• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Numerical Investigation on Cooling Effectiveness for Advanced Fan-shaped Film Cooling

    2019-07-23 02:11:44XuLiYanjingQuLiuliSong
    風(fēng)機(jī)技術(shù) 2019年3期

    Xu LiYan-jing Qu Liu-li Song

    (AECC Shenyang Engine Research Institute,Shenyang,China)

    Abstract:As one of the advanced film cooling scheme, fan-shaped hole exhibits significant improvement in filmcooling effectiveness compared with cylindrical holes. In this paper, numerical simulations are applied to predict thecooling effectiveness for fan-shaped hole at various flow conditions. The flow conditions are evaluated at three blowingratios (0.5, 1, 1.5) and four mainstream Mach numbers (0.3, 0.45, 0.6, 0.75). CFD simulations are performed in threeRANS turbulence models namely realizable k-ε model, SST k-ω model and standard k-ε model. Simulation results arecompared with experimental data in terms of centerline adiabatic cooling effectiveness, the realizable k- ε model showsa better agreement in predicting the film cooling performance. Although some agreements are obtained, all the threeturbulence models tend to overpredict the cooling effectiveness compared to experimental data.

    Keywords:Film Cooling, CFD,Turbulence Models,Adiabatic Cooling Effectiveness

    0 Introduction

    During past 70 years,there has been a very significant increase in turbine entry temperature(TET)in order to improve gas turbine performance,currently TET has reached to about 2000°C around year 2010 for the advanced gas turbine,but at the same time,the temperature limit of current Nickel based super-alloy for turbine blade is about 1100°C[1].Currently,blade cooling technology is a complex combination of multiple different cooling techniques,among these,film cooling[2]is one of the most common ways to provide cooled protective layer between the hot gas and the external surfaces of gas turbine blades through discrete film holes by blowing of cooling air extracted from compressor.

    Researches on film cooling have revealed that film hole shapes have significant impacts on film cooling effectiveness.Goldstein et al.(1974)firstly used a cylindrical hole with a conical diffusing section and measured effectiveness downstream of the hole[3].They found that the jet remained near the surface with mainstream flow applied,and the centerline effectiveness was comparable with slot cooling,the lateral variation in effectiveness was significantly reduced compared with conventional cylindrical holes.Haven et al.(1997)found the conical diffuser could also improve film cooling coverage[4].Gritsch et al.(1998)and Thole et al.(1998)present adiabatic cooling effectiveness and flow field measurements for two types shaped holes:fan-shaped hole and laid-back fan-shaped hole[5-6],the exit expansion in these shaped holes reduces the velocity and hence the momentum of the coolant flow,so that the jet penetration is decreased,leads to improve the cooling effectiveness.Sargison et al.(2001)presented that a converging slot hole(console),which showed same cooling performance compared with fanshaped holes,but significantly reduced aerodynamic loss[7].Besides that,investigations are performed for many other shaped film holes[8-11],and numerical simulations are also widely applied to investigate film cooling besides experimental studies[12-15],generally numerical simulations are able to capture visible detailed flow and temperature filed despite of the measurement limitations in the experiments.

    1 Fan-shaped Film Cooling Simulations

    1.1 Geometry of fan-shaped hole

    Gritsch et al(1998)provided measurements on flow field and cooling effectiveness on three different film hole geometries:a cylindrical hole,a fan-shaped hole and a laidback fan-shaped hole[5][16].In this paper,numerical study concerning fan-shaped film hole cooling performance is based on these experiments.

    The detailed schematic of fan-shaped film hole is shown as Fig.1.Single,scale-up fan-shaped hole with a 30°inclination angle α was applied.The fan-shaped film hole included two sections:a cylindrical inlet section and an ex-panded outlet section.At the inlet,the diameter of the cylindrical hole was 10 mm with a length-to-diameter ratio of 2.The lateral expansion angle β for the fan-shaped film hole was 14°,leading to a width of 30mm at the expanded outletsection,the length of the expanded section is 40 mm,resulting an outlet-to-inlet area ratio of 3.0.All the hole geometry parameters were well balanced to enable an increased flow expansion before the coolant flow entering the expansion section hence encourage flow diffusion,and it also limited the flow separation at the outlet so as to improve the coolant flow coverage.

    Fig.1 Schematic of fan-shaped hole geometry

    1.2 Computational domain

    The computational domain in this numerical investigation matches the film cooling test section,according to the test condition,the computational domain mainly consists of three parts:a primary channel which simulates the mainstream,a secondary channel which is adapted to deliver the coolant,the coolant passes through the fan-shaped film hole between the primary channel and secondary channel and then injects into the mainstream.As shown in Fig.2 and Fig.3 the width and height for the primary channel are 90 mm and 41 mm,respectively,and the secondary channel is 60 mm in width and 20 mm in height.The diameter of the fan-shaped film hole at the inlet section is 10 mm,resulting in a 3.0 owclet-to-entry area ratio of the fan-shaped film hole.The outlet plane of the mainstream is located at 15D downstream the centre of the hole outlet.

    Fig.2 Schematic structure of computational domain

    1.3 Grid

    In this study,commercial software ICEM CFD was applied to generate multi-block structured grid.Grid independence was obtained through solution-based adaption,the medium mesh with a total element number of 3 288 744 was selected for all the simulations,for the whole computational domain,the mesh quality for all the cells are above 0.3,which indicates the mesh quality are reasonable for the simulation,the first point above the bottom wall of the primary channel is about 0.004mm,which results in the average Y plus value around 1 at this surface.Fig.4 shows the overview of the final grid used in this study,boundary layer refinement are also detailed in the near wall regions of the side walls of the primary channel,the side walls of the film coolant channel,and the walls of the fan-shaped film hole.

    1.4 Turbulence models and test cases

    The simulations were carried out by applying the commercial CFD codes Fluent 14.0 software.The particular solver was pressure correction to achieve the pressure-velocity coupling by multi-grid acceleration.In the three dimensional computational domain with structured grid,steady,time-averaged Navier-Stokes equations were processed and pressurebased SIMPLEC solver with second-order upwind discretization schemes were used.

    Fig.3 Solid model of computational domain

    Fig.4 Mesh overview of the computational domain and mesh details in the film hole region

    The flow parameters investigated in a matrix in this study are shown in Table 1,in order to obtain the basic flow characters and film cooling mechanism for fan-shaped film hole,a baseline case is set at selected flow condition(Mac=0.6,Mac=0,M=1),here Macand Macare main stream and coolant flow Mach number respectively,and M refers to blowing ratio.Besides that,seven other test cases are classified into three groups to investigate the effects of flow parameters on film cooling effectiveness.

    In order to evaluate the performance from different turbulence models to predict fan-shaped hole cooling perfor-mance,three RANS turbulence models,namely the standard k-ε(SKE)with enhanced wall treatment,the SST k-ω model and realizable k-ε(RKE)model are examined in various flow conditions in this study and compared with published experimental data[5].

    Tab.1 Test case matrix

    1.5 Boundary Conditions

    All the other surfaces of the computational domain were set to isothermal no-slip wall condition where the heat flux through the wall was specified to be zero.The inlet turbulence intensities for the mainstream and coolant channel are specified to 1.5%and 1%respectively.

    In order to achieve the expected flow conditions include and blowing ratio M,pressure inlets are adopted both for the primary channel(mainstream)and secondary channel(coolant),likewise,pressure outlets were specified at the outlet of the both channels,static pressures and total temperatures were given at the outlets.In the baseline case,mainstream inlet total pressure is 93800Pa and static pressure at the outlet is 68000Pa,coolant flow inlet total pressure is 100520Pa,for the other test cases,both the primary channel and secondary channel pressure at the inlets varies to satisfy the determined flow conditions.In all test cases,the coolant Tcand the mainstream total temperatures T∞are selected to be 290K and 540 K respectively and consistent with experiment condition[5],hence the temperature ratio(Tc/T∞)is set to 0.54 and kept constant,which represents for typical gas turbine air cooled blade operational condition.

    2 Results and Discussion

    2.1 Baseline case

    Since the flow field directly affects the interaction between the mainstream and coolant and hence influences film cooling performance,flow field hence is a very important issue in film cooling simulation.

    In the baseline condition(Mam=0.6,Mac=0,M=1),three turbulence models are applied to run the simulations.Results show complicated flow structure in the film hole and the near hole region.It is clear that all the three turbulence models are able to predict the jetting region with high momentum at the leading edge within film hole,the relatively high momentum jet does not pass through the film hole with fully expansion.Besides that,the flow separation due to the large turning at the trailing edge of the inlet is observed and hence a low momentum region appears along the trailing edge(See Fig.5).

    Fig.5 Near hole region velocity magnitude contour(m/s)for the central plane(Y=0)at baseline case(Mam=0.6,Mac=0,M=1)

    Fig.6 and Fig.7 clearly reveal that the coolant jet interaction with the mainstream along the stream-wise distance.Thanks to the laterally diffusion within the fan-shaped hole,the jet lift-off effect is not as pronounced as conventional cylindrical film holes,the counter-rotating vortex pair(CVP)is restrained by the anti-CVP and hence delays jet lift-off and penetration into the mainstream.The effect of CVP on film cooling effectiveness was reported by Haven et al(1997)[17].

    Firstly,increased lateral separation reduces the mutual induction between the counter-rotating vortices and delays the jet lift-off.Second,fan-shaped holes are found to generate anti-counter-rotating vortex pair(anti-CVP with an opposite rotation sense relative to CVP.The anti-CVP,the presence and the formation of anti-CVP can cancel the adverse effect of the CVP so as to prevent the jet lift-off.

    The centerline and laterally averaged film cooling effectiveness over the downstream surfaces are calculated in three different turbulence models:a)RKE,b)SST,c)SKE model.These computed results are compared with experimental data in this section.As it is shown in Fig.8,the two dimensional local effectiveness predicted by RKE and SKE are very similar to each other,results from all three model are different from the experimental data to some extent,where adiabatic cooling effectiveness is relatively high along the centreline in the experiment,the difference possibly because of they are not conjugate simulations and only fluid domains are solved[15].Besides that,on average,the predicted cooling effectiveness distributions in present study are higher than the experimental data.

    Fig.6 Velocity vector in Y direction at x/D=0 plane obtained by RKE model at baseline case

    Fig.7 Total temperature contour predicted by RKE model at baseline case

    The centerline cooling effectiveness results predicted by three turbulence models are shown in Fig.9.All the three models show the same tendency of centerline cooling effectiveness,it decreases steadily along the stream-wise distance,due to the jet lifts off the wall and mixes with the mainstream gradually.But compared with the experimental data,all the three turbulence models over-predict the centerline cooling effectiveness,especially at the near film hole region(x/D<3).That may be due to the fact that the conduction in the experiment cannot be neglected.

    Fig.8 Local cooling effectiveness predicted by three different turbulence and comparisons with experimental data

    2.2 Effect of blowing ratio on cooling effectiveness

    The effects of blowing ratio on the film cooling performance are simulated at three different blowing ratios(M=0.5,1.0,1.5),where the mainstream and secondary channel flow condition remain the same(Mam=0.6,Mac=0).Three turbulence models(RKE,SKE,and SST)are applied to predict the cooling effectiveness and compared with experimental data.

    As shown in Fig.10 to Fig.12,at all three blowing ratios,the same as the experimental data,three turbulence models predict a consistence reduce in the cooling effectiveness downstream the coolant ejection.Moreover,with the increase of the blowing ratio from 0.5 to 1.5,the coolant tends to concentrate on the centerline,causing larger cooling effectiveness gradient at lateral directions.Generally,fan-shaped hole provides a better coverage and lateral spreading than the cylindrical hole at all blowing ratios,mainly because only limited jet separation happens near the film hole compared with conventional cylindrical hole.

    According to the experiment conditions,for fan-shaped hole,the centerline cooling effectivenessηis influenced by the blowing ratio,at low blowing ratio(M=0.5),the centerline cooling effectiveness decreases dramatically,increasing the blowing ratio from 0.5 to 1.0 results in improved cooling effectiveness,but further increasing the blowing ratio from 1.0 to 1.5 slightly reduces the effectiveness in the x/D<8 region.

    Generally,the predictions of RKE provide better agreements with the experimental data relative to other two turbulence models.Although the predicted values are much higher than the experiment results,the main tendency of the RKE simulation results match the experimental data well,the effect of blowing ratio on the centerline cooling effectiveness is revealed clearly in the simulation.The overall deviation of cooling effectiveness is about 0.1 at higher blowing ratio(M=1.0,1.5)and about 0.2 at lower blowing ratio(M=0.5).

    Fig.9 Centreline local adiabatic cooling effectiveness for three turbulence models at baseline case

    Fig.10 Centreline adiabatic cooling effectivenessforRKE simulation at different blowing ratios

    Fig.11 Centreline adiabatic cooling effectiveness forSST simulation at different blowing ratios

    Fig.12 Centreline adiabatic cooling effectiveness for SKE simulation at different blowing ratios

    2.3 Effect of mainstream on cooling effectiveness

    To evaluate the effect of mainstream Mach number on the film cooling performance,four representative mainstream flow conditions(Mam=0.3,0.45,0.6,0.79)are selected in present study.Three turbulence models are applied at each mainstream flow condition with the same coolant channel flow condition and blowing ratio(Mac=0,M=1),the performance in predicting cooling effectiveness for three turbulence models are compared.

    Theoretically,as the mainstream flow Mach number increases,the coolant-to-mainstream pressure ratio needs to be increase correspondingly,resulting in that more coolant is injected along the centerline of the fan-shaped hole,which means lateral expansion of the coolant jet is decreased,consequently,the lateral cooling effectiveness is reduced as the mainstream Mach number increases.

    Generally,higher coolant-to-mainstream pressure ratio is needed to maintain the same blowing ratio as the mainstream flow Mach number increases from 0.3 to 0.79,as a result,much more coolant is injected along centerline of the film hole.Hence,the centerline cooling effectiveness is improved gradually as the mainstream flow Mach number increases.The simulation results of centerline cooling effectiveness obtained by both RKE model and SKE model match the trends well.

    Fig.13 Centerline local adiabatic cooling effectivenessηfor RKE simulation at different mainstream Mach numbers

    3 Conclusions

    The effects of flow parameters on fan-shaped film cooling effectiveness have been numerically investigated based on three turbulence models:RKE,SST and SKE.The performances to predict film cooling effectiveness for three models are also evaluated by comparing with experimental data.

    1)Simulation results show that all the three turbulence models are able to predict the main trends of the film cooling effectiveness along the streamwise distance,and the effects of evaluated blowing ratios,mainstream Mach numbers and coolant flow Mach numbers are not pronounced as conventional cylindrical hole.

    2)Generally,the RKE model has a better performance in predicting cooling effectiveness at evaluated test cases.

    3)Although a few agreements are obtained between the simulation results and the experimental data,all the three turbulence models tend to overpredict the cooling effectiveness downstream the film hole exit and the deviation is about 0.1~0.2.

    亚洲自拍偷在线| 日日摸夜夜添夜夜添小说| 午夜免费观看网址| 日韩国内少妇激情av| 丁香六月欧美| 搡老熟女国产l中国老女人| 亚洲国产日韩欧美精品在线观看 | 好男人电影高清在线观看| 国产亚洲精品一区二区www| 国产久久久一区二区三区| 国产视频内射| 国产成人av激情在线播放| 久热爱精品视频在线9| www日本黄色视频网| 黑丝袜美女国产一区| 午夜精品久久久久久毛片777| www.精华液| 免费一级毛片在线播放高清视频| 我的亚洲天堂| 精品午夜福利视频在线观看一区| 欧美日韩一级在线毛片| 69av精品久久久久久| 国产亚洲精品久久久久5区| 亚洲欧美一区二区三区黑人| 琪琪午夜伦伦电影理论片6080| 在线天堂中文资源库| 久久天躁狠狠躁夜夜2o2o| 精品国产一区二区三区四区第35| 国产成人精品无人区| 很黄的视频免费| 亚洲av中文字字幕乱码综合 | 两性夫妻黄色片| 精品第一国产精品| 国产成人欧美| 成人免费观看视频高清| 国产精华一区二区三区| 女人被狂操c到高潮| 久久伊人香网站| 精品久久久久久成人av| 国产成人影院久久av| 成在线人永久免费视频| 十八禁网站免费在线| 国产欧美日韩一区二区三| 久久狼人影院| 亚洲人成77777在线视频| 99国产精品一区二区蜜桃av| 日日干狠狠操夜夜爽| 中亚洲国语对白在线视频| 男人的好看免费观看在线视频 | 精品国产超薄肉色丝袜足j| 欧美激情久久久久久爽电影| 国产精品乱码一区二三区的特点| 午夜福利欧美成人| 黄频高清免费视频| 别揉我奶头~嗯~啊~动态视频| 成年免费大片在线观看| 免费在线观看亚洲国产| 亚洲欧美一区二区三区黑人| 国产一区二区三区在线臀色熟女| 久久久国产精品麻豆| 午夜福利免费观看在线| aaaaa片日本免费| 午夜日韩欧美国产| 亚洲三区欧美一区| 久久久国产欧美日韩av| 日韩精品青青久久久久久| 国产乱人伦免费视频| 精品一区二区三区av网在线观看| 国产精品 欧美亚洲| 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品av在线| 精品人妻1区二区| 国产成年人精品一区二区| 叶爱在线成人免费视频播放| a级毛片在线看网站| 国内精品久久久久久久电影| xxxwww97欧美| 免费在线观看黄色视频的| 色播亚洲综合网| 欧美日韩中文字幕国产精品一区二区三区| 国产一区二区三区在线臀色熟女| 国产精品av久久久久免费| 中亚洲国语对白在线视频| 国产片内射在线| 亚洲专区国产一区二区| 欧美av亚洲av综合av国产av| 久久精品国产清高在天天线| 欧美激情 高清一区二区三区| 在线视频色国产色| 999久久久国产精品视频| 国产精品综合久久久久久久免费| 自线自在国产av| 国产私拍福利视频在线观看| 久99久视频精品免费| 亚洲av片天天在线观看| 国产一级毛片七仙女欲春2 | 欧美日韩一级在线毛片| 夜夜夜夜夜久久久久| 成年人黄色毛片网站| 俄罗斯特黄特色一大片| 极品教师在线免费播放| 亚洲av熟女| 99riav亚洲国产免费| 两人在一起打扑克的视频| 国产精品一区二区免费欧美| 色婷婷久久久亚洲欧美| 每晚都被弄得嗷嗷叫到高潮| 久久久久久九九精品二区国产 | 久久久久久久久免费视频了| 九色国产91popny在线| 日韩大尺度精品在线看网址| 亚洲午夜理论影院| 国产精品99久久99久久久不卡| 一进一出好大好爽视频| 99久久无色码亚洲精品果冻| 欧美黄色淫秽网站| 国产av一区在线观看免费| 精品久久久久久久久久久久久 | www.熟女人妻精品国产| 精品久久久久久久久久久久久 | 欧美成人午夜精品| 岛国视频午夜一区免费看| 禁无遮挡网站| 午夜久久久久精精品| 欧美 亚洲 国产 日韩一| 一级黄色大片毛片| 久久国产精品影院| 亚洲成人久久性| 一进一出抽搐gif免费好疼| 99国产极品粉嫩在线观看| 一区二区日韩欧美中文字幕| 97碰自拍视频| 在线天堂中文资源库| aaaaa片日本免费| 女性被躁到高潮视频| 国产不卡一卡二| 91av网站免费观看| 操出白浆在线播放| 亚洲av电影不卡..在线观看| 午夜久久久在线观看| 黄色丝袜av网址大全| 黄色丝袜av网址大全| 欧美乱码精品一区二区三区| 国产视频一区二区在线看| 人人妻人人澡欧美一区二区| 99在线人妻在线中文字幕| 高清毛片免费观看视频网站| 成人一区二区视频在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲av熟女| 观看免费一级毛片| 久久精品人妻少妇| 成在线人永久免费视频| 很黄的视频免费| 真人做人爱边吃奶动态| 岛国在线观看网站| 老熟妇乱子伦视频在线观看| 亚洲电影在线观看av| 日本黄色视频三级网站网址| 亚洲成人精品中文字幕电影| 亚洲精品久久成人aⅴ小说| 视频区欧美日本亚洲| 久久亚洲真实| 校园春色视频在线观看| 亚洲成人免费电影在线观看| 99在线人妻在线中文字幕| 国产成人av教育| 欧美乱码精品一区二区三区| 亚洲av成人不卡在线观看播放网| 视频区欧美日本亚洲| 真人一进一出gif抽搐免费| 久久午夜亚洲精品久久| 国产精品一区二区三区四区久久 | 黄色视频,在线免费观看| 亚洲av电影不卡..在线观看| 美国免费a级毛片| www.自偷自拍.com| 亚洲激情在线av| 美女高潮到喷水免费观看| 国产一卡二卡三卡精品| 国产成人系列免费观看| 国产精品一区二区三区四区久久 | 亚洲成a人片在线一区二区| 成人一区二区视频在线观看| 在线观看免费视频日本深夜| 男女下面进入的视频免费午夜 | 黑人欧美特级aaaaaa片| 国产99白浆流出| 在线永久观看黄色视频| 亚洲狠狠婷婷综合久久图片| 母亲3免费完整高清在线观看| 午夜免费激情av| 黄色片一级片一级黄色片| 成人18禁高潮啪啪吃奶动态图| 窝窝影院91人妻| 久久婷婷成人综合色麻豆| 十八禁网站免费在线| 精品熟女少妇八av免费久了| 免费在线观看视频国产中文字幕亚洲| 日韩欧美三级三区| 欧美色欧美亚洲另类二区| 亚洲欧美精品综合一区二区三区| 黄色视频不卡| 婷婷丁香在线五月| 色哟哟哟哟哟哟| 国产黄色小视频在线观看| 黄片播放在线免费| 久久久国产欧美日韩av| 桃红色精品国产亚洲av| 中文资源天堂在线| 香蕉av资源在线| 99久久精品国产亚洲精品| 国产视频一区二区在线看| 亚洲狠狠婷婷综合久久图片| 伦理电影免费视频| av天堂在线播放| 在线观看午夜福利视频| 99久久99久久久精品蜜桃| 草草在线视频免费看| 国产成人一区二区三区免费视频网站| 婷婷精品国产亚洲av| 琪琪午夜伦伦电影理论片6080| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品青青久久久久久| 免费看十八禁软件| 好看av亚洲va欧美ⅴa在| 久久久久久久久久黄片| 少妇的丰满在线观看| 国产一级毛片七仙女欲春2 | 国产精品98久久久久久宅男小说| 久久久久久大精品| 日韩欧美国产在线观看| 国产亚洲精品第一综合不卡| 成年人黄色毛片网站| 欧美日韩瑟瑟在线播放| 在线天堂中文资源库| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品在线观看二区| 99riav亚洲国产免费| 国产伦一二天堂av在线观看| 欧美黑人欧美精品刺激| 久久久久国产一级毛片高清牌| 老汉色∧v一级毛片| 大型av网站在线播放| 真人做人爱边吃奶动态| 久久亚洲精品不卡| 国产色视频综合| 国产激情偷乱视频一区二区| 午夜两性在线视频| 美女大奶头视频| 男女床上黄色一级片免费看| 国产亚洲精品久久久久5区| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| 在线十欧美十亚洲十日本专区| avwww免费| 色播亚洲综合网| 正在播放国产对白刺激| 精品国产超薄肉色丝袜足j| 亚洲精品中文字幕一二三四区| 免费观看精品视频网站| 搡老妇女老女人老熟妇| 1024手机看黄色片| 国产熟女午夜一区二区三区| svipshipincom国产片| 国产伦一二天堂av在线观看| 日韩欧美国产一区二区入口| 男女做爰动态图高潮gif福利片| 亚洲黑人精品在线| 亚洲天堂国产精品一区在线| ponron亚洲| 1024视频免费在线观看| 中文字幕精品免费在线观看视频| 国产黄a三级三级三级人| 精品午夜福利视频在线观看一区| 自线自在国产av| 亚洲五月婷婷丁香| 欧美乱色亚洲激情| 欧美午夜高清在线| 欧美日韩一级在线毛片| 淫妇啪啪啪对白视频| 看黄色毛片网站| 国产高清视频在线播放一区| av欧美777| 少妇裸体淫交视频免费看高清 | 亚洲第一青青草原| www.www免费av| 欧美精品啪啪一区二区三区| 琪琪午夜伦伦电影理论片6080| 久久午夜综合久久蜜桃| 男女下面进入的视频免费午夜 | 999久久久国产精品视频| 黄片大片在线免费观看| 国产成人精品久久二区二区免费| 国产精品久久久av美女十八| 中文字幕另类日韩欧美亚洲嫩草| 亚洲人成电影免费在线| 中文字幕最新亚洲高清| 欧美不卡视频在线免费观看 | 一区二区三区激情视频| 午夜福利欧美成人| 一区二区三区精品91| 欧美不卡视频在线免费观看 | 成年女人毛片免费观看观看9| 日本免费一区二区三区高清不卡| 给我免费播放毛片高清在线观看| 手机成人av网站| 久久中文字幕一级| 真人做人爱边吃奶动态| 亚洲av成人av| 最近最新中文字幕大全电影3 | 免费看日本二区| 亚洲精品在线观看二区| 中文字幕人妻熟女乱码| 熟女电影av网| 麻豆av在线久日| 美女国产高潮福利片在线看| 国产亚洲精品久久久久5区| 看黄色毛片网站| 啦啦啦 在线观看视频| 久久伊人香网站| 自线自在国产av| 狠狠狠狠99中文字幕| 中文在线观看免费www的网站 | 妹子高潮喷水视频| 国产精品av久久久久免费| 真人做人爱边吃奶动态| 亚洲精品美女久久av网站| 九色国产91popny在线| 色综合亚洲欧美另类图片| 亚洲avbb在线观看| 亚洲国产毛片av蜜桃av| 老司机午夜十八禁免费视频| 精品不卡国产一区二区三区| 亚洲中文av在线| 十分钟在线观看高清视频www| 99精品久久久久人妻精品| 亚洲国产中文字幕在线视频| 婷婷精品国产亚洲av| 啦啦啦免费观看视频1| 国产精品爽爽va在线观看网站 | 久久国产精品人妻蜜桃| 欧美三级亚洲精品| 久久中文字幕人妻熟女| 久久久久久久久中文| 亚洲熟妇熟女久久| 黑人欧美特级aaaaaa片| 宅男免费午夜| 91大片在线观看| 久久天堂一区二区三区四区| 国产片内射在线| 久久99热这里只有精品18| 熟女少妇亚洲综合色aaa.| 国产又爽黄色视频| 国产v大片淫在线免费观看| 久久国产乱子伦精品免费另类| 免费在线观看亚洲国产| 一区二区三区高清视频在线| 国产成人精品久久二区二区91| 精品一区二区三区av网在线观看| 国产爱豆传媒在线观看 | 精品熟女少妇八av免费久了| 国产精品 欧美亚洲| 亚洲精品国产区一区二| 天天添夜夜摸| 国产片内射在线| 精华霜和精华液先用哪个| 少妇的丰满在线观看| 亚洲精品中文字幕在线视频| 亚洲av熟女| 国产99久久九九免费精品| 757午夜福利合集在线观看| 2021天堂中文幕一二区在线观 | 一卡2卡三卡四卡精品乱码亚洲| 777久久人妻少妇嫩草av网站| 国产精品一区二区三区四区久久 | 看免费av毛片| 午夜福利欧美成人| 色综合欧美亚洲国产小说| 亚洲精品国产区一区二| 国产精品久久久久久人妻精品电影| 91老司机精品| 伊人久久大香线蕉亚洲五| 成人免费观看视频高清| 狂野欧美激情性xxxx| 美国免费a级毛片| 久久精品夜夜夜夜夜久久蜜豆 | 免费av毛片视频| 特大巨黑吊av在线直播 | 亚洲国产中文字幕在线视频| 精品人妻1区二区| 国产色视频综合| 看片在线看免费视频| 久久久久亚洲av毛片大全| 成人亚洲精品一区在线观看| 可以在线观看的亚洲视频| 天堂√8在线中文| 成年女人毛片免费观看观看9| 亚洲五月色婷婷综合| 欧美性猛交黑人性爽| 黄色丝袜av网址大全| 国产真人三级小视频在线观看| 99久久综合精品五月天人人| 午夜影院日韩av| 亚洲人成电影免费在线| 侵犯人妻中文字幕一二三四区| 久久久久久国产a免费观看| 亚洲avbb在线观看| 女同久久另类99精品国产91| 黄色视频不卡| 很黄的视频免费| 又黄又粗又硬又大视频| 国产精品久久久av美女十八| 香蕉国产在线看| 国产精品国产高清国产av| 人成视频在线观看免费观看| 欧美国产精品va在线观看不卡| a级毛片a级免费在线| 国产在线精品亚洲第一网站| 国产av在哪里看| 欧美在线一区亚洲| 一本精品99久久精品77| 麻豆久久精品国产亚洲av| 琪琪午夜伦伦电影理论片6080| xxxwww97欧美| 欧美三级亚洲精品| 亚洲精华国产精华精| 亚洲va日本ⅴa欧美va伊人久久| av视频在线观看入口| 在线观看66精品国产| 一级片免费观看大全| 一本综合久久免费| 欧美日韩中文字幕国产精品一区二区三区| 性欧美人与动物交配| 欧美日韩精品网址| 亚洲av美国av| 真人一进一出gif抽搐免费| 亚洲av成人一区二区三| 美女午夜性视频免费| 国内精品久久久久久久电影| 精品国产亚洲在线| 人人妻,人人澡人人爽秒播| 国产av又大| 欧美激情久久久久久爽电影| 哪里可以看免费的av片| 欧美中文日本在线观看视频| 动漫黄色视频在线观看| 日本a在线网址| 国产亚洲精品综合一区在线观看 | 国产野战对白在线观看| 操出白浆在线播放| 精品少妇一区二区三区视频日本电影| www.999成人在线观看| 欧美成人免费av一区二区三区| 99国产极品粉嫩在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 日本免费一区二区三区高清不卡| 免费看日本二区| 他把我摸到了高潮在线观看| 中文字幕av电影在线播放| 中文字幕另类日韩欧美亚洲嫩草| 一本综合久久免费| 国产精品精品国产色婷婷| 热re99久久国产66热| 欧美黑人欧美精品刺激| 欧美成人免费av一区二区三区| 国产成人欧美| 99国产综合亚洲精品| 亚洲天堂国产精品一区在线| 国产在线观看jvid| 日本撒尿小便嘘嘘汇集6| 亚洲专区中文字幕在线| 欧美人与性动交α欧美精品济南到| 国产乱人伦免费视频| 亚洲狠狠婷婷综合久久图片| 怎么达到女性高潮| 亚洲成人国产一区在线观看| 日日爽夜夜爽网站| 欧美成人性av电影在线观看| 999久久久精品免费观看国产| 在线观看免费日韩欧美大片| 成人特级黄色片久久久久久久| 18美女黄网站色大片免费观看| 国产亚洲精品一区二区www| 女生性感内裤真人,穿戴方法视频| √禁漫天堂资源中文www| 嫩草影视91久久| 制服诱惑二区| 亚洲精品一卡2卡三卡4卡5卡| 成人午夜高清在线视频 | 1024香蕉在线观看| 99久久综合精品五月天人人| 波多野结衣高清无吗| 国产极品粉嫩免费观看在线| www日本黄色视频网| 黑人欧美特级aaaaaa片| 欧美日韩亚洲综合一区二区三区_| 久热爱精品视频在线9| 一进一出抽搐动态| 欧美黑人精品巨大| 一级毛片精品| 免费人成视频x8x8入口观看| 久久久久久人人人人人| 久99久视频精品免费| 久久精品人妻少妇| 人人妻人人澡人人看| 国产高清视频在线播放一区| 禁无遮挡网站| 又黄又爽又免费观看的视频| 露出奶头的视频| 日韩大尺度精品在线看网址| 国产欧美日韩一区二区三| 成人三级做爰电影| 97人妻精品一区二区三区麻豆 | 久久久久久久久免费视频了| 久久久水蜜桃国产精品网| 又黄又粗又硬又大视频| 午夜福利视频1000在线观看| 身体一侧抽搐| 在线观看日韩欧美| 嫩草影视91久久| 国产av又大| 黑人巨大精品欧美一区二区mp4| 欧美zozozo另类| 人人妻人人看人人澡| 老汉色av国产亚洲站长工具| 中文字幕最新亚洲高清| 男人舔女人下体高潮全视频| 精品久久蜜臀av无| av天堂在线播放| 午夜激情福利司机影院| 亚洲av成人不卡在线观看播放网| 国产日本99.免费观看| 久久精品国产亚洲av香蕉五月| 成人一区二区视频在线观看| 人成视频在线观看免费观看| 91字幕亚洲| 国产久久久一区二区三区| 视频区欧美日本亚洲| 黄色成人免费大全| 老司机午夜十八禁免费视频| 1024香蕉在线观看| 国产伦一二天堂av在线观看| 老鸭窝网址在线观看| 国产精品98久久久久久宅男小说| 视频在线观看一区二区三区| 亚洲国产高清在线一区二区三 | 18禁裸乳无遮挡免费网站照片 | 美女免费视频网站| 日韩一卡2卡3卡4卡2021年| 亚洲成人久久性| 午夜精品在线福利| 悠悠久久av| 国产极品粉嫩免费观看在线| 啦啦啦免费观看视频1| 日日夜夜操网爽| 夜夜夜夜夜久久久久| 国产精品久久久久久亚洲av鲁大| 非洲黑人性xxxx精品又粗又长| 亚洲av成人不卡在线观看播放网| 午夜精品久久久久久毛片777| 一级黄色大片毛片| 母亲3免费完整高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩一级在线毛片| 人人妻人人澡欧美一区二区| 99久久综合精品五月天人人| 他把我摸到了高潮在线观看| 啦啦啦韩国在线观看视频| 日本免费a在线| 白带黄色成豆腐渣| 18禁裸乳无遮挡免费网站照片 | 欧美黄色片欧美黄色片| 国产aⅴ精品一区二区三区波| 国产主播在线观看一区二区| 精品久久久久久成人av| 99re在线观看精品视频| 熟女少妇亚洲综合色aaa.| 午夜a级毛片| 久久伊人香网站| 免费电影在线观看免费观看| 免费在线观看日本一区| 91成年电影在线观看| 手机成人av网站| 久久久精品国产亚洲av高清涩受| 久久久国产欧美日韩av| 亚洲第一电影网av| 老汉色av国产亚洲站长工具| 色综合婷婷激情| 久久人妻福利社区极品人妻图片| 亚洲午夜理论影院| 欧美性猛交黑人性爽| 精品卡一卡二卡四卡免费| 欧美性猛交╳xxx乱大交人| 757午夜福利合集在线观看| 十八禁人妻一区二区| 亚洲专区中文字幕在线| 欧美中文日本在线观看视频| 97人妻精品一区二区三区麻豆 | 人人妻人人看人人澡| 免费高清在线观看日韩| 欧美 亚洲 国产 日韩一| 国产高清有码在线观看视频 | √禁漫天堂资源中文www| 黄片小视频在线播放| 免费一级毛片在线播放高清视频| or卡值多少钱| 精品国内亚洲2022精品成人| 国产私拍福利视频在线观看| 脱女人内裤的视频| АⅤ资源中文在线天堂| 级片在线观看| 国产不卡一卡二| 91大片在线观看| 亚洲精品粉嫩美女一区|