羅 瑞,馬錕輝
(1.福州大學(xué) 紫金礦業(yè)學(xué)院,福州 350116;2.福州大學(xué) 爆炸技術(shù)研究所,福州 350116;3.紫金礦業(yè)集團(tuán)股份有限公司,福建 上杭 364200)
采場(chǎng)結(jié)構(gòu)參數(shù)是影響地下礦區(qū)穩(wěn)定性的關(guān)鍵因素。對(duì)于上向水平分層充填采礦法,礦房跨度是該種采礦方法最重要的采場(chǎng)結(jié)構(gòu)參數(shù)之一,若礦房跨度參數(shù)設(shè)計(jì)過(guò)小,那么礦石損失率貧化率將升高,礦石回收率將降低;若礦房跨度參數(shù)設(shè)計(jì)過(guò)大,那么礦房穩(wěn)定性將難以保證,在回采過(guò)程中,容易發(fā)生巖爆、頂板巖石垮落等大規(guī)模地壓活動(dòng)的情況。所以合理的礦房跨度是實(shí)現(xiàn)礦山經(jīng)濟(jì)高效且安全開(kāi)采的重要參數(shù)。對(duì)于采場(chǎng)結(jié)構(gòu)參數(shù)的確定及優(yōu)化研究手段有多種。厚跨比法[1]、KB魯別涅依他公式法[2]等計(jì)算方法在礦山現(xiàn)場(chǎng)實(shí)際的設(shè)計(jì)中得到了廣泛的應(yīng)用。劉培正[3]等利用數(shù)值模擬軟件對(duì)采場(chǎng)結(jié)構(gòu)參數(shù)及采場(chǎng)穩(wěn)定性進(jìn)行了分析。胡高建[4]等運(yùn)用Mathews法對(duì)采場(chǎng)參數(shù)進(jìn)行了優(yōu)化并在理論層面對(duì)采場(chǎng)穩(wěn)定性進(jìn)行了判定。研究學(xué)者在確定礦房跨度時(shí)僅采用了Mathews法或有限元數(shù)值模擬,然而單一的采用Mathew法或數(shù)值模擬方法都存在一定的缺陷。
本研究以福建某礦山為研究對(duì)象,結(jié)合Mathew穩(wěn)定圖法與數(shù)值模擬方法進(jìn)行合理的采場(chǎng)結(jié)構(gòu)參數(shù)的確定;根據(jù)Mathew法首先確定礦房保持穩(wěn)定的最大跨度,然后通過(guò)對(duì)設(shè)計(jì)采場(chǎng)結(jié)構(gòu)參數(shù)進(jìn)行數(shù)值模擬,分析設(shè)計(jì)采場(chǎng)的穩(wěn)定性。
Mathews穩(wěn)定圖法是20世紀(jì)80年代由Mathews等人基于大量工程數(shù)據(jù)所提出的,早期的Mathews穩(wěn)定圖法使用條件較為苛刻,要求礦體為深部巖體、急傾斜、巖體質(zhì)量中等穩(wěn)固以上、巖體硬度高等條件,使用時(shí)具有一定的局限性。而后經(jīng)Trueman[5]多位研究學(xué)者收集分析更多的采礦現(xiàn)場(chǎng)數(shù)據(jù),對(duì)Mathews穩(wěn)定圖法的合理性進(jìn)行了驗(yàn)證,并在該研究基礎(chǔ)上對(duì)Mathews穩(wěn)定圖進(jìn)行了修正,使得Mathews穩(wěn)定圖法在淺部巖體、緩傾斜等多種采礦工況中均能使用,大大減小了該方法的局限性。Mathews穩(wěn)定圖法的基本原理是通過(guò)計(jì)算得到巖體穩(wěn)定性指數(shù)N與采場(chǎng)形狀系數(shù)S,將N值與S值在Mathews穩(wěn)定圖中進(jìn)行投影即可確定采場(chǎng)穩(wěn)定性,或基于Mathews穩(wěn)定圖由N求得S,進(jìn)而反算出采場(chǎng)的合理礦房跨度,見(jiàn)圖1。
圖1 Mathews穩(wěn)定圖Fig.1 Mathews stability graph
穩(wěn)定性系數(shù)N的計(jì)算公式為:
N=QΔABC
(1)
穩(wěn)定性系數(shù)N表征了巖體保持穩(wěn)定的強(qiáng)弱,QΔ為巖體質(zhì)量指數(shù)Q考慮節(jié)理和水作用后的修正值,A表征巖石應(yīng)力系數(shù),B表征巖體缺陷方位修正系數(shù),C表征重力調(diào)整系數(shù)。
1)巖體質(zhì)量修正指數(shù)QΔ。可通過(guò)Q值與RMR之間的轉(zhuǎn)化公式[6]。獲得:
QΔ=e(RMR-44)/9·Jw/SRF
(2)
式中:Jw表征節(jié)理水衰減系數(shù),SRF表征應(yīng)力折減系數(shù)。
2)巖石應(yīng)力系數(shù)A。由巖石抗壓強(qiáng)度與誘導(dǎo)應(yīng)力之比獲得:
(3)
3)巖體缺陷方位修正系數(shù)B。由圖2可得:
圖2 巖體缺陷方位修正系數(shù)B的確定Fig.2 The correction coefficient B of rock mass defect orientation
4)重力調(diào)整系數(shù)C。C值可通過(guò)采場(chǎng)暴露面的傾角α確定:
C=8-6cosα
(4)
式中,α值即為采場(chǎng)暴露面的傾角。
采場(chǎng)形狀系數(shù)S由式(5)計(jì)算可得:
(5)
式中:L為礦房長(zhǎng)度,K為礦房跨度。
Mawdesley[7]于2004年基于礦山現(xiàn)場(chǎng)的穩(wěn)定、不穩(wěn)定、崩落所占百分?jǐn)?shù)為式(6)、(7)的概率,以穩(wěn)定性系數(shù)N,采場(chǎng)形狀系數(shù)S,巖石應(yīng)力系數(shù)A,巖體缺陷方位修正系數(shù),重力調(diào)整系數(shù)C為因子進(jìn)行回歸分析得公式(8)。
Z=α+β1X1+β2X2+···+βnXn
(6)
(7)
Z=2.960 3-1.442 7lnS+0.792 8lnR
(8)
式中:f(z)為對(duì)數(shù)概率,Z為對(duì)數(shù)幾率,α為常數(shù),β為回歸系數(shù)。
本文根據(jù)圖1及查閱文獻(xiàn)[8]對(duì)曲線進(jìn)行擬合,求出穩(wěn)定性系數(shù)N,采場(chǎng)形狀系數(shù)S的穩(wěn)定—破壞函數(shù)表達(dá)式,見(jiàn)式(9):
lnN=1.889 0lnS-1.209 7
(9)
礦體主要分布在57~73線之間,礦體多呈走向短,傾向延伸長(zhǎng)。標(biāo)高80~130 m,埋藏深度180~440 m,礦體呈透鏡狀產(chǎn)出。礦體總體走向北西,傾向北東,傾角60°。礦體與圍巖主要由花崗巖所組成,以塊狀結(jié)構(gòu)為主,巖體的穩(wěn)定性主要取決于構(gòu)造破碎帶的發(fā)育程度和風(fēng)化程度,巖體較破碎,巖體的穩(wěn)定性較差。采礦工程主要在花崗巖體中施工,其穩(wěn)定性主要受斷裂和蝕變帶的控制,巖石總體完整性較差,巖芯一般呈短柱狀,在構(gòu)造破碎帶呈碎塊狀。巖芯采取率為60%;巖石RQD值為70%,局部地段為10%~20%。
參考礦區(qū)花崗巖RMR=50,由公式(2)可得:QΔ=1.704 3。礦巖具體物理力學(xué)參數(shù)見(jiàn)表1。在工程實(shí)際應(yīng)用中,若巖體為上盤時(shí),應(yīng)力系數(shù)A取值為1。
表1 礦區(qū)巖石的物理力學(xué)參數(shù)
根據(jù)礦山地質(zhì)人員現(xiàn)場(chǎng)地質(zhì)調(diào)查情況并結(jié)合圖2,巖體缺陷方位修正系數(shù)B取0.8。由于采場(chǎng)頂板為水平狀態(tài),所以由式(4)可得重力調(diào)整系數(shù)C取值為2。根據(jù)以上數(shù)據(jù),由公式(1)可得穩(wěn)定性系數(shù)N為2.726 8,由式(9)計(jì)算得礦房形狀系數(shù)S=3.227,礦體水平厚度即礦房采場(chǎng)長(zhǎng)度為10~30 m,礦房垂直礦體走向布置,則由穩(wěn)定—破壞函數(shù)表達(dá)式(9)可得采場(chǎng)保持穩(wěn)定的最大跨度值,采場(chǎng)結(jié)構(gòu)參數(shù)如表2所示,頂板暴露面積和頂板跨度變化趨勢(shì)如圖3所示。
表2 采場(chǎng)結(jié)構(gòu)參數(shù)表
圖3 礦房參數(shù)關(guān)系圖Fig.3 Diagram of the parameters of stope structure
由表2、圖3可以確定,礦房垂直礦體走向布置,礦房長(zhǎng)度取最小10 m時(shí),礦房最大安全跨度為18 m。
為合理控制回采率和貧化率,取礦房長(zhǎng)度為20 m,此時(shí)礦房最大安全跨度9.5 m。礦區(qū)分層高度取5 m;花崗巖穩(wěn)定性較好,根據(jù)上向水平分層充填采礦法設(shè)計(jì),礦房頂柱取4 m,底柱取5 m。采場(chǎng)布置見(jiàn)圖4。
利用SIGMA/W有限元分析程序,對(duì)上向水平分層充填采礦法的礦房進(jìn)行數(shù)值模擬,分析礦房的應(yīng)力應(yīng)變及位移。分別正面和側(cè)面建立數(shù)字模型,模型底部為固定邊界條件,四周為對(duì)稱邊界條件,垂直方向?yàn)樽灾貞?yīng)力。
由圖5能夠看出,采場(chǎng)頂板雖有小范圍的應(yīng)力集中,但整體應(yīng)力分布均勻,頂板以上區(qū)域無(wú)剪切和拉壓破壞,頂板穩(wěn)定性良好。上盤圍巖所受應(yīng)力最大值為1.8 MPa,小于花崗巖2.8 MPa抗拉強(qiáng)度,采場(chǎng)圍巖穩(wěn)定,與Mathews穩(wěn)定圖分析結(jié)果一致。
由圖6可以看出,垂直于礦體走向的采場(chǎng)頂板無(wú)明顯應(yīng)力集中,頂板穩(wěn)定性良好。頂板及以上區(qū)域應(yīng)力分布均勻,未出現(xiàn)剪切和拉伸破壞。最大應(yīng)力1.4 MPa,小于花崗巖2.8 MPa抗拉強(qiáng)度,采場(chǎng)圍巖穩(wěn)定,與Mathews穩(wěn)定圖分析結(jié)果一致。
圖4 上向水平分層充填采礦法Fig.4 Upward horizontal layered filling mining method1—頂柱;2—充填天井;3—礦石堆;4—人行溜水井;5—放礦溜井;6—主副鋼筋;7—人行溜水井通道;8—上盤運(yùn)輸巷道;9—穿脈巷道;10—充填體;11—下盤運(yùn)輸巷道
圖5 采場(chǎng)正面的應(yīng)力分布云圖Fig.5 The stress distribution cloud map on the front of the stope
圖6 采場(chǎng)側(cè)面的應(yīng)力分布云圖Fig.6 The stress distribution cloud on the side of the stope
1)對(duì)Mathews穩(wěn)定圖法進(jìn)行改進(jìn),確定了上向分層充填采礦法礦房保持穩(wěn)定的最佳跨度為18 m。
2)通過(guò)數(shù)值分析軟件,對(duì)礦房進(jìn)行數(shù)值模擬,并得出了與Mathews一致的分析結(jié)果。
3)采用Mathews穩(wěn)定圖法和數(shù)值模擬相結(jié)合的方法,先通過(guò)Mathews穩(wěn)定圖法初步得出采場(chǎng)結(jié)構(gòu)參數(shù),再使用數(shù)值模擬對(duì)多個(gè)采礦方案進(jìn)行分析驗(yàn)證進(jìn)而得出最佳設(shè)計(jì),這一方法能夠避免傳統(tǒng)單一方法確定礦房跨度的缺點(diǎn),在采礦設(shè)計(jì)時(shí)具有應(yīng)用價(jià)值。