• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic Design of A Supercritical CO2Brayton Cycle for 40MW Shipboard Application*

    2019-07-23 02:11:44ZhenLiuYapingJuChuhuaZhang
    風(fēng)機(jī)技術(shù) 2019年3期

    Zhen LiuYa-ping JuChu-hua Zhang

    (School of Energy and Power Engineering,Xi'an Jiaotong University,China)

    Abstract:Although much attention has been paid to the supercritical CO2 (S-CO2) Brayton cycle, there are still fewworks on the analysis and design of S-CO2 cycle tailored to the needs of the shipboard propulsion and power system.The primary purpose of this study is to carry out the thermodynamic design of a S-CO2 recompression Brayton cycle forshipboard application with 40MW output power. Particular efforts are devoted to the analysis of the thermodynamicparameters of the cycle. The results show that the efficiency of the designed S-CO2 Brayton cycle with a relativelycomplex recuperation cycle is 45.06 percent, 8.28 percent higher than that of a simple recuperation cycle. This indicatesthe great influence of the recuperation design on the efficiency of the Brayton cycle. Meanwhile, the compressor inletpressure greatly affects the cycle efficiency, and the shunt flow percentage could partly reflect the cycle performance.This work is of important reference value for the development of future nuclear shipboard propulsion and power system.

    Keywords: Supercritical Carbon Dioxide, Recompression Brayton Cycle, Shipboard Propulsion and Power,Thermodynamic Design, Cycle Efficiency

    Nomenclature

    hspecific enthalpy(kJ/kg)

    m˙mass flow rate of working fluid(kg/s)

    ppressure(kPa)

    Qheat(kJ)

    T temperature(K)

    W work(kJ)

    x shun t flow percentage

    Greek symbols

    ηefficiency

    ΔTtemperature difference of recuperator(K)

    Subscript

    Ccompressor

    CEcold end of recuperator

    ininput of heat source

    MCmain compressor

    netnet output of the cycle

    RCrecompressing compressor

    s isentropic process

    T turbine

    thmthermodynamic

    1,2,…,8state point of Figure 1

    Superscript

    *rate(per unit of time)

    1 Introduction

    High-efficiency and clean energy exploitation has become one of the hottest research topics in the area of energy and power engineering due to the increasing energy demand,the limited supply of fossil-fuel,and the associated environmental issues.The shipboard demand for larger propulsion and power,lower detrimental environmental impacts,lower life-cycle cost,and greater maneuverability,safety,and reliability has been rapidly growing[1].The development of Generation IV nuclear reactors makes it possible to improve nuclear shipboard thermal efficiencies,meeting these shipboard propulsion demands.The conventional steam Rankine cycle conversion system cannot fully utilize the advantage of high outlet temperature of reactors,which causes an adverse effect on the cycle performance[2].

    Alternative power conversions to improve cycle efficiency are the helium Brayton cycle,the S-CO2Brayton cycle,and so on.Among these cycles,the S-CO2Brayton cycle is considered to be a good candidate for nuclear reactor power conversion systems because of the special properties of CO2.Firstly,CO2is a promising working fluid as it possesses relatively modest critical temperature and pressure,the non-toxicity and stability,the inertness within the reactor core coolant temperature range,abundance and natural existence,and so on[3].Secondly,as CO2becomes nearly incompressible near the critical point,the compression work can be dramatically decreased,which can substantially promote the thermal efficiency[4].Thirdly,the higher supercritical pressurized conditions are beneficial to a compact design of turbomachinery.This significant reduction in the size of power block is favorable in shipboard application where the space is valuable.

    The concept of S-CO2Brayton power cycle was initially proposed by Feher(1967)[5]and Angelino(1968)[6].But then there was a long time when the closed Brayton cycle was obscured by the improvement of combustion gas turbines.Recently the technology has captured significant attention again and the publications on S-CO2Brayton cycle have risen exponentially[7].Dostal et al.(2004)[8]performed a systematic analysis and multiple-parameter design optimization of the S-CO2Brayton system and the major components.They also pointed out that when the turbine inlet temperature is above 823.15K,the S-CO2recompression Brayton cycle achieves the highest thermal efficiency in comparison with the helium Brayton cycle,the supercritical stream cycle,and the superheated stream cycle.Meanwhile,both the number and size of main components are smallest[2].There were also a series of thermodynamic analysis and optimization studies later[9-15].Along with those thermal analysis,the integral test loops and component experiments were conducted in United States(Sandia National Laboratory[16],Bechtel Marine Propulsion Corporation[17]),Asia(the Nuclear Power Institute of China[18],Tokyo Institute of Technology in Japan[19],Korean Atomic Energy Research Institute and Korea Advanced Institute of Science and Technology[20]),Europe(Research Centre Rez in Prague,Czech Republic[21])and Australia(University of Queensland[22]),demonstrating the technical feasibility of the concept.

    So far,numerous theoretical and experimental works have been devoted to the S-CO2cycle.Nevertheless,the researches concerning the S-CO2cycle in shipboard applications are relatively few.Combs(1977)[23]investigated the performance of a S-CO2engine for propulsion and power in a naval ship using basic thermodynamic approach.Combs(1977)selected the simple recuperation cycle as a primary option from the view of compactness and economics.Nowadays as the continuing requirement of higher efficiency and the emergence of more compact heat exchangers,a more complex cycle layout for shipboard propulsion and power applictions could be put on the agenda.

    The present study aims at the S-CO2thermodynamic cycle design for a 40MW output power of nuclear shipboards.In the next section,the S-CO2cycle description and modeling are illustrated.Then the parameter analysis of the 40MW cycle is discussed along with the thermodynamic analysis.Finally,the design results are presented.

    2 System Description and Modeling

    2.1 S-CO2Brayton Cycle System

    The power conversion of a basic S-CO2Brayton cycle mainly contains four processes:compression,heating,expansion,and cooling.It is similar with gas turbines nevertheless the latter cooling process occurs in the open air condition.In the meantime,the cycle layout resembles a steam Rankine cycle except that in S-CO2Brayton cycle all of the four processes occur above the critical condition.

    In a simple recuperation Brayton cycle,the fluid is compressed in the compressor firstly.Then it passes through the recuperator to be preheated by the turbine exhaust.After the pre-heat,the fluid enters the heater where it achieves the highest temperature from the heat source.Then this high temperature fluid expands in the turbine providing work for the generator and compressor.The remaining heat after expansion is firstly utilized in the recuperator for preheating and then rejected through the precooler,returning to the initial states.

    The recuperation process in the S-CO2Brayton cycle greatly influences the thermal efficiency,since the relatively smaller cycle pressure ratio(because the minimum pressure is high)results in a relatively high turbine outlet temperature,leading to a large amount of heat remaining in the turbine outlet.However,due to the great variation in the specific heat in the cycle,the temperature difference between hot side fluid and cool side fluid in the recuperator is large.This pinch-point problem undermines the recuperation performance.On this account,other cycle layouts such as recompression and pre-compression are considered.

    Among these layouts,the recompressing layout is generally considered to be the most efficient in the conditions of interest.Besides,it is relatively simple and compact.Therefore this cycle layout is chosen for the 40MW cycle of the nuclear-powered shipboard.The S-CO2recompression cycle layout is depicted in Figure 1.Another compressor and recuperator(showed in the red dashed box in Figure 1)are intro-duced compared with the simple recuperation Brayton cycle discussed above.In this cycle,the flow is split before entering the pre-cooler(at point 6)and only a part of the fluid flow rejects the heat.This fraction of fluid flow is compressed in the main compressor and preheated through the low temperature recuperator to the recompressing compressor outlet temperature.While the rest of fluid flow enters recompressing compressor and then it is merged with the flow out of the low temperature recuperator(at point 7).The entire fluid flow is preheated in the high temperature recuperator,and then it passes through heat resources,turbine,high and low temperature recuperator successively.The temperature-entropy diagram of the recompression cycle is shown in Figure 2.

    Fig.2 T-S diagram of S-CO2recompression cycle

    2.2 Thermodynamic Model

    The thermodynamic cycle system contains two main types of components:turbomachinery components and heat exchangers.Its modeling is conducted using Aspen HYSYS V8.4 with REFPROP as the fluid package[24].The detailed modeling of the S-CO2Brayton cycle system is presented with the following assumptions:(1)The cycle is under steady state and the fluid maintains supercritical state in the whole possess.(2)Pressure loss in pipes and mass flow loss in the cycle are negligible.(3)The adiabatic efficiency of turbomachinery components is fixed with given values.

    The thermodynamic model is mainly based on the first law of thermodynamics.The main formulas are described in the following.

    For the compression process in the main compressor,the work consumed can be written as:

    Whereh2,sdenotes the compressor outlet enthalpy under the isentropic compressing assumption which can be obtained by the compressor inlet entropy and the outlet pressure,and x is the ratio of mass flow rate in main compressor to the total mass flow rate.

    Similarly,the compression and expansion process in the recompression compressor and turbine can be expressed respectively as:

    For heat exchangers,the Printed Circuit Heat Exchanger(PCHE)is adopted for its high compactness and favorable heat transfer efficiency.To avoid heat transfer deterioration arising from pinch point problem,the minimum temperature approach between hot side fluid and cool side fluid in the recuperator cold end is stipulated no less than 8K.The energy balance equation in the low and high temperature recuperator can be expressed respectively as:

    In the heater,the energy absorbed from the heat source can be written as:

    Based on the net output power and total absorbed energy from heat source,the thermal efficiency of the S-CO2recompression cycle system can be derived as:

    3 Results and Discussion

    The selections of parameters for the 40MW S-CO2recompression Brayton cycle are mainly based on the components'capacities presented in the literature[8,14].As have been investigated,the key cycle parameters affecting greatly the cycle thermodynamic performance include main compressor inlet temperature,turbine inlet temperature,cycle pressure ratio,pinch temperature difference of heat exchanger.In the considered ranges,a lower compressor inlet temperature is favorable for cycle efficiency,but it has to be above the CO2critical temperature to avoid condensation in the compressor.Thus 305.15K,a little higher than the CO2critical temperature,is chosen for compressor inlet temperature.The higher turbine inlet temperature also leads to a higher thermal efficiency.Considering the nuclear reactor temperatures,it is selected as 823.15K,which is attractive for varieties of advanced nuclear reactor concepts.As Dostal et al.(2004)[8]pointed out,it is reasonable to select 20MPa as the compressor outlet pressure since continuing to increase pressure from 20 to 25MPa obtains negligible cycle efficient improvement while increasing great component cost.Further-more,due to the lower viscosity of S-CO2cycles,the polytropic efficiencies of compressors and turbines are expected to be higher than those of stream gas cycles in the same volumetric flow rate.The selections of these parameters are listed in Table 1.

    Tab.1 Initial Conditions and Equipment Parameters

    The parameters listed in Table 1 mainly affect the cycle efficiency in an almost monotonic manner.Thus those selections are a balanced compromise between the capability of current materials and the technological economics.However,the pressure ratio of the cycle has a non-monotonic effect on the cycle performance,since the turbine output increases as the pressure ratio increases,while the compressor consumption augments at the same time.The cycle generally achieves the best thermodynamic cycle efficiency when the pressure ratio is between 2 and 3 under those preset conditions.Therefore,several selections of main compressor pressure ratio are simulated to find the reasonable value,and the shunt flow percentage is calculated under each pressure ratio to obtain the maximum cycle efficiency.The results are shown in Figure 3.The left part of the red line locates in the supercritical state.

    It can be found from Figure 3 that the cycle efficiency firstly increases and then decreases as the pressure ratio increases,while the shunt flow percentage varies in a nearly opposite way.Besides,the variation becomes more intensely when the inlet pressure is in the vicinity of critical point(around the red line in Figure 3),since the CO2property varies greatly near the critical point.The tendency indicates that the turbine output increment is initially higher and then lower than the compressor work increment with the increase of pressure ratio.Since the maximum pressure of the cycle is fixed with 20MPa,the pressure ratio increases with the decline of main compressor inlet pressure.The fluid tends to be more compact as the inlet pressure is relatively high.Therefore,in the beginning when the pressure ratio is relatively small,an increasing of cycle pressure ratio will not require too much compressing work increment since the fluid density is high,while the turbine can produce more work,making the cycle net output increase.However,as the cycle pressure ratio continuously increases,the compressor inlet pressure approaching the critical point,the fluid density decreases dramatically.This sharp decline of fluid density in the compressor inlet makes the compressor consume greater work than the turbine output increment,the cycle net output decreasing.Therefore the cycle efficiency trend is reversed when the pressure ratio is larger than 2.6.As for the variation of shunt flow percentage,when the pressure ratio is low,the state difference between the hot side fluid and cool side fluid in the recuperator is small since the pressure difference between hot side and cool side fluid is small,reducing the necessity of using bypass flow to ameliorate heat transfer deficiency arising by the big fluid property difference between the hot side fluid and cool side fluid in the recuperator.Therefore fluid flowing in the main compressor is large.And as the cycle pressure ratio increases,the fluid property difference in the recuperator becomes larger,making the shunt flow percentage decrease.When the pressure ratio continuously increases,however,the compressor outlet temperature sharply increases due to the big decline of fluid density.Therefore the pinch point problem in the recuperator also falls down,increasing the shunt flow percentage.Hence the trend of shunt flow percentage is nearly in contrast with the trend of cycle efficiency.

    Fig.3 Thermodynamic cycle efficiency and shunt flow percentage vs.cycle pressure ratio

    From the above analysis,the cycle pressure ratio is selected as 2.6.The state points'data are summarized in Table 2.The thermodynamic cycle efficiency is 36.78%,while the thermal efficiency of corresponding simple recuperator is 36.78%.The former outperforms the latter by 8.07 percent,indicating that the addition of recompressing process is beneficial to the cycle performance.Besides,the efficiency achieved by the designed S-CO2Brayton cycle,i.e.,45.06%,is actually on the same order as the efficiency of a helium Brayton cycle operating at an even higher temperature or a more complex system layout[25].

    Tab.2 Pressure and temperature at typical state points

    Overall,the present design meets the design requirement.The generation IV nuclear reactor with the S-CO2Brayton cycle power conversion system is an appropriate and promising choice for ship propulsion and power application.

    4 Conclusions

    The thermodynamic design of a S-CO2Brayton cycle for shipboard application with 40MW output power is conducted in the present study.In this designed cycle,the cycle performance in different pressure ratio is particularly simulated.From detailed analysis of the selection of thermodynamic parameters of the cycle,compressor inlet conditions are found to significantly affect the compressor performance as well as the whole cycle efficiency.The efficiency achieved by the designed S-CO2recompression cycle is 45.06 percent at 823.15K,which meets the design requirement and superior to the simple recuperation cycle by 8.28 percent.The recuperation process is found to have a dramatic influence on the cycle state.Besides,the shunt flow percentage could partly reflect the cycle performance.The high efficiency and more compact size make S-CO2recompression cycle be well suited for shipboard power conversion system.This work is useful for the design of power conversion system for ship propulsion and power application.

    精品一区二区三区视频在线观看免费| 亚洲av免费在线观看| 亚洲美女黄片视频| 中文亚洲av片在线观看爽| 九九在线视频观看精品| 又黄又爽又免费观看的视频| 一个人看视频在线观看www免费 | 久久久久国产一级毛片高清牌| 欧美乱妇无乱码| 18禁裸乳无遮挡免费网站照片| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美免费精品| 69av精品久久久久久| 国产精品 国内视频| 熟女人妻精品中文字幕| 亚洲 欧美一区二区三区| 亚洲最大成人中文| av国产免费在线观看| 久久精品综合一区二区三区| 精品一区二区三区四区五区乱码| 91老司机精品| 免费av不卡在线播放| 18禁黄网站禁片免费观看直播| 老汉色av国产亚洲站长工具| 高清毛片免费观看视频网站| 一本精品99久久精品77| 精品国产亚洲在线| 欧美黑人欧美精品刺激| 亚洲精品久久国产高清桃花| 精品久久久久久成人av| 一个人看的www免费观看视频| 男人舔奶头视频| 床上黄色一级片| 麻豆国产av国片精品| 精品久久久久久成人av| 中文亚洲av片在线观看爽| 他把我摸到了高潮在线观看| 久久性视频一级片| 久久热在线av| 免费av不卡在线播放| 国产精品av视频在线免费观看| 国产亚洲欧美在线一区二区| 国产淫片久久久久久久久 | 91在线精品国自产拍蜜月 | 国产激情偷乱视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品美女久久av网站| 午夜福利在线观看吧| 亚洲国产精品久久男人天堂| 午夜两性在线视频| 美女黄网站色视频| 一边摸一边抽搐一进一小说| 久久午夜综合久久蜜桃| 亚洲一区二区三区色噜噜| 久久天堂一区二区三区四区| 欧美日韩乱码在线| 亚洲avbb在线观看| 亚洲人成网站在线播放欧美日韩| 久久这里只有精品中国| 欧美成人一区二区免费高清观看 | 九九久久精品国产亚洲av麻豆 | 久久伊人香网站| 亚洲欧美日韩东京热| 国产野战对白在线观看| 久久久久久国产a免费观看| 后天国语完整版免费观看| 欧美另类亚洲清纯唯美| 欧美日韩精品网址| 亚洲国产精品999在线| 99国产综合亚洲精品| 国产成人av教育| 精品一区二区三区av网在线观看| av天堂中文字幕网| 五月玫瑰六月丁香| 午夜激情福利司机影院| 成人国产综合亚洲| 国产伦精品一区二区三区视频9 | 99在线视频只有这里精品首页| 91麻豆av在线| www日本在线高清视频| 国产av在哪里看| 成在线人永久免费视频| 最新在线观看一区二区三区| 岛国在线观看网站| 国产成人系列免费观看| 欧美一区二区国产精品久久精品| 一进一出抽搐动态| 又黄又粗又硬又大视频| 天天躁狠狠躁夜夜躁狠狠躁| 91在线精品国自产拍蜜月 | 成人精品一区二区免费| 日韩欧美国产一区二区入口| 国产伦人伦偷精品视频| 两人在一起打扑克的视频| 波多野结衣巨乳人妻| 99久久久亚洲精品蜜臀av| 久久久久久国产a免费观看| x7x7x7水蜜桃| 久久久久亚洲av毛片大全| 国产精品一及| 99久久国产精品久久久| 成年版毛片免费区| 长腿黑丝高跟| 国产成人aa在线观看| 成人精品一区二区免费| 久久亚洲精品不卡| 91久久精品国产一区二区成人 | 精品久久久久久久久久久久久| 成人高潮视频无遮挡免费网站| 亚洲av成人不卡在线观看播放网| 亚洲av电影在线进入| 99久久国产精品久久久| 色老头精品视频在线观看| 久久婷婷人人爽人人干人人爱| 国产精品精品国产色婷婷| 三级毛片av免费| 熟妇人妻久久中文字幕3abv| 日本 av在线| 欧美成人一区二区免费高清观看 | 国产欧美日韩精品亚洲av| 男人的好看免费观看在线视频| 亚洲第一电影网av| 久久精品91蜜桃| 天堂√8在线中文| 国产成人av教育| 少妇的逼水好多| 亚洲精品在线美女| 精品久久久久久久毛片微露脸| 国内精品久久久久久久电影| 亚洲专区字幕在线| 国产91精品成人一区二区三区| 亚洲黑人精品在线| 法律面前人人平等表现在哪些方面| 欧美日韩瑟瑟在线播放| 精品国产美女av久久久久小说| 夜夜爽天天搞| 精品久久久久久久人妻蜜臀av| www.自偷自拍.com| 亚洲av电影在线进入| 欧美日韩福利视频一区二区| 欧美日韩国产亚洲二区| 免费av毛片视频| 精品欧美国产一区二区三| 99国产精品99久久久久| 2021天堂中文幕一二区在线观| 一个人免费在线观看的高清视频| aaaaa片日本免费| 搡老熟女国产l中国老女人| 欧美av亚洲av综合av国产av| 久久久久久久精品吃奶| 成人欧美大片| 男女下面进入的视频免费午夜| 一个人观看的视频www高清免费观看 | 人人妻人人看人人澡| 亚洲精品一区av在线观看| 91久久精品国产一区二区成人 | 国内精品久久久久精免费| 麻豆久久精品国产亚洲av| 噜噜噜噜噜久久久久久91| 亚洲av电影不卡..在线观看| 欧美日韩综合久久久久久 | 成人鲁丝片一二三区免费| 国产免费男女视频| 亚洲熟妇中文字幕五十中出| 黄色片一级片一级黄色片| 小蜜桃在线观看免费完整版高清| 最好的美女福利视频网| 丝袜人妻中文字幕| 亚洲欧美日韩高清在线视频| 亚洲国产精品999在线| 99riav亚洲国产免费| 国产探花在线观看一区二区| 亚洲美女黄片视频| 日本一二三区视频观看| 日韩欧美在线乱码| 欧美午夜高清在线| 国内精品久久久久久久电影| 手机成人av网站| 99久久精品热视频| 亚洲成a人片在线一区二区| 曰老女人黄片| 久久久久久大精品| 日本在线视频免费播放| 人人妻,人人澡人人爽秒播| 国产成人精品久久二区二区91| 亚洲国产精品久久男人天堂| 男人舔奶头视频| 一个人观看的视频www高清免费观看 | 亚洲国产高清在线一区二区三| 亚洲熟妇熟女久久| 精品99又大又爽又粗少妇毛片 | 成人性生交大片免费视频hd| 国产毛片a区久久久久| 中文字幕人妻丝袜一区二区| 色视频www国产| 手机成人av网站| 亚洲av美国av| 国产97色在线日韩免费| 国产视频一区二区在线看| АⅤ资源中文在线天堂| 午夜成年电影在线免费观看| av天堂在线播放| av视频在线观看入口| 高潮久久久久久久久久久不卡| www.自偷自拍.com| 在线观看午夜福利视频| 99国产精品一区二区三区| 18禁国产床啪视频网站| 国产成人欧美在线观看| 欧美+亚洲+日韩+国产| av视频在线观看入口| 脱女人内裤的视频| 一a级毛片在线观看| 一级作爱视频免费观看| 一二三四在线观看免费中文在| 国产午夜精品久久久久久| 成熟少妇高潮喷水视频| 男女午夜视频在线观看| 好男人在线观看高清免费视频| 亚洲午夜理论影院| 亚洲熟妇熟女久久| 欧美大码av| 欧美又色又爽又黄视频| 禁无遮挡网站| 一个人看的www免费观看视频| 变态另类丝袜制服| 最新美女视频免费是黄的| 99国产极品粉嫩在线观看| a在线观看视频网站| 久久精品亚洲精品国产色婷小说| 1024香蕉在线观看| 亚洲精品久久国产高清桃花| 国内精品久久久久精免费| 欧美三级亚洲精品| 久久精品aⅴ一区二区三区四区| 久久精品综合一区二区三区| 精品不卡国产一区二区三区| 长腿黑丝高跟| 亚洲国产色片| 天堂网av新在线| 午夜福利在线观看免费完整高清在 | 亚洲熟妇中文字幕五十中出| 这个男人来自地球电影免费观看| 在线观看免费午夜福利视频| 香蕉久久夜色| 琪琪午夜伦伦电影理论片6080| 成人三级做爰电影| 一区二区三区高清视频在线| 十八禁人妻一区二区| 国产亚洲精品综合一区在线观看| 亚洲国产看品久久| 国产麻豆成人av免费视频| 亚洲精品一卡2卡三卡4卡5卡| 美女高潮喷水抽搐中文字幕| 精品日产1卡2卡| 老熟妇仑乱视频hdxx| 亚洲国产精品成人综合色| 午夜日韩欧美国产| 岛国视频午夜一区免费看| 精品日产1卡2卡| 嫩草影视91久久| 亚洲五月天丁香| 欧美日本视频| 天堂动漫精品| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av香蕉五月| 久99久视频精品免费| h日本视频在线播放| av在线天堂中文字幕| 99热这里只有是精品50| 在线永久观看黄色视频| 欧美成人免费av一区二区三区| 日韩欧美 国产精品| 最近最新免费中文字幕在线| 黑人操中国人逼视频| 国产成年人精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 悠悠久久av| 欧美zozozo另类| 国产亚洲精品综合一区在线观看| АⅤ资源中文在线天堂| 淫妇啪啪啪对白视频| 国内揄拍国产精品人妻在线| 亚洲欧美精品综合久久99| 成人av一区二区三区在线看| 亚洲成av人片免费观看| 亚洲电影在线观看av| 久久久久久久精品吃奶| 欧美精品啪啪一区二区三区| 国产精品女同一区二区软件 | 欧美性猛交黑人性爽| 91老司机精品| 国产精品久久久久久精品电影| 日本黄色片子视频| 女人高潮潮喷娇喘18禁视频| 成人性生交大片免费视频hd| 黄色 视频免费看| 一个人观看的视频www高清免费观看 | 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 国产精品国产高清国产av| 国内毛片毛片毛片毛片毛片| 搡老熟女国产l中国老女人| 久久香蕉国产精品| 日日夜夜操网爽| 久久这里只有精品中国| 法律面前人人平等表现在哪些方面| 久久久久亚洲av毛片大全| 亚洲国产色片| 午夜视频精品福利| 国模一区二区三区四区视频 | 91久久精品国产一区二区成人 | 女同久久另类99精品国产91| 日本 欧美在线| 日本熟妇午夜| 岛国在线免费视频观看| 久久久久国产精品人妻aⅴ院| 国产三级黄色录像| 日韩大尺度精品在线看网址| 99精品欧美一区二区三区四区| 亚洲av电影不卡..在线观看| 国产不卡一卡二| 狂野欧美激情性xxxx| ponron亚洲| 久久久色成人| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 757午夜福利合集在线观看| 听说在线观看完整版免费高清| 精品一区二区三区av网在线观看| 色吧在线观看| 一本精品99久久精品77| 亚洲,欧美精品.| 午夜福利成人在线免费观看| 色噜噜av男人的天堂激情| 两人在一起打扑克的视频| 老汉色∧v一级毛片| av视频在线观看入口| 老司机深夜福利视频在线观看| 久久香蕉国产精品| 中文字幕av在线有码专区| 亚洲精品美女久久av网站| 99热这里只有是精品50| АⅤ资源中文在线天堂| 丁香六月欧美| 亚洲18禁久久av| 最新美女视频免费是黄的| 人人妻人人澡欧美一区二区| 日本一二三区视频观看| 一二三四在线观看免费中文在| 久久久国产精品麻豆| 老司机福利观看| 波多野结衣高清无吗| 狂野欧美白嫩少妇大欣赏| 日韩免费av在线播放| 欧美色视频一区免费| 夜夜看夜夜爽夜夜摸| 久久久久九九精品影院| 日韩中文字幕欧美一区二区| 黄片大片在线免费观看| av在线蜜桃| 亚洲欧美日韩高清专用| 国内少妇人妻偷人精品xxx网站 | 丁香欧美五月| 特大巨黑吊av在线直播| 国产主播在线观看一区二区| 欧美国产日韩亚洲一区| 国产私拍福利视频在线观看| 国产成人av激情在线播放| 丰满的人妻完整版| 国产高清videossex| 美女午夜性视频免费| 欧美丝袜亚洲另类 | 亚洲第一欧美日韩一区二区三区| 午夜影院日韩av| 成年免费大片在线观看| av国产免费在线观看| 亚洲av电影不卡..在线观看| 国产免费av片在线观看野外av| 欧美极品一区二区三区四区| 一区福利在线观看| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 色av中文字幕| 男女做爰动态图高潮gif福利片| 久久精品国产99精品国产亚洲性色| 亚洲av成人不卡在线观看播放网| 亚洲人成伊人成综合网2020| 欧美日本亚洲视频在线播放| 91麻豆av在线| 男女下面进入的视频免费午夜| 婷婷丁香在线五月| 午夜福利欧美成人| 久久伊人香网站| 亚洲激情在线av| 观看免费一级毛片| 亚洲熟妇熟女久久| 黑人操中国人逼视频| 我要搜黄色片| 精品福利观看| 亚洲精华国产精华精| 在线观看免费视频日本深夜| 1024手机看黄色片| 亚洲专区中文字幕在线| 国内精品久久久久久久电影| 午夜精品在线福利| 国产99白浆流出| 亚洲国产色片| 人人妻人人澡欧美一区二区| 色av中文字幕| 免费电影在线观看免费观看| 怎么达到女性高潮| 嫩草影院精品99| 欧美绝顶高潮抽搐喷水| 亚洲黑人精品在线| 欧美日韩综合久久久久久 | 国产午夜精品论理片| 一夜夜www| 白带黄色成豆腐渣| 日本一二三区视频观看| 亚洲专区中文字幕在线| aaaaa片日本免费| 亚洲国产精品sss在线观看| 成人亚洲精品av一区二区| 国产免费av片在线观看野外av| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| 看免费av毛片| 成年女人永久免费观看视频| 亚洲成av人片在线播放无| 国产精品自产拍在线观看55亚洲| 久久久久免费精品人妻一区二区| 国产精品女同一区二区软件 | 一边摸一边抽搐一进一小说| 丁香欧美五月| 日本在线视频免费播放| 亚洲精品美女久久久久99蜜臀| 精品一区二区三区av网在线观看| 国产午夜精品久久久久久| 91在线观看av| 一个人观看的视频www高清免费观看 | 黄色女人牲交| 欧美一级a爱片免费观看看| 久久精品综合一区二区三区| 欧美绝顶高潮抽搐喷水| 在线观看午夜福利视频| 老熟妇仑乱视频hdxx| av片东京热男人的天堂| 日韩欧美精品v在线| 法律面前人人平等表现在哪些方面| 国产蜜桃级精品一区二区三区| 亚洲天堂国产精品一区在线| 19禁男女啪啪无遮挡网站| 日日摸夜夜添夜夜添小说| 俄罗斯特黄特色一大片| 国产精品99久久99久久久不卡| 中亚洲国语对白在线视频| 亚洲中文字幕日韩| 久9热在线精品视频| 国内少妇人妻偷人精品xxx网站 | 久久天堂一区二区三区四区| 欧美一级a爱片免费观看看| 国产精品爽爽va在线观看网站| 搡老熟女国产l中国老女人| 亚洲aⅴ乱码一区二区在线播放| 免费av不卡在线播放| 后天国语完整版免费观看| 亚洲专区中文字幕在线| 欧美黄色淫秽网站| 久久精品aⅴ一区二区三区四区| 级片在线观看| 九九热线精品视视频播放| 少妇熟女aⅴ在线视频| 性色avwww在线观看| 一区二区三区高清视频在线| 免费看日本二区| 国内揄拍国产精品人妻在线| 啦啦啦观看免费观看视频高清| 欧美性猛交黑人性爽| 757午夜福利合集在线观看| 国产成人影院久久av| 动漫黄色视频在线观看| 国产视频内射| 久久婷婷人人爽人人干人人爱| 九色国产91popny在线| 久久久久久大精品| 成年版毛片免费区| 国产真实乱freesex| 亚洲乱码一区二区免费版| 亚洲第一电影网av| 久久精品综合一区二区三区| 婷婷亚洲欧美| 99精品久久久久人妻精品| 女人高潮潮喷娇喘18禁视频| 99热这里只有精品一区 | www国产在线视频色| 草草在线视频免费看| 午夜精品一区二区三区免费看| 国产三级黄色录像| 老司机深夜福利视频在线观看| 天天躁日日操中文字幕| av在线蜜桃| 久99久视频精品免费| 亚洲成人中文字幕在线播放| 99热这里只有是精品50| 我要搜黄色片| 精品国产亚洲在线| 成人鲁丝片一二三区免费| 亚洲激情在线av| 人人妻人人看人人澡| 免费搜索国产男女视频| 日韩免费av在线播放| 成熟少妇高潮喷水视频| АⅤ资源中文在线天堂| 成人高潮视频无遮挡免费网站| 在线观看午夜福利视频| 婷婷精品国产亚洲av在线| 国产精品久久电影中文字幕| 波多野结衣高清作品| 欧美绝顶高潮抽搐喷水| 一本一本综合久久| 18禁黄网站禁片免费观看直播| 午夜久久久久精精品| 亚洲无线在线观看| 变态另类成人亚洲欧美熟女| 久久这里只有精品19| 国产一区二区在线观看日韩 | 中文字幕av在线有码专区| 男女视频在线观看网站免费| 99久久久亚洲精品蜜臀av| 99久久综合精品五月天人人| 亚洲av成人av| 日韩精品中文字幕看吧| 99精品久久久久人妻精品| 欧美av亚洲av综合av国产av| 国产综合懂色| 欧美性猛交╳xxx乱大交人| 亚洲熟女毛片儿| 女警被强在线播放| 丁香欧美五月| 免费观看精品视频网站| 91在线精品国自产拍蜜月 | 97超视频在线观看视频| 中文资源天堂在线| 这个男人来自地球电影免费观看| 嫩草影视91久久| 精品午夜福利视频在线观看一区| 亚洲欧美日韩无卡精品| 亚洲男人的天堂狠狠| 国产精品,欧美在线| 搡老熟女国产l中国老女人| 黄片大片在线免费观看| 亚洲国产精品999在线| 亚洲欧美日韩高清在线视频| 少妇裸体淫交视频免费看高清| 搡老熟女国产l中国老女人| 18禁美女被吸乳视频| 动漫黄色视频在线观看| 久久草成人影院| 国产免费av片在线观看野外av| 色尼玛亚洲综合影院| 深夜精品福利| 国产精品亚洲美女久久久| 两性夫妻黄色片| 国产男靠女视频免费网站| 国产又黄又爽又无遮挡在线| 日本免费a在线| 欧美日韩黄片免| 国产亚洲欧美98| 国产成年人精品一区二区| 国产精品乱码一区二三区的特点| 男人的好看免费观看在线视频| 久久久久亚洲av毛片大全| 国产aⅴ精品一区二区三区波| 舔av片在线| 精品一区二区三区视频在线观看免费| 桃色一区二区三区在线观看| 日本精品一区二区三区蜜桃| 成人高潮视频无遮挡免费网站| 精品欧美国产一区二区三| 一a级毛片在线观看| 中文字幕高清在线视频| 免费人成视频x8x8入口观看| 18禁观看日本| 中文在线观看免费www的网站| 国产精品爽爽va在线观看网站| 老熟妇乱子伦视频在线观看| 中文字幕精品亚洲无线码一区| avwww免费| 国产激情偷乱视频一区二区| 中亚洲国语对白在线视频| 国产三级在线视频| 国产精品一区二区免费欧美| 国产成人精品无人区| 波多野结衣高清无吗| 黑人欧美特级aaaaaa片| 欧美激情在线99| 日韩欧美国产一区二区入口| 久久热在线av| 黄频高清免费视频| 人妻夜夜爽99麻豆av| 精品久久久久久成人av| 极品教师在线免费播放| av在线蜜桃| 国产激情久久老熟女| 成人特级av手机在线观看| 国产精品久久久久久久电影 | 欧美日韩国产亚洲二区| 欧美色视频一区免费| 国产蜜桃级精品一区二区三区| 国产亚洲精品综合一区在线观看| 性色avwww在线观看| 国产真人三级小视频在线观看| 窝窝影院91人妻| 十八禁人妻一区二区|