• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Numerical Investigation on Cooling Effectiveness for Advanced Fan-shaped Film Cooling

    2019-07-23 02:11:44XuLiYanjingQuLiuliSong
    風(fēng)機(jī)技術(shù) 2019年3期

    Xu LiYan-jing Qu Liu-li Song

    (AECC Shenyang Engine Research Institute,Shenyang,China)

    Abstract:As one of the advanced film cooling scheme, fan-shaped hole exhibits significant improvement in filmcooling effectiveness compared with cylindrical holes. In this paper, numerical simulations are applied to predict thecooling effectiveness for fan-shaped hole at various flow conditions. The flow conditions are evaluated at three blowingratios (0.5, 1, 1.5) and four mainstream Mach numbers (0.3, 0.45, 0.6, 0.75). CFD simulations are performed in threeRANS turbulence models namely realizable k-ε model, SST k-ω model and standard k-ε model. Simulation results arecompared with experimental data in terms of centerline adiabatic cooling effectiveness, the realizable k- ε model showsa better agreement in predicting the film cooling performance. Although some agreements are obtained, all the threeturbulence models tend to overpredict the cooling effectiveness compared to experimental data.

    Keywords:Film Cooling, CFD,Turbulence Models,Adiabatic Cooling Effectiveness

    0 Introduction

    During past 70 years,there has been a very significant increase in turbine entry temperature(TET)in order to improve gas turbine performance,currently TET has reached to about 2000°C around year 2010 for the advanced gas turbine,but at the same time,the temperature limit of current Nickel based super-alloy for turbine blade is about 1100°C[1].Currently,blade cooling technology is a complex combination of multiple different cooling techniques,among these,film cooling[2]is one of the most common ways to provide cooled protective layer between the hot gas and the external surfaces of gas turbine blades through discrete film holes by blowing of cooling air extracted from compressor.

    Researches on film cooling have revealed that film hole shapes have significant impacts on film cooling effectiveness.Goldstein et al.(1974)firstly used a cylindrical hole with a conical diffusing section and measured effectiveness downstream of the hole[3].They found that the jet remained near the surface with mainstream flow applied,and the centerline effectiveness was comparable with slot cooling,the lateral variation in effectiveness was significantly reduced compared with conventional cylindrical holes.Haven et al.(1997)found the conical diffuser could also improve film cooling coverage[4].Gritsch et al.(1998)and Thole et al.(1998)present adiabatic cooling effectiveness and flow field measurements for two types shaped holes:fan-shaped hole and laid-back fan-shaped hole[5-6],the exit expansion in these shaped holes reduces the velocity and hence the momentum of the coolant flow,so that the jet penetration is decreased,leads to improve the cooling effectiveness.Sargison et al.(2001)presented that a converging slot hole(console),which showed same cooling performance compared with fanshaped holes,but significantly reduced aerodynamic loss[7].Besides that,investigations are performed for many other shaped film holes[8-11],and numerical simulations are also widely applied to investigate film cooling besides experimental studies[12-15],generally numerical simulations are able to capture visible detailed flow and temperature filed despite of the measurement limitations in the experiments.

    1 Fan-shaped Film Cooling Simulations

    1.1 Geometry of fan-shaped hole

    Gritsch et al(1998)provided measurements on flow field and cooling effectiveness on three different film hole geometries:a cylindrical hole,a fan-shaped hole and a laidback fan-shaped hole[5][16].In this paper,numerical study concerning fan-shaped film hole cooling performance is based on these experiments.

    The detailed schematic of fan-shaped film hole is shown as Fig.1.Single,scale-up fan-shaped hole with a 30°inclination angle α was applied.The fan-shaped film hole included two sections:a cylindrical inlet section and an ex-panded outlet section.At the inlet,the diameter of the cylindrical hole was 10 mm with a length-to-diameter ratio of 2.The lateral expansion angle β for the fan-shaped film hole was 14°,leading to a width of 30mm at the expanded outletsection,the length of the expanded section is 40 mm,resulting an outlet-to-inlet area ratio of 3.0.All the hole geometry parameters were well balanced to enable an increased flow expansion before the coolant flow entering the expansion section hence encourage flow diffusion,and it also limited the flow separation at the outlet so as to improve the coolant flow coverage.

    Fig.1 Schematic of fan-shaped hole geometry

    1.2 Computational domain

    The computational domain in this numerical investigation matches the film cooling test section,according to the test condition,the computational domain mainly consists of three parts:a primary channel which simulates the mainstream,a secondary channel which is adapted to deliver the coolant,the coolant passes through the fan-shaped film hole between the primary channel and secondary channel and then injects into the mainstream.As shown in Fig.2 and Fig.3 the width and height for the primary channel are 90 mm and 41 mm,respectively,and the secondary channel is 60 mm in width and 20 mm in height.The diameter of the fan-shaped film hole at the inlet section is 10 mm,resulting in a 3.0 owclet-to-entry area ratio of the fan-shaped film hole.The outlet plane of the mainstream is located at 15D downstream the centre of the hole outlet.

    Fig.2 Schematic structure of computational domain

    1.3 Grid

    In this study,commercial software ICEM CFD was applied to generate multi-block structured grid.Grid independence was obtained through solution-based adaption,the medium mesh with a total element number of 3 288 744 was selected for all the simulations,for the whole computational domain,the mesh quality for all the cells are above 0.3,which indicates the mesh quality are reasonable for the simulation,the first point above the bottom wall of the primary channel is about 0.004mm,which results in the average Y plus value around 1 at this surface.Fig.4 shows the overview of the final grid used in this study,boundary layer refinement are also detailed in the near wall regions of the side walls of the primary channel,the side walls of the film coolant channel,and the walls of the fan-shaped film hole.

    1.4 Turbulence models and test cases

    The simulations were carried out by applying the commercial CFD codes Fluent 14.0 software.The particular solver was pressure correction to achieve the pressure-velocity coupling by multi-grid acceleration.In the three dimensional computational domain with structured grid,steady,time-averaged Navier-Stokes equations were processed and pressurebased SIMPLEC solver with second-order upwind discretization schemes were used.

    Fig.3 Solid model of computational domain

    Fig.4 Mesh overview of the computational domain and mesh details in the film hole region

    The flow parameters investigated in a matrix in this study are shown in Table 1,in order to obtain the basic flow characters and film cooling mechanism for fan-shaped film hole,a baseline case is set at selected flow condition(Mac=0.6,Mac=0,M=1),here Macand Macare main stream and coolant flow Mach number respectively,and M refers to blowing ratio.Besides that,seven other test cases are classified into three groups to investigate the effects of flow parameters on film cooling effectiveness.

    In order to evaluate the performance from different turbulence models to predict fan-shaped hole cooling perfor-mance,three RANS turbulence models,namely the standard k-ε(SKE)with enhanced wall treatment,the SST k-ω model and realizable k-ε(RKE)model are examined in various flow conditions in this study and compared with published experimental data[5].

    Tab.1 Test case matrix

    1.5 Boundary Conditions

    All the other surfaces of the computational domain were set to isothermal no-slip wall condition where the heat flux through the wall was specified to be zero.The inlet turbulence intensities for the mainstream and coolant channel are specified to 1.5%and 1%respectively.

    In order to achieve the expected flow conditions include and blowing ratio M,pressure inlets are adopted both for the primary channel(mainstream)and secondary channel(coolant),likewise,pressure outlets were specified at the outlet of the both channels,static pressures and total temperatures were given at the outlets.In the baseline case,mainstream inlet total pressure is 93800Pa and static pressure at the outlet is 68000Pa,coolant flow inlet total pressure is 100520Pa,for the other test cases,both the primary channel and secondary channel pressure at the inlets varies to satisfy the determined flow conditions.In all test cases,the coolant Tcand the mainstream total temperatures T∞are selected to be 290K and 540 K respectively and consistent with experiment condition[5],hence the temperature ratio(Tc/T∞)is set to 0.54 and kept constant,which represents for typical gas turbine air cooled blade operational condition.

    2 Results and Discussion

    2.1 Baseline case

    Since the flow field directly affects the interaction between the mainstream and coolant and hence influences film cooling performance,flow field hence is a very important issue in film cooling simulation.

    In the baseline condition(Mam=0.6,Mac=0,M=1),three turbulence models are applied to run the simulations.Results show complicated flow structure in the film hole and the near hole region.It is clear that all the three turbulence models are able to predict the jetting region with high momentum at the leading edge within film hole,the relatively high momentum jet does not pass through the film hole with fully expansion.Besides that,the flow separation due to the large turning at the trailing edge of the inlet is observed and hence a low momentum region appears along the trailing edge(See Fig.5).

    Fig.5 Near hole region velocity magnitude contour(m/s)for the central plane(Y=0)at baseline case(Mam=0.6,Mac=0,M=1)

    Fig.6 and Fig.7 clearly reveal that the coolant jet interaction with the mainstream along the stream-wise distance.Thanks to the laterally diffusion within the fan-shaped hole,the jet lift-off effect is not as pronounced as conventional cylindrical film holes,the counter-rotating vortex pair(CVP)is restrained by the anti-CVP and hence delays jet lift-off and penetration into the mainstream.The effect of CVP on film cooling effectiveness was reported by Haven et al(1997)[17].

    Firstly,increased lateral separation reduces the mutual induction between the counter-rotating vortices and delays the jet lift-off.Second,fan-shaped holes are found to generate anti-counter-rotating vortex pair(anti-CVP with an opposite rotation sense relative to CVP.The anti-CVP,the presence and the formation of anti-CVP can cancel the adverse effect of the CVP so as to prevent the jet lift-off.

    The centerline and laterally averaged film cooling effectiveness over the downstream surfaces are calculated in three different turbulence models:a)RKE,b)SST,c)SKE model.These computed results are compared with experimental data in this section.As it is shown in Fig.8,the two dimensional local effectiveness predicted by RKE and SKE are very similar to each other,results from all three model are different from the experimental data to some extent,where adiabatic cooling effectiveness is relatively high along the centreline in the experiment,the difference possibly because of they are not conjugate simulations and only fluid domains are solved[15].Besides that,on average,the predicted cooling effectiveness distributions in present study are higher than the experimental data.

    Fig.6 Velocity vector in Y direction at x/D=0 plane obtained by RKE model at baseline case

    Fig.7 Total temperature contour predicted by RKE model at baseline case

    The centerline cooling effectiveness results predicted by three turbulence models are shown in Fig.9.All the three models show the same tendency of centerline cooling effectiveness,it decreases steadily along the stream-wise distance,due to the jet lifts off the wall and mixes with the mainstream gradually.But compared with the experimental data,all the three turbulence models over-predict the centerline cooling effectiveness,especially at the near film hole region(x/D<3).That may be due to the fact that the conduction in the experiment cannot be neglected.

    Fig.8 Local cooling effectiveness predicted by three different turbulence and comparisons with experimental data

    2.2 Effect of blowing ratio on cooling effectiveness

    The effects of blowing ratio on the film cooling performance are simulated at three different blowing ratios(M=0.5,1.0,1.5),where the mainstream and secondary channel flow condition remain the same(Mam=0.6,Mac=0).Three turbulence models(RKE,SKE,and SST)are applied to predict the cooling effectiveness and compared with experimental data.

    As shown in Fig.10 to Fig.12,at all three blowing ratios,the same as the experimental data,three turbulence models predict a consistence reduce in the cooling effectiveness downstream the coolant ejection.Moreover,with the increase of the blowing ratio from 0.5 to 1.5,the coolant tends to concentrate on the centerline,causing larger cooling effectiveness gradient at lateral directions.Generally,fan-shaped hole provides a better coverage and lateral spreading than the cylindrical hole at all blowing ratios,mainly because only limited jet separation happens near the film hole compared with conventional cylindrical hole.

    According to the experiment conditions,for fan-shaped hole,the centerline cooling effectivenessηis influenced by the blowing ratio,at low blowing ratio(M=0.5),the centerline cooling effectiveness decreases dramatically,increasing the blowing ratio from 0.5 to 1.0 results in improved cooling effectiveness,but further increasing the blowing ratio from 1.0 to 1.5 slightly reduces the effectiveness in the x/D<8 region.

    Generally,the predictions of RKE provide better agreements with the experimental data relative to other two turbulence models.Although the predicted values are much higher than the experiment results,the main tendency of the RKE simulation results match the experimental data well,the effect of blowing ratio on the centerline cooling effectiveness is revealed clearly in the simulation.The overall deviation of cooling effectiveness is about 0.1 at higher blowing ratio(M=1.0,1.5)and about 0.2 at lower blowing ratio(M=0.5).

    Fig.9 Centreline local adiabatic cooling effectiveness for three turbulence models at baseline case

    Fig.10 Centreline adiabatic cooling effectivenessforRKE simulation at different blowing ratios

    Fig.11 Centreline adiabatic cooling effectiveness forSST simulation at different blowing ratios

    Fig.12 Centreline adiabatic cooling effectiveness for SKE simulation at different blowing ratios

    2.3 Effect of mainstream on cooling effectiveness

    To evaluate the effect of mainstream Mach number on the film cooling performance,four representative mainstream flow conditions(Mam=0.3,0.45,0.6,0.79)are selected in present study.Three turbulence models are applied at each mainstream flow condition with the same coolant channel flow condition and blowing ratio(Mac=0,M=1),the performance in predicting cooling effectiveness for three turbulence models are compared.

    Theoretically,as the mainstream flow Mach number increases,the coolant-to-mainstream pressure ratio needs to be increase correspondingly,resulting in that more coolant is injected along the centerline of the fan-shaped hole,which means lateral expansion of the coolant jet is decreased,consequently,the lateral cooling effectiveness is reduced as the mainstream Mach number increases.

    Generally,higher coolant-to-mainstream pressure ratio is needed to maintain the same blowing ratio as the mainstream flow Mach number increases from 0.3 to 0.79,as a result,much more coolant is injected along centerline of the film hole.Hence,the centerline cooling effectiveness is improved gradually as the mainstream flow Mach number increases.The simulation results of centerline cooling effectiveness obtained by both RKE model and SKE model match the trends well.

    Fig.13 Centerline local adiabatic cooling effectivenessηfor RKE simulation at different mainstream Mach numbers

    3 Conclusions

    The effects of flow parameters on fan-shaped film cooling effectiveness have been numerically investigated based on three turbulence models:RKE,SST and SKE.The performances to predict film cooling effectiveness for three models are also evaluated by comparing with experimental data.

    1)Simulation results show that all the three turbulence models are able to predict the main trends of the film cooling effectiveness along the streamwise distance,and the effects of evaluated blowing ratios,mainstream Mach numbers and coolant flow Mach numbers are not pronounced as conventional cylindrical hole.

    2)Generally,the RKE model has a better performance in predicting cooling effectiveness at evaluated test cases.

    3)Although a few agreements are obtained between the simulation results and the experimental data,all the three turbulence models tend to overpredict the cooling effectiveness downstream the film hole exit and the deviation is about 0.1~0.2.

    两个人视频免费观看高清| 久久天躁狠狠躁夜夜2o2o| 又大又爽又粗| 一卡2卡三卡四卡精品乱码亚洲| 看免费av毛片| 亚洲 欧美 日韩 在线 免费| 久久久久久久久久黄片| 精品欧美国产一区二区三| 欧美另类亚洲清纯唯美| 老司机在亚洲福利影院| 两个人免费观看高清视频| 国产精品自产拍在线观看55亚洲| e午夜精品久久久久久久| 国产激情偷乱视频一区二区| 亚洲国产欧美日韩在线播放| 国产精品一区二区三区四区久久 | 99久久综合精品五月天人人| 欧美日韩瑟瑟在线播放| 亚洲精品久久成人aⅴ小说| 久久久精品欧美日韩精品| 亚洲成人久久爱视频| 精品国产乱子伦一区二区三区| 久久国产精品影院| 香蕉av资源在线| 亚洲国产欧美一区二区综合| 国产人伦9x9x在线观看| 国产黄片美女视频| 99国产极品粉嫩在线观看| 成人三级黄色视频| 日韩精品免费视频一区二区三区| 老司机靠b影院| 精品久久久久久久久久久久久 | 亚洲国产欧洲综合997久久, | 国产国语露脸激情在线看| 成年免费大片在线观看| 在线十欧美十亚洲十日本专区| 天天躁夜夜躁狠狠躁躁| 丝袜美腿诱惑在线| 两人在一起打扑克的视频| 午夜日韩欧美国产| 亚洲国产毛片av蜜桃av| 夜夜爽天天搞| 高清在线国产一区| 亚洲电影在线观看av| 亚洲精品色激情综合| 久久性视频一级片| 怎么达到女性高潮| 男人舔奶头视频| 久久久久久国产a免费观看| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美日韩高清在线视频| 日韩精品青青久久久久久| 色综合站精品国产| 女人被狂操c到高潮| 国产伦在线观看视频一区| 欧美日本亚洲视频在线播放| 两个人视频免费观看高清| 成人三级做爰电影| 精品少妇一区二区三区视频日本电影| 黄片小视频在线播放| 国产成人影院久久av| 日本在线视频免费播放| 夜夜看夜夜爽夜夜摸| 日韩欧美三级三区| 1024手机看黄色片| 久久 成人 亚洲| 伊人久久大香线蕉亚洲五| 女性生殖器流出的白浆| 欧美中文日本在线观看视频| 国产精品国产高清国产av| 国产不卡一卡二| 啪啪无遮挡十八禁网站| 在线播放国产精品三级| 日韩欧美 国产精品| 天堂√8在线中文| 精品熟女少妇八av免费久了| 亚洲一区二区三区不卡视频| 黄色女人牲交| 在线观看日韩欧美| 日日夜夜操网爽| 精品电影一区二区在线| 精品免费久久久久久久清纯| 级片在线观看| 好男人电影高清在线观看| 亚洲av电影在线进入| e午夜精品久久久久久久| 一本大道久久a久久精品| 欧美av亚洲av综合av国产av| 国产精品 国内视频| 成人18禁在线播放| 999久久久国产精品视频| or卡值多少钱| 日韩欧美在线二视频| 久热爱精品视频在线9| 久久精品国产清高在天天线| 久久九九热精品免费| 夜夜躁狠狠躁天天躁| 999精品在线视频| 成人免费观看视频高清| 很黄的视频免费| 波多野结衣巨乳人妻| 成人欧美大片| 亚洲av成人av| 哪里可以看免费的av片| 嫁个100分男人电影在线观看| 欧美久久黑人一区二区| 亚洲中文字幕一区二区三区有码在线看 | 老司机福利观看| 国产乱人伦免费视频| 在线永久观看黄色视频| 热99re8久久精品国产| 香蕉久久夜色| 午夜福利一区二区在线看| 桃红色精品国产亚洲av| 亚洲av成人一区二区三| 无遮挡黄片免费观看| 欧美成人性av电影在线观看| 精品久久久久久久久久免费视频| 2021天堂中文幕一二区在线观 | 亚洲三区欧美一区| 精品久久久久久久毛片微露脸| 性欧美人与动物交配| 国语自产精品视频在线第100页| 亚洲激情在线av| 真人一进一出gif抽搐免费| 波多野结衣巨乳人妻| 日韩成人在线观看一区二区三区| www.www免费av| 日韩大尺度精品在线看网址| 久久人人精品亚洲av| 日日干狠狠操夜夜爽| 国产av一区在线观看免费| 亚洲av片天天在线观看| 一边摸一边做爽爽视频免费| 夜夜夜夜夜久久久久| 高清在线国产一区| 亚洲三区欧美一区| 一进一出好大好爽视频| 亚洲九九香蕉| 一级作爱视频免费观看| 两个人看的免费小视频| 黄色毛片三级朝国网站| 色哟哟哟哟哟哟| 亚洲精品美女久久av网站| 精品熟女少妇八av免费久了| 国产成人av激情在线播放| 在线观看66精品国产| 日韩中文字幕欧美一区二区| 97人妻精品一区二区三区麻豆 | 日韩三级视频一区二区三区| 最近最新中文字幕大全免费视频| 男人操女人黄网站| 久久伊人香网站| 搞女人的毛片| 人人妻,人人澡人人爽秒播| 久久精品影院6| 热99re8久久精品国产| 国产精品一区二区免费欧美| 少妇熟女aⅴ在线视频| 12—13女人毛片做爰片一| 久久久久久久久中文| 国产精品日韩av在线免费观看| 国产主播在线观看一区二区| av有码第一页| 国产精品久久久久久人妻精品电影| 成人手机av| 久99久视频精品免费| 久久人妻av系列| 欧美久久黑人一区二区| 日日夜夜操网爽| 麻豆成人av在线观看| 神马国产精品三级电影在线观看 | 亚洲国产欧美日韩在线播放| 听说在线观看完整版免费高清| 欧美日韩一级在线毛片| 日韩大尺度精品在线看网址| 国产精品综合久久久久久久免费| 久久久水蜜桃国产精品网| 99精品久久久久人妻精品| 日本一本二区三区精品| 777久久人妻少妇嫩草av网站| 国产主播在线观看一区二区| 18禁裸乳无遮挡免费网站照片 | 亚洲欧洲精品一区二区精品久久久| av电影中文网址| 国产精品香港三级国产av潘金莲| 国产熟女午夜一区二区三区| 777久久人妻少妇嫩草av网站| 国产午夜精品久久久久久| 国产成人欧美在线观看| 午夜福利高清视频| 视频在线观看一区二区三区| 看黄色毛片网站| 草草在线视频免费看| 麻豆国产av国片精品| 中文字幕精品免费在线观看视频| 免费在线观看完整版高清| 亚洲欧美激情综合另类| 精品国产亚洲在线| 搡老妇女老女人老熟妇| 成人欧美大片| 宅男免费午夜| 国产v大片淫在线免费观看| 国产午夜福利久久久久久| 极品教师在线免费播放| 窝窝影院91人妻| 午夜福利欧美成人| x7x7x7水蜜桃| 悠悠久久av| 最近最新中文字幕大全免费视频| 亚洲av成人一区二区三| 国产av不卡久久| 成熟少妇高潮喷水视频| 韩国精品一区二区三区| 精品久久久久久久毛片微露脸| 精品熟女少妇八av免费久了| 国产亚洲精品av在线| 久久精品夜夜夜夜夜久久蜜豆 | 欧美丝袜亚洲另类 | 婷婷精品国产亚洲av| 国产亚洲欧美在线一区二区| 天堂影院成人在线观看| 欧美在线黄色| 桃红色精品国产亚洲av| 国产97色在线日韩免费| 美女高潮喷水抽搐中文字幕| 日本免费a在线| 美女 人体艺术 gogo| 国产成人精品久久二区二区免费| 日韩欧美一区二区三区在线观看| 亚洲第一欧美日韩一区二区三区| 波多野结衣高清无吗| 欧美成人一区二区免费高清观看 | 成年女人毛片免费观看观看9| 久久久久久免费高清国产稀缺| 免费观看人在逋| 50天的宝宝边吃奶边哭怎么回事| 午夜福利欧美成人| 国产视频内射| 天天躁夜夜躁狠狠躁躁| 国产av又大| 免费无遮挡裸体视频| 精品久久久久久久毛片微露脸| 最近最新中文字幕大全电影3 | 在线观看免费午夜福利视频| 亚洲国产高清在线一区二区三 | 午夜日韩欧美国产| 宅男免费午夜| 丰满人妻熟妇乱又伦精品不卡| 女人高潮潮喷娇喘18禁视频| 禁无遮挡网站| 在线观看免费视频日本深夜| 亚洲国产精品成人综合色| 久久 成人 亚洲| 香蕉av资源在线| 少妇的丰满在线观看| 99久久久亚洲精品蜜臀av| 老鸭窝网址在线观看| 亚洲国产欧美网| 亚洲精品色激情综合| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久,| 在线观看日韩欧美| 亚洲精品国产区一区二| 桃红色精品国产亚洲av| 侵犯人妻中文字幕一二三四区| 黑丝袜美女国产一区| 精品久久久久久久久久免费视频| 国产一卡二卡三卡精品| 特大巨黑吊av在线直播 | 黄色片一级片一级黄色片| 美女国产高潮福利片在线看| 精品久久久久久久毛片微露脸| 淫妇啪啪啪对白视频| av欧美777| av片东京热男人的天堂| 老熟妇仑乱视频hdxx| 日韩大码丰满熟妇| 亚洲精品一卡2卡三卡4卡5卡| 免费看美女性在线毛片视频| 国产亚洲精品综合一区在线观看 | 麻豆国产av国片精品| 少妇 在线观看| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| 91麻豆精品激情在线观看国产| 老司机午夜福利在线观看视频| 国产爱豆传媒在线观看 | 50天的宝宝边吃奶边哭怎么回事| 国产精品免费一区二区三区在线| 中文字幕精品亚洲无线码一区 | www日本黄色视频网| 久久精品人妻少妇| 亚洲精品美女久久av网站| 一区二区三区精品91| 我的亚洲天堂| 中文字幕人成人乱码亚洲影| e午夜精品久久久久久久| 国产精品综合久久久久久久免费| tocl精华| 麻豆久久精品国产亚洲av| 在线观看午夜福利视频| 又紧又爽又黄一区二区| 久久天躁狠狠躁夜夜2o2o| www日本在线高清视频| or卡值多少钱| netflix在线观看网站| 久久久水蜜桃国产精品网| 国产精品 欧美亚洲| 精华霜和精华液先用哪个| 日韩一卡2卡3卡4卡2021年| 老熟妇仑乱视频hdxx| 亚洲成av人片免费观看| 国产99白浆流出| a级毛片在线看网站| 国产精品乱码一区二三区的特点| 日本a在线网址| 久久久久免费精品人妻一区二区 | 亚洲第一欧美日韩一区二区三区| 亚洲国产精品999在线| 97超级碰碰碰精品色视频在线观看| 老熟妇仑乱视频hdxx| 亚洲成av人片免费观看| 欧美亚洲日本最大视频资源| 久9热在线精品视频| 成人特级黄色片久久久久久久| 亚洲精华国产精华精| 欧美不卡视频在线免费观看 | 欧美日韩亚洲国产一区二区在线观看| 午夜福利欧美成人| 国产精品久久电影中文字幕| avwww免费| 99久久综合精品五月天人人| 久久狼人影院| 国产亚洲欧美精品永久| 久久精品aⅴ一区二区三区四区| 老司机福利观看| 国产成人系列免费观看| 成人国语在线视频| 国内揄拍国产精品人妻在线 | 色哟哟哟哟哟哟| 禁无遮挡网站| 老司机靠b影院| tocl精华| ponron亚洲| 国产三级在线视频| e午夜精品久久久久久久| 波多野结衣高清无吗| 人人妻人人澡人人看| 国产高清视频在线播放一区| 国产色视频综合| 国产亚洲av高清不卡| 免费看十八禁软件| 变态另类丝袜制服| 九色国产91popny在线| 亚洲激情在线av| 观看免费一级毛片| 国产精品久久久久久精品电影 | av有码第一页| 黑人操中国人逼视频| 亚洲av电影在线进入| 午夜日韩欧美国产| 欧美激情高清一区二区三区| 熟妇人妻久久中文字幕3abv| 最近最新中文字幕大全免费视频| 成年版毛片免费区| 午夜福利在线观看吧| 黄色成人免费大全| 禁无遮挡网站| 国产成人欧美| 人人妻人人澡人人看| www.自偷自拍.com| 国产97色在线日韩免费| 精品国产一区二区三区四区第35| 国产激情久久老熟女| 国产不卡一卡二| 国产激情久久老熟女| 国产高清激情床上av| 欧美国产日韩亚洲一区| 91麻豆精品激情在线观看国产| 国产又黄又爽又无遮挡在线| 国产成年人精品一区二区| 黄片播放在线免费| 国产午夜精品久久久久久| 看片在线看免费视频| 久久久久久国产a免费观看| 成人精品一区二区免费| 国内毛片毛片毛片毛片毛片| 成人国产综合亚洲| 久久久久国内视频| 精品国产超薄肉色丝袜足j| 午夜精品在线福利| 天天躁夜夜躁狠狠躁躁| 国产97色在线日韩免费| 日韩精品免费视频一区二区三区| 午夜久久久久精精品| 深夜精品福利| 久久国产亚洲av麻豆专区| 淫秽高清视频在线观看| 亚洲自偷自拍图片 自拍| 最近最新中文字幕大全免费视频| 久久国产精品影院| 成年人黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 欧美色欧美亚洲另类二区| 波多野结衣av一区二区av| 少妇的丰满在线观看| 国产又色又爽无遮挡免费看| 欧美大码av| 天堂动漫精品| 亚洲av成人一区二区三| 两个人视频免费观看高清| 国产黄片美女视频| 给我免费播放毛片高清在线观看| 久久久久久人人人人人| 夜夜夜夜夜久久久久| 97人妻精品一区二区三区麻豆 | 亚洲国产精品sss在线观看| 人妻久久中文字幕网| 亚洲片人在线观看| 两个人看的免费小视频| 亚洲av日韩精品久久久久久密| 久久精品国产综合久久久| 欧美日韩乱码在线| 变态另类成人亚洲欧美熟女| 亚洲色图 男人天堂 中文字幕| 18禁观看日本| 国产区一区二久久| 午夜a级毛片| 制服人妻中文乱码| 99在线人妻在线中文字幕| 午夜日韩欧美国产| cao死你这个sao货| 亚洲精品在线美女| 国产成人av教育| 天天躁狠狠躁夜夜躁狠狠躁| 午夜久久久在线观看| 91麻豆精品激情在线观看国产| 怎么达到女性高潮| 亚洲九九香蕉| 久热爱精品视频在线9| 两性夫妻黄色片| 一进一出抽搐gif免费好疼| 国产成人av教育| 在线视频色国产色| 国产人伦9x9x在线观看| 国产一区二区在线av高清观看| 91在线观看av| 国产精品 国内视频| 精品国产超薄肉色丝袜足j| bbb黄色大片| 最近在线观看免费完整版| 欧美又色又爽又黄视频| 美女扒开内裤让男人捅视频| 亚洲久久久国产精品| 精品久久久久久久人妻蜜臀av| 欧美日韩亚洲综合一区二区三区_| 国产精品国产高清国产av| 男人的好看免费观看在线视频 | 90打野战视频偷拍视频| 岛国在线观看网站| 国产色视频综合| 久久久久精品国产欧美久久久| 国产又爽黄色视频| 国产麻豆成人av免费视频| 国产高清视频在线播放一区| 18美女黄网站色大片免费观看| 亚洲va日本ⅴa欧美va伊人久久| 免费观看人在逋| 国产成+人综合+亚洲专区| 亚洲黑人精品在线| 999久久久精品免费观看国产| 99久久国产精品久久久| 99re在线观看精品视频| 精品一区二区三区av网在线观看| 国产野战对白在线观看| 国产精品美女特级片免费视频播放器 | 曰老女人黄片| 在线天堂中文资源库| 久久午夜综合久久蜜桃| 国产免费av片在线观看野外av| 夜夜夜夜夜久久久久| 婷婷精品国产亚洲av在线| 国产av在哪里看| 亚洲成人久久爱视频| 国产成人欧美| 午夜精品在线福利| 在线观看www视频免费| 俺也久久电影网| 又紧又爽又黄一区二区| av超薄肉色丝袜交足视频| 色老头精品视频在线观看| 久久精品国产亚洲av高清一级| 国产免费男女视频| 久久中文字幕一级| 亚洲国产日韩欧美精品在线观看 | 国产免费av片在线观看野外av| 国产v大片淫在线免费观看| 2021天堂中文幕一二区在线观 | 2021天堂中文幕一二区在线观 | 亚洲成人精品中文字幕电影| 国产亚洲欧美98| 亚洲国产毛片av蜜桃av| 久久久国产成人精品二区| 91成人精品电影| 97超级碰碰碰精品色视频在线观看| 99国产极品粉嫩在线观看| 亚洲欧美激情综合另类| 国产精品影院久久| 国内精品久久久久久久电影| 久久欧美精品欧美久久欧美| 国产麻豆成人av免费视频| 午夜福利高清视频| 无人区码免费观看不卡| 精品人妻1区二区| 欧美丝袜亚洲另类 | 国产午夜精品久久久久久| 国产aⅴ精品一区二区三区波| 黄片小视频在线播放| 最新美女视频免费是黄的| 91成人精品电影| 男人操女人黄网站| 亚洲精品在线美女| 久久这里只有精品19| 两个人免费观看高清视频| 看片在线看免费视频| 亚洲黑人精品在线| 天天躁夜夜躁狠狠躁躁| 久久伊人香网站| 女生性感内裤真人,穿戴方法视频| 少妇熟女aⅴ在线视频| 最近在线观看免费完整版| 巨乳人妻的诱惑在线观看| 高潮久久久久久久久久久不卡| 日本a在线网址| 老汉色∧v一级毛片| 婷婷丁香在线五月| 国产黄a三级三级三级人| 欧美日韩瑟瑟在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲全国av大片| www.精华液| 欧美日韩中文字幕国产精品一区二区三区| 国产精品99久久99久久久不卡| 热99re8久久精品国产| 国产蜜桃级精品一区二区三区| 亚洲国产欧美网| 丝袜人妻中文字幕| 男女午夜视频在线观看| 欧美久久黑人一区二区| 一夜夜www| 老司机靠b影院| 欧美日韩亚洲国产一区二区在线观看| 黄色女人牲交| 亚洲在线自拍视频| 亚洲国产欧洲综合997久久, | avwww免费| 男女那种视频在线观看| 国产亚洲欧美在线一区二区| 又黄又粗又硬又大视频| 久久天躁狠狠躁夜夜2o2o| 悠悠久久av| 首页视频小说图片口味搜索| 亚洲精品久久成人aⅴ小说| 夜夜躁狠狠躁天天躁| 嫩草影院精品99| 亚洲国产精品合色在线| 精品久久久久久久末码| 老汉色∧v一级毛片| 国产视频内射| 国产野战对白在线观看| svipshipincom国产片| 亚洲国产欧洲综合997久久, | 老汉色av国产亚洲站长工具| 正在播放国产对白刺激| 十八禁网站免费在线| 精品国产乱子伦一区二区三区| 免费高清在线观看日韩| 久久精品亚洲精品国产色婷小说| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看| 久久久久久久精品吃奶| 在线观看66精品国产| 一本一本综合久久| 男人舔女人的私密视频| 亚洲一区高清亚洲精品| 亚洲精品久久成人aⅴ小说| 亚洲人成网站高清观看| 久久久久久大精品| 天天一区二区日本电影三级| 国产欧美日韩一区二区精品| 韩国精品一区二区三区| 国产v大片淫在线免费观看| 精品国产美女av久久久久小说| 啦啦啦观看免费观看视频高清| 黑丝袜美女国产一区| 手机成人av网站| 大香蕉久久成人网| 久久精品人妻少妇| 久久久久国产一级毛片高清牌| 色综合亚洲欧美另类图片| 亚洲 欧美一区二区三区| 俄罗斯特黄特色一大片| 欧美精品亚洲一区二区| av片东京热男人的天堂| АⅤ资源中文在线天堂| 亚洲五月色婷婷综合| 国产v大片淫在线免费观看| 亚洲av日韩精品久久久久久密| 日本黄色视频三级网站网址| 欧美日韩亚洲国产一区二区在线观看| 久久久精品欧美日韩精品| 老汉色∧v一级毛片| 国产片内射在线| 欧美成人性av电影在线观看|