq.(2),and so on,a renormalized Hamiltonian flowcan be constructed,withn=1,2,...

    IfE=Eα(0)for a Hamiltonian flow thus obtained,an equation similar to Eq.(22)holds with 0 replaced byn?1 and 1 byn.This implies the following important relation betweenandH(0),that is,an eigenstateofhas the following relation to|α(0)〉,

    whereis the same basis state asbut in the original labelling.This equation shows that some information in properties ofmay be obtained from properties of the corresponding eigenstateofIn the general case withEnot necessarily equal to any ofEα(0),let us denote byE(n)the closest eigenenergy oftoE.(Forn=0,takeH(0)).With increasingn,E(n)form a sequence with the flow,(E(0),E(1),E(2),...).IfE=Eα(0),Eq.(23) shows thatE(n)=Eα(0)for all values ofn; on the other hand,ifE≠Eα(0),E(n)are usually not equal toEα(0).Hence,Eα(0)are fixed points of the sequenceE(n),under the choice ofE=Eα(0).One may also consider the sequence of the deviation|Eα(n)?E|,for which zero is the fixed point corresponding to the choiceE=Eα(0).

    2.4 An Efficient Method of Constructing Renormalized Hamiltonian Flow

    The condition(17)with 0 replaced bynmust be satisfied,in order to constructfromHE(n)by decimating basis statesin.For a given choice of,it is usually not easy to prove whether the condition is satisfied or not.In fact,for an arbitrarily chosen setand an arbitrary value ofE,the condition is usually not satisfied.Therefore,it would be useful,if a general method can be found for decimation of an arbitrarily chosen set.In what follows,we introduce such a method.For brevity,in the following part of this section,we omit the superscript“(n)”,i.e.,all quantities should have the superscript“(n)”,except for the parameterE.

    The technique is to first carry out a rotation in the subspace spanned by states∈,such thatHis diagonalized in the subspace.We assume that the number of states inis not large and it is not difficult to diagonalize numerically the sub-matrix of the HamiltonianHin this subspace.Let us denote bythe obtained eigenstates of the sub-matrix ofHin the subspace and byEjathe corresponding eigenenergies.

    Now take the set ofas a new subset.Correspondingly,the HamiltonianHis divided into two parts,H0andV,in the same way as discussed in previous sections.In particular,by definition,is an eigenstate of,

    Then,making use of the expression ofQin Eq.(2),we can writeTEin Eq.(18) as (with the superscript (0) replaced by (n) and then omitted)

    whenEis not equal to any ofEja.Equation (25) implies that (TE)2=0,since there is no coupling among,namely,=0.As a result,Eq.(17) holds with 0 replaced byn.When it happens thatEis equal to one ofEja,one may change a little the two original subsetsSofandofby exchanging a few states in them; this may change the values ofEjaand makeE≠Eja.

    Finally,by the method discussed in the previous section,the set of(equivalently,that of) can be decimated and a renormalized Hamiltonian can be obtained.In particular,AE(ja→i) has a quite simple expression,

    since (TE)2=0 for the choice of the set of.It is not difficult to see that the above schemes can work for a degenerate spectrum,as well.

    3 Some Applications

    In this section,we show that the method presented in this paper supplies a useful approach to properties of energy eigenvalues and eigenfunctions.

    3.1 Eigenenergies as Unstable Fixed Points

    As discussed in Subsec.2.3,the eigenenergiesEα(0)of the original HamiltonianH(0)are fixed points of the sequenceE(n),whereE(n)is the eigenenergy ofwhich is the closest toE.As a result of this property,the difference|E ?E(n)|as a function ofE(withnfixed)has local minima at the positionsE=Eα(0).Hence,the eigenenergiesEα(0)can be calculated by finding out the local minima.In fact,numerical evaluation of eigenenergies of large-scale Hamiltonian matrices is a very important topic in many fields in physics.Various methods have been developed in dealing with this problem (see,e.g.,Refs.[47,51–57]).The renormalization group method discussed above supplies an alternative approach to this important problem.

    To test the above predictions,we consider a banded random matrix model.Banded random matrix models have applications in several fields and are still under investigation (see,e.g.,Refs.[58–62]).Here we consider the so-called Wigner Band Random Matrix (WBRM) model,which was first introduced by Wigner more than 50 years ago for the description of complex quantum systems as nuclei.[63]It is still of interest (see,e.g.,Refs.[46,48,64–70]),since it is believed to provide an adequate description also for some other complex systems,e.g.,the Ce atom[71]and as well as dynamical conservative systems possessing chaotic classical limits.

    We consider the following form of the Hamiltonian matrix in the WBRM model,

    whereE0k=k(k=1,...,N),off-diagonal matrix elementsvkk′=vk′kare random numbers with Gaussian distribution forand are zero otherwise,andλis a running parameter for adjusting the perturbation strength.Herebis the band width of the Hamiltonian matrix andNis its dimension.

    The theory discussed above predicts that the pointsE=Eα(0)are fixed points for the propertyE(n)of the renormalized Hamiltonian flow.To check this numerically,we consider original HamiltoniansH(0)as given in Eq.(27),whose dimensions are not very large such that they can be diagonalized directly by using ordinary diagonalization methods.For eachH(0)thus obtained,we diagonalize it to obtain its eigenenergiesEα(0).Then,we takeE=Eα(0)and construct a (finite) renormalized Hamiltonian flowby making use of the method discussed in Subsec.2.4,with a number of arbitrarily chosen basis statesk(n)decimated at each step.Numerically,all the renormalized Hamiltonianshave been found sharing the same eigenenergyEα(0)and having related eigenfunctions,as predicted in Eq.(23).

    There are two types of fixed points: stable and unstable.We perform further numerical investigation to see whether the fixed pointsEα(0)are stable or unstable.For this,we take a value ofE,which deviates a little from an exact eigenvalueEα(0),say byδE=|E ?Eα(0)|.Variation of|E(n)?E|withncan show whether the fixed pointE=Eα(0)is stable or unstable.Our numerical simulations show that they are unstable.An example is given in Fig.1,which shows that the value of|E(n)?E|increases withn,indicating thatEα(0)is an unstable fixed point.In our numerical computation for this figure,at each step of the renormalization flow,we decimated 30 basis stateswith successive labellingk(n)and with the firstk(n)chosen arbitrarily.

    Now we study variation of|E(n)?E|as a function ofE,withnfixed.The theory predicts that this quantity has local minima of zero at the values ofE=Eα(0).Our numerical simulations indeed reveal this phenomenon.As shown in Fig.2,the positions of the local minima with the value of zero indeed correspond to positions of the exact eigenenergiesEα(0),which are indicated by the vertical dotted lines.This shows that the eigenenergies of the original Hamiltonian can be evaluated by numerical calculation of the local minima of|E(n)?E|.

    Fig.1 Variation of |E(n) ?E| with n,for the param-eters N=1000,b=100,and λ=10,where E(n) is the eigenenergy of HE(n )which is the closest to E.The value of E has a little deviation from an arbitrarily chosen exact eigenenergy Eα(0) of the original Hamiltonian H(0).For the solid curve,δE=|E ?Eα(0)|=0.01.At each step of the flow,an arbitrarily chosen set of 30 basis states with successive labelling are decimated.The value of |E(n)?E| increases with n,implying that Eα(0) is an unstable fixed point.The circles represent |E(n)?E|/10 for δE=0.001.The agreement of the solid curve and the circles show that for these small values of δE,|E(n)?E|is in the linear region of δE.

    Fig.2 Variation of |E(n) ?E| (circles connected by dashed lines) with E for n=5,the parameters N=300,b=100,λ=10,and E=247 + 0.06m with m=1,2,...,100.At each step of the renormalized Hamiltonian flow,30 basis states are decimated.Within the energy region shown in this figure,the original Hamiltonian has three eigenenergies with positions indicated by the three vertical dotted lines.Approximate values of the eigenenergies can be get from extrapolation of the circles close to the local minima of |E(n)?E|.

    3.2 Localization of Eigenfunctions

    Based on Eq.(23),the theory here can also be used in the study of properties of energy eigenfunctions ofH(0),namely,the components ofin.For this,one should first know the eigenenergyEα(0),which may be obtained by the method discussed in the previous section or by some other method.Next,one can useE=Eα(0)to construct a finite renormalized Hamiltonian flow,untilwhose dimension is small enough for direct numerical diagonalization.Then,one can perform direct numerical diagonalization for this Hamiltonian and findwhich give the corresponding components ofinby the relation (23).In this way,some information about the wavefunctione.g.,its localization properties,may be obtained.In fact,if data for the construction ofofm=1,...,nhave been stored,it is even possible to obtain all the components

    We also employ the WBRM model discussed in the previous section to check the applicability of the method discussed above.Consider,e.g.,the parametersN=100,b=4,andλ=10.Hamiltonians with these parameters have localized eigenfunctions,e.g.,the one shown in Fig.3 by the solid curve.To check the validity of Eq.(23),we first diagonalizeH(0)directly and obtain its eigenenergiesEα(0)numerically.Then,we construct a(finite)renormalized Hamiltonian flowwithE=Eα(0),by making use of the method discussed in Subsec.2.4 with 10 basis states decimated at each step.Our numerical results indeed confirm the prediction of Eq.(23).An example is given in Fig.3 forn=5,which shows that the values ofagree well with the corresponding ones ofeven whenis as small as e?20.

    Fig.3 Values of the componentsfor n=0 and 5 in a renormalized Hamiltonian flow of .The original Hamiltonian is a realization of the Hamiltonian matrix in the WBRM model with parameters N=100,b=4,and λ=10.In the construction of the renormalized Hamiltonians,E=Eα(0) and 10 basis states are decimated at each step of the flow. and are eigenstates of H(0) and,respectively,with the same eigenenergy Eα(0).The two eigenfunctions agree well,as predicted in Eq.(23).

    3.3 A Discussion of Computation Time

    In this section,we give a brief discussion for the dependence of the computation time required by the method here on the dimensionNof the original Hamiltonian.This is to be compared with the corresponding dependence in ordinary direct diagonalization methods,in which the computation time usually scales asN3.

    When using the method here to calculate eigenenergies,as discussed in Subsec.3.1,one first needs to choose the energy region of interest and divide the region into consecutive segments,say,to (Ns?1) segments.Then,one can take theNsends of the segments as the parameterEand construct renormalized Hamiltonian flows.Suppose at each step totallymbasis states are decimated,withm ?N.This requires diagonalization of anm×mmatrix,which takes a time scaling asm3.After decimation of thembasis states,one obtains a new renormalized Hamiltonian and needs to calculate its new elements.(Some elements of the renormalized Hamiltonian may remain unchanged in the decimation process.) If there areM1new elements to be calculated and the time of calculating each new element scales asM2,then,calculation of the new elements needs a time scaling asM1M2.The values ofM1andM2depend on the structure of the original Hamiltonian.For example,for a 1-dimensional chain with nearest-neighbor coupling,it is possible for bothM1andM2to be quite small;on the other hand,for a full original Hamiltonian,(N2?m2) matrix elements are changed in the first step of the flow.

    Suppose one performsnsteps of the renormalization procedure and at last obtains a final renormalized Hamiltonian of dimension(N?nm).Diagonalization of the final Hamiltonian needs a time scaling as (N ?nm)3.Summarizing the above results,the total computation time scales asZ=Nsn(m3+M1M2)+Ns(N ?nm)3,where for simplicity in discussion,we assume thatM1M2can be taken as a constant.

    The method here is useful when a narrow energy region is of interest,because in this caseNsis not large.Usually,one may choose the value ofnsuch thatnmis close toN.This givesZ~NNs(m2+M1M2/m).Comparing it withN3for direct diagonalization method,we see that the method here is more efficient ifNs(m2+M1M2/m)?N2.In fact,the method here has another advantage,that is,it needs a relatively small memory for diagonalization.Specifically,it needs to diagonalize matrices with dimensionsmand (N ?nm),respectively,which can be small even for largeN.In contrast,a direct diagonalization method usually requires a memory scaling asN2,which is much larger thanm2and (N ?nm)2.

    4 Conclusions and Discussions

    In summary,based on the GBWPT,we propose a general method of constructing renormalized Hamiltonian flow with the energyEof interest as a parameter.Eigenenergies of the original Hamiltonian appear as (unstable) fixed points of some property of the renormalized Hamiltonian flow.WhenEis chosen as an eigenenergy of the original Hamiltonian,all the renormalized Hamiltonians in the same flow share the same eigenenergy asE,with the corresponding eigenfunctions possessing related components.we introduce a useful technique,by which an arbitrary set of basis states in the Hilbert space can be decimated in the construction of a renormalized Hamiltonian.We also discuss potential applications of the method in numerical evaluation of eigenenergies as well as in the study of localization of eigenfunctions,and illustrate them numerically in the WBRM model.In particular,by considering the scaling behavior of computation time,we find some situations in which the method here may be more efficient than the ordinary numerical diagonalization methods.

    As is known,localization in the WBRM model can be related to localization in another band-random-matrix model,by making use of a renormalization technique based on the GBWPT.[48]The method discussed in this paper can be used to improve the method in Ref.[48],specifically,by partial diagonalization of the Hamiltonian in the subspace spanned by states in,without rotation in the subspace spanned by states inSα.

    Finally,we give some remarks on the relation of the method discussed in this paper to some other methods of constructing renormalized Hamiltonians.The realspace renormalization-group method used in Refs.[33-34]for the one-dimensional tight-binding model with nearestneighbor-hopping,is in fact a special case of the method here,with the setincluding only one basis stateat each step of decimation.Its modified versions for 1D or quasi-1D systems,e.g.,those in Refs.[36–38],have some technical difference from the method here.A merit of the theory here is that it supplies a general approach to the construction of renormalized Hamiltonian flow,not restricted to some special types of models.

    猜你喜歡
    文閣
    難忘雷鋒的關(guān)愛(ài)
    婦女(2023年2期)2023-03-27 10:41:57
    男旦“頭牌”胡文閣的雙面人生
    梅葆玖送衣
    做人與處世(2022年3期)2022-05-26 00:18:36
    梅葆玖送衣
    窩棚、紙信、500元錢(qián):京漂導(dǎo)演有顆天真的心
    Similar Early Growth of Out-of-time-ordered Correlators in Quantum Chaotic and Integrable Ising Chains?
    Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton?
    高文閣:堅(jiān)韌不拔揮灑筆墨苦研多年運(yùn)筆勁健
    僑園(2019年4期)2019-04-28 23:50:54
    胡文閣:男旦的憂傷
    北廣人物(2018年40期)2018-11-14 09:00:02
    胡文閣男旦的憂傷
    人妻夜夜爽99麻豆av| 中国美白少妇内射xxxbb| 久久久久性生活片| 97热精品久久久久久| 日韩欧美免费精品| 99热网站在线观看| 一级a爱片免费观看的视频| 国产极品精品免费视频能看的| 午夜精品一区二区三区免费看| 亚洲国产精品国产精品| 综合色av麻豆| 国产成人91sexporn| 久久精品夜夜夜夜夜久久蜜豆| 欧美日韩在线观看h| 国产高清视频在线播放一区| 久久精品91蜜桃| 又爽又黄a免费视频| 午夜激情福利司机影院| 国产精品嫩草影院av在线观看| 亚洲内射少妇av| 看非洲黑人一级黄片| 特级一级黄色大片| 亚洲国产日韩欧美精品在线观看| 99热这里只有是精品在线观看| 国产高清有码在线观看视频| 精品一区二区三区视频在线观看免费| 99久久精品一区二区三区| 好男人在线观看高清免费视频| 午夜福利在线观看吧| 黄色视频,在线免费观看| 国内精品一区二区在线观看| 成人一区二区视频在线观看| 国产在线男女| 色噜噜av男人的天堂激情| 欧美潮喷喷水| 大又大粗又爽又黄少妇毛片口| 欧美一区二区亚洲| 国产三级中文精品| 欧美+亚洲+日韩+国产| 国产伦一二天堂av在线观看| 中文字幕久久专区| 淫妇啪啪啪对白视频| 久久婷婷人人爽人人干人人爱| 成人精品一区二区免费| 日日摸夜夜添夜夜添小说| 1024手机看黄色片| 国产淫片久久久久久久久| 色哟哟·www| 伊人久久精品亚洲午夜| 亚洲在线自拍视频| 男人和女人高潮做爰伦理| 五月玫瑰六月丁香| 天天一区二区日本电影三级| 日本熟妇午夜| 女生性感内裤真人,穿戴方法视频| 老熟妇乱子伦视频在线观看| 欧美不卡视频在线免费观看| 亚洲第一电影网av| 18禁黄网站禁片免费观看直播| 日韩一本色道免费dvd| 国产精品99久久久久久久久| 欧美极品一区二区三区四区| 久99久视频精品免费| 国产亚洲精品久久久com| 国产精品久久久久久久电影| 亚洲精品久久国产高清桃花| 亚洲欧美清纯卡通| 舔av片在线| 人人妻,人人澡人人爽秒播| 精品一区二区三区av网在线观看| 精品久久国产蜜桃| 国产精品一区二区三区四区久久| 少妇高潮的动态图| 欧美激情国产日韩精品一区| 亚洲国产精品成人久久小说 | 可以在线观看毛片的网站| 99国产精品一区二区蜜桃av| 精品久久久久久久久亚洲| 日韩欧美精品v在线| 变态另类成人亚洲欧美熟女| 51国产日韩欧美| 热99re8久久精品国产| 免费电影在线观看免费观看| 美女免费视频网站| 黄色日韩在线| 免费看光身美女| 免费搜索国产男女视频| 观看美女的网站| 国产精品日韩av在线免费观看| 国产精品一及| 成人特级黄色片久久久久久久| 国产极品精品免费视频能看的| 欧美一区二区精品小视频在线| 成人综合一区亚洲| 国产人妻一区二区三区在| 热99re8久久精品国产| 亚洲欧美日韩高清专用| 国产精品爽爽va在线观看网站| 日本爱情动作片www.在线观看 | 最好的美女福利视频网| 人人妻人人澡欧美一区二区| 18+在线观看网站| 一卡2卡三卡四卡精品乱码亚洲| 一本精品99久久精品77| a级毛色黄片| 在线免费观看不下载黄p国产| 综合色av麻豆| 一夜夜www| 久久久久久久久大av| 婷婷亚洲欧美| 三级经典国产精品| 午夜视频国产福利| 91精品国产九色| 久久人妻av系列| 三级毛片av免费| 简卡轻食公司| 三级毛片av免费| 一个人免费在线观看电影| 亚洲中文字幕一区二区三区有码在线看| 老熟妇仑乱视频hdxx| 黄色一级大片看看| 秋霞在线观看毛片| 老司机午夜福利在线观看视频| 亚洲国产精品成人综合色| 亚洲成人中文字幕在线播放| 免费在线观看影片大全网站| 欧美日韩一区二区视频在线观看视频在线 | 天天躁日日操中文字幕| videossex国产| 国产精华一区二区三区| 国产精品美女特级片免费视频播放器| 少妇人妻精品综合一区二区 | 国产乱人视频| 亚洲欧美精品自产自拍| 又粗又爽又猛毛片免费看| 亚洲自拍偷在线| 国产精品久久久久久精品电影| 男女边吃奶边做爰视频| 黄色视频,在线免费观看| 偷拍熟女少妇极品色| 欧美在线一区亚洲| 国产精品精品国产色婷婷| 久久久精品94久久精品| 久久精品影院6| av免费在线看不卡| av国产免费在线观看| 国产av在哪里看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲最大成人中文| 国产成人一区二区在线| 亚洲国产日韩欧美精品在线观看| 国产白丝娇喘喷水9色精品| 99久久久亚洲精品蜜臀av| 99久久成人亚洲精品观看| 丝袜喷水一区| 国产精品野战在线观看| 久久久精品大字幕| 成人欧美大片| 国产一区二区激情短视频| 69人妻影院| 精品免费久久久久久久清纯| 超碰av人人做人人爽久久| 99久久九九国产精品国产免费| 天堂av国产一区二区熟女人妻| 国产亚洲精品av在线| 日韩亚洲欧美综合| 麻豆乱淫一区二区| 成人性生交大片免费视频hd| 国产91av在线免费观看| 欧美潮喷喷水| 国内精品宾馆在线| 五月伊人婷婷丁香| 女生性感内裤真人,穿戴方法视频| 免费在线观看影片大全网站| 老熟妇仑乱视频hdxx| 国产午夜精品久久久久久一区二区三区 | 精品一区二区免费观看| 久久婷婷人人爽人人干人人爱| 91久久精品国产一区二区三区| 国产午夜精品久久久久久一区二区三区 | 亚洲高清免费不卡视频| 嫩草影院入口| 日本免费a在线| 亚洲高清免费不卡视频| 国产一区二区激情短视频| 无遮挡黄片免费观看| 免费观看在线日韩| 亚洲中文字幕日韩| 特级一级黄色大片| 人妻久久中文字幕网| 欧美极品一区二区三区四区| 毛片一级片免费看久久久久| 在线免费观看不下载黄p国产| 国产精品精品国产色婷婷| 国产一区二区激情短视频| 超碰av人人做人人爽久久| 人妻夜夜爽99麻豆av| 一级a爱片免费观看的视频| 自拍偷自拍亚洲精品老妇| 婷婷色综合大香蕉| 久久中文看片网| 午夜福利在线在线| 日日啪夜夜撸| 神马国产精品三级电影在线观看| 久久婷婷人人爽人人干人人爱| 露出奶头的视频| 国内少妇人妻偷人精品xxx网站| 九九在线视频观看精品| 午夜福利在线观看免费完整高清在 | 欧美高清成人免费视频www| 日韩国内少妇激情av| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区av网在线观看| 观看免费一级毛片| aaaaa片日本免费| 亚洲av电影不卡..在线观看| 少妇熟女欧美另类| 啦啦啦啦在线视频资源| 国产中年淑女户外野战色| 免费观看的影片在线观看| 亚洲一区高清亚洲精品| 午夜精品一区二区三区免费看| 蜜桃亚洲精品一区二区三区| 精品久久久噜噜| 99精品在免费线老司机午夜| 亚洲天堂国产精品一区在线| 色5月婷婷丁香| 国产av麻豆久久久久久久| 不卡视频在线观看欧美| 午夜福利成人在线免费观看| 久久久久性生活片| 亚洲不卡免费看| 精品久久久噜噜| 久久久精品大字幕| 日韩国内少妇激情av| 级片在线观看| 久久鲁丝午夜福利片| 黄色一级大片看看| 一进一出抽搐gif免费好疼| 亚洲精品日韩在线中文字幕 | 午夜久久久久精精品| 毛片女人毛片| 欧美性感艳星| 欧美性猛交╳xxx乱大交人| 无遮挡黄片免费观看| 日韩欧美在线乱码| 成人鲁丝片一二三区免费| 别揉我奶头 嗯啊视频| 少妇人妻精品综合一区二区 | 日韩强制内射视频| 69人妻影院| 毛片女人毛片| 成年女人毛片免费观看观看9| 别揉我奶头 嗯啊视频| 日韩高清综合在线| 高清毛片免费看| 中文字幕av在线有码专区| 国产精品永久免费网站| 中国国产av一级| 亚洲精品国产av成人精品 | 秋霞在线观看毛片| 亚洲va在线va天堂va国产| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品乱码久久久v下载方式| 男女视频在线观看网站免费| av卡一久久| 国产高清有码在线观看视频| 少妇熟女欧美另类| 老女人水多毛片| 久久久久久久久中文| av福利片在线观看| 国产av在哪里看| 天堂√8在线中文| 91久久精品国产一区二区成人| 91久久精品国产一区二区成人| 国产69精品久久久久777片| 狂野欧美白嫩少妇大欣赏| 国产高清三级在线| 伊人久久精品亚洲午夜| 真实男女啪啪啪动态图| 国产乱人视频| 12—13女人毛片做爰片一| or卡值多少钱| 一夜夜www| 亚洲一区高清亚洲精品| .国产精品久久| 国产一级毛片七仙女欲春2| 亚洲精品日韩av片在线观看| 伊人久久精品亚洲午夜| 在线观看免费视频日本深夜| 黑人高潮一二区| 国产精品国产三级国产av玫瑰| 免费人成视频x8x8入口观看| 国产色爽女视频免费观看| 免费av不卡在线播放| 国产一区二区亚洲精品在线观看| 韩国av在线不卡| 成年女人毛片免费观看观看9| 成人综合一区亚洲| av天堂在线播放| 中文字幕熟女人妻在线| 午夜福利成人在线免费观看| 日本熟妇午夜| 人人妻人人澡人人爽人人夜夜 | 最新在线观看一区二区三区| 亚洲国产精品成人综合色| 最新在线观看一区二区三区| 久久久久精品国产欧美久久久| 日本一二三区视频观看| 国产又黄又爽又无遮挡在线| 老司机午夜福利在线观看视频| 国产亚洲精品综合一区在线观看| 成人精品一区二区免费| 国产激情偷乱视频一区二区| 午夜福利在线观看免费完整高清在 | 九色成人免费人妻av| 麻豆成人午夜福利视频| 日韩欧美免费精品| a级毛色黄片| 99久国产av精品| 天堂影院成人在线观看| 午夜日韩欧美国产| 一区二区三区高清视频在线| 精华霜和精华液先用哪个| 久久午夜福利片| 精品久久久久久久久久免费视频| av在线观看视频网站免费| 国产一区二区在线av高清观看| 狂野欧美白嫩少妇大欣赏| 成年女人毛片免费观看观看9| 男女视频在线观看网站免费| 99热这里只有是精品在线观看| 亚洲精品乱码久久久v下载方式| 熟女电影av网| 欧美一区二区精品小视频在线| 国内少妇人妻偷人精品xxx网站| 亚洲av.av天堂| 亚洲婷婷狠狠爱综合网| 嫩草影院新地址| 国产美女午夜福利| aaaaa片日本免费| 亚洲国产精品合色在线| 在线观看av片永久免费下载| 变态另类成人亚洲欧美熟女| 一进一出好大好爽视频| 国产精品精品国产色婷婷| 国产精品爽爽va在线观看网站| 最近手机中文字幕大全| 我要搜黄色片| 亚洲美女搞黄在线观看 | 欧美日韩精品成人综合77777| 国产一区二区亚洲精品在线观看| 91久久精品国产一区二区成人| 嫩草影院新地址| 麻豆乱淫一区二区| av在线亚洲专区| 午夜福利在线观看免费完整高清在 | av卡一久久| 狂野欧美白嫩少妇大欣赏| 长腿黑丝高跟| 一级黄片播放器| 国产精品伦人一区二区| 成人欧美大片| 国产欧美日韩精品一区二区| 亚洲美女黄片视频| 久久久精品94久久精品| 亚洲一区高清亚洲精品| 国产亚洲精品综合一区在线观看| 五月伊人婷婷丁香| 亚洲欧美日韩卡通动漫| 日日干狠狠操夜夜爽| 中文字幕免费在线视频6| 天堂影院成人在线观看| 婷婷亚洲欧美| 亚洲中文字幕一区二区三区有码在线看| 国产精品一区二区性色av| 久久鲁丝午夜福利片| 91麻豆精品激情在线观看国产| 少妇丰满av| а√天堂www在线а√下载| 性色avwww在线观看| 国产美女午夜福利| 赤兔流量卡办理| av福利片在线观看| 九色成人免费人妻av| 一进一出抽搐动态| 中国美女看黄片| 真实男女啪啪啪动态图| 亚洲电影在线观看av| 天堂影院成人在线观看| 悠悠久久av| 亚洲成人精品中文字幕电影| 99九九线精品视频在线观看视频| 在线观看美女被高潮喷水网站| 亚洲不卡免费看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品色激情综合| 美女 人体艺术 gogo| 成人一区二区视频在线观看| 免费观看精品视频网站| 欧美一区二区精品小视频在线| 噜噜噜噜噜久久久久久91| 久久午夜亚洲精品久久| 欧美极品一区二区三区四区| 亚洲欧美精品自产自拍| 不卡一级毛片| 综合色av麻豆| 在线观看av片永久免费下载| 偷拍熟女少妇极品色| 少妇熟女欧美另类| 一级黄色大片毛片| 精品午夜福利在线看| 听说在线观看完整版免费高清| 午夜免费激情av| 特大巨黑吊av在线直播| 搞女人的毛片| 你懂的网址亚洲精品在线观看 | 有码 亚洲区| 97热精品久久久久久| 欧美激情国产日韩精品一区| 美女黄网站色视频| 午夜精品国产一区二区电影 | 久久久久久久久久黄片| 晚上一个人看的免费电影| 亚洲无线观看免费| 亚洲内射少妇av| 日本三级黄在线观看| 亚洲自拍偷在线| 日本 av在线| 一级av片app| 色5月婷婷丁香| 免费高清视频大片| 久久九九热精品免费| 欧美日韩综合久久久久久| 日日干狠狠操夜夜爽| 国产91av在线免费观看| av福利片在线观看| 女人十人毛片免费观看3o分钟| 亚洲av免费高清在线观看| 亚洲成人av在线免费| 99在线人妻在线中文字幕| 一本精品99久久精品77| 国产精品久久电影中文字幕| av中文乱码字幕在线| 观看美女的网站| 亚洲欧美成人精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 欧美日本视频| 欧美又色又爽又黄视频| 亚洲精品影视一区二区三区av| 搞女人的毛片| 身体一侧抽搐| 日韩高清综合在线| 网址你懂的国产日韩在线| 亚洲真实伦在线观看| 中文字幕精品亚洲无线码一区| 亚洲最大成人中文| 日韩av不卡免费在线播放| 国产成人a∨麻豆精品| 色5月婷婷丁香| 麻豆国产97在线/欧美| 人妻少妇偷人精品九色| 日本黄色视频三级网站网址| 久久久久久国产a免费观看| 一级黄片播放器| 国产精品国产高清国产av| 亚洲欧美日韩卡通动漫| 美女 人体艺术 gogo| 黄色一级大片看看| 免费不卡的大黄色大毛片视频在线观看 | 少妇的逼水好多| 无遮挡黄片免费观看| 校园人妻丝袜中文字幕| 麻豆精品久久久久久蜜桃| 午夜福利高清视频| 日韩高清综合在线| 特大巨黑吊av在线直播| 搡老岳熟女国产| 久久草成人影院| 在线播放国产精品三级| 少妇丰满av| 欧美丝袜亚洲另类| 午夜福利在线观看免费完整高清在 | 日韩在线高清观看一区二区三区| 搡女人真爽免费视频火全软件 | 18+在线观看网站| 淫秽高清视频在线观看| 小蜜桃在线观看免费完整版高清| 五月伊人婷婷丁香| aaaaa片日本免费| 日本黄色视频三级网站网址| 亚洲av熟女| 看黄色毛片网站| 男女下面进入的视频免费午夜| a级毛色黄片| 久久精品91蜜桃| 一级毛片我不卡| 欧美日韩综合久久久久久| 91在线精品国自产拍蜜月| 国产伦精品一区二区三区四那| 女生性感内裤真人,穿戴方法视频| 一边摸一边抽搐一进一小说| 国产熟女欧美一区二区| 丝袜美腿在线中文| 国产色爽女视频免费观看| 国产男靠女视频免费网站| 俺也久久电影网| 国产精品不卡视频一区二区| 最近视频中文字幕2019在线8| 搡老熟女国产l中国老女人| av在线观看视频网站免费| 男人狂女人下面高潮的视频| 亚洲中文日韩欧美视频| 成人漫画全彩无遮挡| 免费看光身美女| 日韩三级伦理在线观看| 日本一本二区三区精品| 久久热精品热| 淫秽高清视频在线观看| 亚洲性久久影院| 免费看美女性在线毛片视频| 亚洲av电影不卡..在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日韩人妻高清精品专区| 精品人妻熟女av久视频| 少妇高潮的动态图| 日韩成人av中文字幕在线观看 | 成人av一区二区三区在线看| 国产精品一区www在线观看| 久久精品人妻少妇| 一本一本综合久久| 日本黄色视频三级网站网址| 插阴视频在线观看视频| 免费av观看视频| 日本免费a在线| 又黄又爽又免费观看的视频| videossex国产| 亚洲国产日韩欧美精品在线观看| 美女xxoo啪啪120秒动态图| 日韩欧美国产在线观看| 国产精品无大码| 亚洲av不卡在线观看| 最新中文字幕久久久久| 久久久国产成人精品二区| 日韩av不卡免费在线播放| 日韩 亚洲 欧美在线| 一个人看视频在线观看www免费| 一个人免费在线观看电影| 少妇高潮的动态图| 美女黄网站色视频| 国产久久久一区二区三区| 香蕉av资源在线| 欧美中文日本在线观看视频| 国产视频一区二区在线看| 久久九九热精品免费| 国产三级中文精品| 久久精品夜夜夜夜夜久久蜜豆| 男人狂女人下面高潮的视频| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 日产精品乱码卡一卡2卡三| 国产精品爽爽va在线观看网站| 免费看光身美女| 97热精品久久久久久| 麻豆一二三区av精品| 国产精品女同一区二区软件| 看片在线看免费视频| 我要搜黄色片| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲91精品色在线| 在线国产一区二区在线| 综合色丁香网| 免费av不卡在线播放| 日韩高清综合在线| 国产爱豆传媒在线观看| 免费看日本二区| 高清午夜精品一区二区三区 | 简卡轻食公司| 国产精品福利在线免费观看| 深夜精品福利| 人人妻人人看人人澡| 国产精品一区二区三区四区久久| 啦啦啦韩国在线观看视频| 精品人妻偷拍中文字幕| 干丝袜人妻中文字幕| 午夜a级毛片| 国产中年淑女户外野战色| 少妇被粗大猛烈的视频| 午夜福利成人在线免费观看| 日韩欧美一区二区三区在线观看| 最近中文字幕高清免费大全6| h日本视频在线播放| 久久九九热精品免费| 免费无遮挡裸体视频| 午夜福利视频1000在线观看| 国产高清三级在线| 最近视频中文字幕2019在线8| 国产精品国产高清国产av| videossex国产| 精品人妻偷拍中文字幕| 亚洲av美国av| 亚洲欧美成人精品一区二区| 久久6这里有精品| 久久精品国产鲁丝片午夜精品| 久久人人爽人人爽人人片va| 国产综合懂色| 我要看日韩黄色一级片| 久久午夜福利片| 大型黄色视频在线免费观看| 91精品国产九色| eeuss影院久久| 欧美一级a爱片免费观看看| 18禁在线播放成人免费| 网址你懂的国产日韩在线| 别揉我奶头~嗯~啊~动态视频|