劉輝 唐溧
摘 要:分析了《火力發(fā)電廠保溫油漆設(shè)計規(guī)程》計算公式中的計算困難,提出通過基于溫度和熱量的誤差分析法,優(yōu)化了復(fù)雜的保溫厚度的計算方法。
關(guān)鍵詞:偏差;伴熱;保溫厚度;計算優(yōu)化
DOI:10.16640/j.cnki.37-1222/t.2019.18.172
0 前言
伴熱管道的工作原理是通過伴熱媒介散發(fā)一定的熱量,以直接或間接的熱交換方式補充管道的熱損失,以達到加熱、保溫和防凍凝的目的。目前經(jīng)常使用的伴熱方式有蒸汽伴熱、熱水伴熱、電伴熱及其它方式[1,2]。其中蒸汽伴熱由于其具有高散熱量、效率高,易于獲得等原因廣泛應(yīng)用于火力發(fā)電廠的燃油管道、天然氣管道及其它需要保證介質(zhì)工作溫度的工藝管道。
1 規(guī)程推薦的伴熱管道厚度計算方法
蒸汽伴熱管道模型通常由工藝管道、伴熱管道、保溫層組成,其中工藝管道和伴熱管道不直接接觸,伴熱管道通過保溫層所包圍的空氣向伴熱管道傳遞熱量。伴熱管道的數(shù)量根據(jù)工藝管道所需熱量、蒸汽參數(shù)確定。常見的蒸汽伴熱管道數(shù)量有1根和2根的,模型結(jié)構(gòu)如圖1所示。圖1中兩根伴熱管的中心間距為工藝管道外徑的二分之一。
目前伴熱管道保溫厚度計算主要是以《火力發(fā)電廠保溫油漆設(shè)計規(guī)程》附錄B.4的要求為準(zhǔn)。
2 基于誤差分析的伴熱管道厚度計算分析
《火力發(fā)電廠保溫油漆設(shè)計規(guī)程》附錄B.4中的公式組構(gòu)成了計算伴熱管道保溫厚度的一個完整體系。但是方程式子多,參數(shù)互相引用嚴(yán)重,難以快速計算。
公式組中有2個式子,其未知數(shù)多于方程數(shù)目難以計算。(1)保溫層外表面?zhèn)鳠嵯禂?shù)α和保溫層外表面溫度ts共存于一個方程組,因未知數(shù)多于方程數(shù)無法計算。(2)保溫厚度δ、熱阻R、保溫層內(nèi)空氣溫度t k共存于一個方程,因未知數(shù)多于方程數(shù)無法計算。
因此至少需要假定兩個參數(shù),才能將方程體系求解。但是假定參數(shù)的準(zhǔn)確性如何確定,需要研究。綜合考慮計算便捷性和假定參數(shù)準(zhǔn)確性的確定,建議假定保溫厚度δ和保溫層外表面溫度ts。
在假定的外表面溫度和保溫厚度下,可以計算出所有的未知參數(shù)。但是未知參數(shù)的準(zhǔn)確性尚無法判斷,因此需要增加判斷參數(shù)準(zhǔn)確性的方程。
由于在以上假定的基礎(chǔ)上,可以再次計算出一個外表面溫度,因此可以將外表面溫度的假定值與計算值進行對比,當(dāng)二者的誤差足夠小時可以認為假定外表面溫度具有合理性。
保溫厚度影響伴熱管道向空氣的散熱,從而影響熱量的平衡。如果伴熱管向保溫殼內(nèi)空氣的散熱量為Q1,保溫殼內(nèi)空氣向工藝管道的散熱量為Q2,保溫殼內(nèi)空氣向外空氣的散熱量為Q3,那么|Q1-Q2|與Q3的誤差可以作為保溫厚度的判據(jù)。
3 案例試算
按照基于誤差分析的伴熱管道保溫厚度計算方法,可基于VB語言編制計算軟件,實現(xiàn)快速計算。只需在計算軟件中給定外表面溫度及保溫百度各一個初值,軟件會自動根據(jù)誤差按照初值與計算值均值不斷迭代,直至誤差達到設(shè)定的精度。精度可根據(jù)每個計算案例要求單獨設(shè)定,工程使用,精度可控制在5%以內(nèi)。
以某供油管道為例,其供油管道、伴熱管道及重油參數(shù)如表1所示,其計算結(jié)果如表2所示。
借助于編制的計算軟件,可快速算出當(dāng)假定保溫厚度為80mm,保溫外表面溫度為11℃時,外表面溫度誤差為3.10%,熱量平衡誤差為1.26%。精度可以滿足工程需要。
4 結(jié)語
通過假定外表面溫度和保溫厚度初值,在基于溫度與熱量偏差兩個誤差分析的判據(jù)方法支持下,實現(xiàn)了伴熱管道保溫厚度的計算迭代優(yōu)化。極大的改善了《火力發(fā)電廠保溫油漆設(shè)計規(guī)程》推薦的伴熱管道保溫厚度的計算方法的可計算性,為其在工程實踐中進一步的廣泛應(yīng)用提供了有利的計算方法。
參考文獻:
[1]甄崇汀.工藝管道蒸汽伴熱設(shè)計要點[J].化工設(shè)計,2014,24(06):36-37.
[2]張鶴.火電廠蒸汽伴熱與電伴熱方案的對比[J].科技創(chuàng)新導(dǎo)報,2014(26).