• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced isostructural phase transition in α-Ni(OH)2nanowires?

    2019-06-18 05:42:30XinMa馬鑫ZhiHuiLi李志慧XiaoLingJing荊曉玲HongKaiGu顧宏凱HuiTian田輝QingDong董青PengWang王鵬RanLiu劉然BoLiu劉波QuanJunLi李全軍ZhenYao姚震andBingBingLiu劉冰冰
    Chinese Physics B 2019年6期
    關(guān)鍵詞:劉波王鵬

    Xin Ma(馬鑫),Zhi-Hui Li(李志慧),Xiao-Ling Jing(荊曉玲),Hong-Kai Gu(顧宏凱),Hui Tian(田輝),Qing Dong(董青),Peng Wang(王鵬),Ran Liu(劉然),Bo Liu(劉波),Quan-Jun Li(李全軍),Zhen Yao(姚震),and Bing-Bing Liu(劉冰冰)

    State Key Laboratory of Superhard Materials,College of Physics,Jilin University,Changchun 130012,China

    Keywords:nickel hydroxide,high pressure,synchrotron radiation,isostructural phase transition

    1.Introduction

    Because of its distinctive structures and physical properties,nickel hydroxide has many practical applications in the fields of physics,chemistry,and engineering.These applications include batteries,[1]photocatalysis,[2]electrocatalysis,[3]supercapacitors,[4,5]electrochromic devices,[6,7]electrochemical sensors,[8,9]and so on.Two different crystallographic polymorphs of known nickel hydroxide have been found,which are represented as α -and β -Ni(OH)2.[10]The β -phase nickel hydroxide is present in the natural mineral theophrastite and is isostructural with the triangularsymmetric brucite[Mg(OH)2],and consists of closely packed two-dimensional(2D)Ni(OH)2principle layer without water or any anions between its layers.[11]The α-phase nickel hydroxide is composed of hydroxyl-deficient β-Ni(OH)2layers,parallel to the crystallographic ab plane intercalated by water molecules and foreign anions.[10]The inserted water molecules and foreign anions have no fixed position but have some freedoms to rotate and translate in the ab plane.The α-phase nickel hydroxide is represented by the general formula Ni(OH)2-x(An-)x/n·yH2O,where x=0.2-0.4,y=0.6-1,and A=chloride,sulfate,nitrate,carbonate,or other anions.[12]Usually,the hydrated water molecules inherent in the material are omitted from the written formula,and the material is represented by α-Ni(OH)2.

    In geophysics and geochemistry,high-pressure studies of hydrous minerals may provide valuable information about the understanding of various geophysical phenomena and found more complex hydrous minerals abundantly in the earth’s mantle.[13-15]Among these hydrous minerals,highly symmetry brucite-type hydroxides[M(OH)2,M=Mg,Ca,Ni,Co,etc.]have been widely investigated as the simplest prototypes under high pressure. Although these compounds have a layered CdI2structure in the trigonal space group Pˉ3m1[16]at the ambient conditions,they exhibit different behaviors at high pressure.Pressure-induced reversible amorphization of the entire crystal structure of Ca(OH)2has been reportedat12GPa.[17,18]ComparedwithCa(OH)2,itsisomorphous Mg(OH)2remains stable and does not amorphize up to 34 GPa.[17,19]The anomalies of Raman and infrared spectra were observed in Co(OH)2at 11 GPa,which are attributed to hydrogen sublattice amorphization.[20]Subsequent neutron powder diffraction studies of the Co(OH)2showed that these observed anomalies in Raman and infrared spectra are the result of structural frustration due to H-H repulsion.[21]In β-Ni(OH)2,no structural phase transition was observed up to 25 GPa.[22]

    Compared to these simple models,the inherent hydration and the interlayer anions of α-Ni(OH)2make its structure more complicated,which is close to the case of natural hydrous minerals in the mantle.However,there is no highpressure research report on the complex α-Ni(OH)2up to now.In this paper,we performed Raman and XRD studies to investigate the structural phase transition of α-Ni(OH)2nanowires under high pressure.An isostructural phase transition associated with the amorphization of the H-sublattice of hydroxide in the interlayer spaces of the two-dimensional crystal structure were observed at 6.3 GPa-9.3 GPa.Our results suggest that the isostructural phase transition is related to the amorphization of the H-sublattice.This study provides a reference for understanding the behavior of more complex hydrogencontaining compounds under high pressure.

    2.Experimental details

    The α-Ni(OH)2nanowires were synthesized by NiSO4and NaOH under hydrothermal conditions in a Te flon-lined stainless steel autoclave.[23]The structure of the α-Ni(OH)2nanowires was characterized by x-ray diffraction(XRD)(Rigaku D/max-2500 x-ray diffractometer with Cu-Kα radiation,λ=1.5406A?).The morphologies of the samples were investigated using a transmission electron microscope(TEM,JEOL JEM-2200FS).Raman spectra were collected using a LabRAM HR Evolution Raman system with a 473-nm laser excitation line.High-pressure synchrotron angle-dispersive XRD measurements were performed at 16-BM-D,beamline of the High Pressure Collaborative Access Team(HPCAT)at the Advanced Photon Source(APS),Argonne National Laboratory,with the incident beam wavelength of 0.3066A?.Part of the XRD experiments was conducted at 4W2 beamline of Beijing Synchrotron Radiation Facility(BSRF).For all the highpressure experiments,α-Ni(OH)2nanowires were loaded in a 150-μm hole(sample chamber)of a preindented stainless steel gasket.Pressure was generated by a symmetric diamond-anvil cell at room temperature.The experiment pressure was calibrated using the ruby fluorescence method.Ar was used as the pressure-transmitting medium for all high pressure measurements.

    3.Results and discussion

    The XRD pattern of the synthesized product is shown in Fig.1.The diffraction peaks are in good agreement with the monoclinic phase α-Ni(OH)2from the standard card JCPDF 41-1424.The lattice parameters a=0.798 nm,b=0.294 nm,c=1.361 nm,and β =91.1°are obtained.The diffraction peaks of α-Ni(OH)2nanowires are sharp and intense,indicating their highly crystalline nature.In addition,there are no diffraction peaks corresponding to other impurities,which indicates the high quality of the synthesized α-Ni(OH)2nanowires.

    Figure 2 shows the transmission electron microscope(TEM)and the high resolution transmission electron microscope(HRTEM)images of the α-Ni(OH)2nanowires.We can see that the length of the nanowires is up to several micrometers and the diameter is in the range of 15 nm-20 nm[Figs.2(a)and 2(b)].The HRTEM image(Fig.2(c))of the α-Ni(OH)2nanowire clearly shows that the interplanar distances d=2.04?A,which is consistent with the distance between the(304)lattice planes.The SAED pattern(Fig.2(d))of the nanowire in Fig.2(c)reveals that the nanowire exhibits a single-crystal structure.

    Fig.1.XRD pattern of α-Ni(OH)2nanowires.The red bars at the bottom represent the diffraction pattern from JCPDS 41-1424(wavelength:1.5406?A).

    Fig.2.TEM images[(a)and(b)]and high-resolution TEM(HRTEM)image(c)of α-Ni(OH)2nanowires,and selected area electron diffraction(SAED)pattern(d)of the single nanowire shown in panel(c).

    The selected XRD patterns of α-Ni(OH)2nanowires under high pressure are shown in Fig.3.All the peaks of α-Ni(OH)2shift to smaller d-spacing with increasing pressure,indicating the pressure-induced shrinkage of the unit cells.No new peaks appear up to the highest pressure of 22 GPa,except the weakening and broadening of these peaks.This suggests that the crystal symmetry does not change obviously.For further detailed analysis,we extract six major strong diffraction peaks from Fig.3 as a function of pressure change,as shown in Fig.4(a).From the pressure dependence of the d-spacings,we can observe that two distinct compression regimes can be identi fied,below 6.3 GPa and above 9.3 GPa.The d-spacing of the selected characteristic peaks decreases with increasing pressure and undergoes a sharp drop above 6.3 GPa.Above 9.3 GPa,the pressure dependence of the d-spacings starts to become flatter than that in the pressure below 6.3 GPa.

    The obtained α-Ni(OH)2nanowires normalized lattice parameters as a function of pressure(Fig.4(b))also shows an abnormality in the same pressure range.The pressure dependence of the lattice constants is consistent with the observed variation of d-spacings as a function of pressure.Based on the intercalation chemistry,the presence of foreign ions can increase the thickness of the interlayer space in layered materials.When we apply external pressure to the layered system,the interlayer distance(c axis)reduces significantly more than the intralayer one (a and b axes). This is in accordance with the high pressure behaviors of two-dimensional crystals.[24]Discontinuous changes in a,b,and c axes in the pressure range of 6.3 GPa-9.3 GPa are observed,indicating a structural phase transition occurs.However,there is no obvious crystal symmetry change can be observed from our XRD results.Thus,these results suggest that this phase transition is possibly an isostructural phase transition.

    Fig.3.X-ray diffraction patterns of α-Ni(OH)2nanowires collected at different pressures.

    Fig.4.Structure information of α-Ni(OH)2nanowires at high pressure.Pressure dependences of the d-spacings(a),normalized lattice constants(b),and unit-cell volume(c)of α-Ni(OH)2nanowires.The red and blue lines represent the fitting of the low pressure phase and the high pressure phase through the Birch-Murnaghan equation of state,respectively.

    As shown in Fig.4(c),the bulk modulus B0of the low pressure phase and high pressure phase are estimated to be 41.2(4.2)GPa and 94.4(5.6)GPa,respectively,by fitting the unit-cell volume data with the third-order Birch-Murnaghan equation of state:where P is the pressure,V is the volume at pressure,V0is the zero-pressure volume,and B′0is the derivative of the bulk modulus with respect to pressure(we assumed B′0=4).The bulkmodulus(B0=41.2(4.2)GPa))ofthelowpressurephase is much smaller than that of the β-Ni(OH)2(B0=88 GPa,B′0=4.7),[25]which indicates that α -Ni(OH)2is more compressible in the initial stage than β-Ni(OH)2.For comparison,the bulk moduli of some hydroxides are shown in Table 1.

    Table 1.Comparison of bulk moduli of M(OH)2compounds

    The bulk modulus of the low pressure phase of α-Ni(OH)2is slightly larger than that of Ca(OH)2but smaller than those of the other hydroxides.The bulk modulus of the high pressure phase of α-Ni(OH)2is close to that of β -Ni(OH)2but is much higher than that of the low pressure phase.This indicates that the structure becomes denser and less compressible after the phase transition.In addition,obvious volume collapse is observed during the phase transition(6.3 GPa-9.3 GPa).The observed discontinuous changes of lattice parameters and volume collapse without symmetry change are both the features of the second-order isostructural transformation.[26-28]Therefore,the structural change observed in the α-Ni(OH)2nanowires can be attributed to an isostructural phase transition.

    To further verify the structure phase transition of α-Ni(OH)2nanowires,we also conducted in situ high-pressure Raman spectra measurements,as shown in Fig.5. The lattice vibrational modes in Raman spectra of α-Ni(OH)2nanowires at ambient conditions are observed at 450,487,and 964 cm-1.[29,30]The two peaks at 987 cm-1and 1081 cm-1in the Raman spectra can be attributed to the SO-42vibration.[29]These SO4-2intercalated between the α-Ni(OH)2layers are foreign anions,which are derived from the reactant NiSO4during the synthesis process.The internal O-H stretching modes from lattice OH and intersheet H2O are visible from 3520 cm-1to 3650 cm-1.[29]From Figs.5(b)and 5(c),we can seethepressuredependenceoftheRamanshiftsofα-Ni(OH)2clearly.As the pressure increases,Raman peaks of lattice modes and SO-42exhibit blue shifts(Fig.5(b)).The characteristic peaks of the lattice modes gradually weaken and disappear above 9.2 GPa,such as those at 450,487,and 964 cm-1.The vibrational modes of the SO-42always exist until the highest pressure in this experiment.

    Fig.5.(a)Raman spectra of α-Ni(OH)2nanowires at high pressure.(b)Pressure dependence of the Raman shift of the lattice modes and SO-42 vibration.(c)Pressure dependence of the Raman shift of stretch O-H modes.

    From Figs.5(a)and 5(c),we can observe the vibrational modes of the hydroxyl group in different chemical environments(approx.3200 cm-1-3700 cm-1).Upon increasing pressure,the Raman peak(~3532 cm-1)of hydroxyl group shows redshift while all other modes exhibit blueshift.The decreaseinfrequencyandbroadeningoftheOHstretchingbands of α-Ni(OH)2with compression.Above 7.8 GPa,the vibrational modes of the hydroxyl group disappear.These results areconsistentwiththoseofbrucite-typehydroxides.[17,28,31,32]The brucite structure is characterized by an O-H bond arranged along the c axis and surrounded by three cation-oxygen octahedrons in the adjacent layers.Each H atom interacts with three H atoms attached to the neighboring layer.The essence of the strong interaction among H-H and H-O atoms between the neighboring layers of the brucite-type hydroxides at high pressure is still in debate.Most of the recognition is that the broadening and disappear of the OH-stretch modes under high pressure is attributed to the disorder of the O-H bonds,which only involves the disorder of the H-sublattice.[17,19,22,32]

    By combining the high pressure XRD and Raman results,we can see that the H sublattice of α-Ni(OH)2becomes disordered at~7.8 GPa with an isostructural phase transition in the frame structure of α-Ni(OH)2.This result is similar to that of the high pressure study of Co(OH)2by Nguyen et al.[31]Under high pressure,the structure of the brucite-type hydroxides initially compresses primarily along the c axis while the cation-oxygen layers remain relatively uncompressed.[33-36]The similar results of α-Ni(OH)2nanowires lead us to think that it may be similar to the internal structural changes of hydroxide under high pressure.The main interlayer interaction of α-Ni(OH)2occurs between H-O and H-H of adjacent layers.The change in these interactions under high pressure can be re flected by the OH-stretching modes of α-Ni(OH)2in Raman spectra.The Raman peaks of hydroxyl group at 3550,3567,and 3635 cm-1nearly disappear above~7.8 GPa,indicating the pressure-induced amorphization of H sublattice.Obviously,pressure promotes the interaction between the H and O atoms in the adjacent layer leading to the gradual disordering of the H sublattice in α-Ni(OH)2.[37]It is known that XRD is insensitive to the hydrogen position in the crystal lattice.Therefore,the XRD data does not show amorphization characteristics of the H sublattice under high pressure.However,the abrupt slope changes of the lattice parameters varying with pressure are observed at~9 GPa from our XRD results,which indicates α-Ni(OH)2undergoes an isostructural phase transition.[38-40]This is consistent with the pressure range that observed the amorphization of H sublattice in our Raman results.Based on these results,we suggest that the isostructural phase transition can be attributed to the disorder of the H sublattice.In addition,all the Raman peaks recover when the pressure is released,which shows that the isostructural phase transition and the amorphization of the H sublattice are reversible.

    4.Conclusion

    In summary,α-Ni(OH)2nanowires with an average diameter of 15 nm-20 nm and a length of several micrometers were synthesized by hydrothermal method. We investigated the high pressure structural phase transition of the α-Ni(OH)2nanowires by synchrotron XRD and Raman spectra. An isostructural phase transition takes place at~6.3 GPa-9.3 GPa.Meanwhile,the disorder of the interlayered H-sublattice is observed.Bulk moduli for the low pressure phase and high pressure phase are 41.2(4.2)GPa and 94.4(5.6)GPa,respectively.We suggest that the pressureinducedisostructuralphasetransitioninα-Ni(OH)2nanowires can be attributed to the disorder of the H-sublattice.Both the isostructural phase transition and the amorphization of the H-sublattice in α-Ni(OH)2nanowires are reversible under high pressure.Our results show that the foreign anions intercalated between the α-Ni(OH)2layers play important roles in their structural phase transition.

    猜你喜歡
    劉波王鵬
    王鵬:初心不改 篤行致遠
    華人時刊(2023年19期)2023-11-16 12:32:52
    Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane
    汪安陽 劉波設(shè)計作品
    毛紡科技(2023年1期)2023-02-24 00:37:40
    劉波作品
    國畫家(2023年1期)2023-02-16 07:57:50
    晚霞
    赤水源(2018年6期)2018-12-06 08:38:08
    跟著王鵬叔叔拍雪豹
    藝術(shù)百家:王鵬 張凱雷
    電影文學(2017年2期)2017-12-26 12:52:32
    劉波:大海與我作伴
    商周刊(2017年16期)2017-10-10 01:32:47
    千萬別動手
    Tracking algorithm of BPSK signal in low bit SNR and high dynamic scenarios
    免费观看精品视频网站| 久久久国产成人精品二区 | 19禁男女啪啪无遮挡网站| 国产高清激情床上av| 久久精品国产亚洲av香蕉五月 | 夜夜躁狠狠躁天天躁| 欧美乱码精品一区二区三区| 欧美日韩国产mv在线观看视频| 水蜜桃什么品种好| 新久久久久国产一级毛片| www.999成人在线观看| 啪啪无遮挡十八禁网站| 午夜精品久久久久久毛片777| 777米奇影视久久| 久久人妻av系列| 免费在线观看日本一区| 亚洲一区二区三区不卡视频| 欧美性长视频在线观看| 亚洲av片天天在线观看| 99国产精品一区二区三区| 成年版毛片免费区| 身体一侧抽搐| 国产真人三级小视频在线观看| 91麻豆精品激情在线观看国产 | 欧美黑人精品巨大| 涩涩av久久男人的天堂| 91老司机精品| 十八禁网站免费在线| 日本五十路高清| 麻豆乱淫一区二区| 国产成人精品久久二区二区免费| 多毛熟女@视频| 夜夜夜夜夜久久久久| 后天国语完整版免费观看| 国产精品永久免费网站| 大香蕉久久成人网| 日韩视频一区二区在线观看| 黄片小视频在线播放| 老汉色av国产亚洲站长工具| 男女下面插进去视频免费观看| 国产av又大| av网站在线播放免费| 久久人妻av系列| 日日爽夜夜爽网站| 国产1区2区3区精品| 久久草成人影院| 在线观看日韩欧美| 中国美女看黄片| 国产成人影院久久av| 久久久久久久精品吃奶| 国产亚洲欧美在线一区二区| 国产精品.久久久| 国产不卡一卡二| 老司机靠b影院| 国产精品一区二区精品视频观看| 丝袜美足系列| 日韩欧美在线二视频 | 人人妻人人添人人爽欧美一区卜| 亚洲免费av在线视频| 国产色视频综合| 亚洲国产精品一区二区三区在线| 免费在线观看完整版高清| 天天躁狠狠躁夜夜躁狠狠躁| 国产99白浆流出| 美女福利国产在线| 欧美国产精品一级二级三级| 国产区一区二久久| 波多野结衣一区麻豆| 久久精品国产亚洲av高清一级| 在线天堂中文资源库| 久久亚洲精品不卡| ponron亚洲| 国产精品亚洲一级av第二区| 国产精品久久久久成人av| 高潮久久久久久久久久久不卡| 精品久久蜜臀av无| 99热国产这里只有精品6| 免费女性裸体啪啪无遮挡网站| www.999成人在线观看| 成年动漫av网址| 精品人妻1区二区| 亚洲精品中文字幕在线视频| 成年版毛片免费区| 国产在视频线精品| 亚洲色图综合在线观看| 成人18禁在线播放| 日韩一卡2卡3卡4卡2021年| 亚洲精华国产精华精| 国产成人精品在线电影| 91麻豆精品激情在线观看国产 | 老熟妇仑乱视频hdxx| 在线观看66精品国产| 国产在视频线精品| 亚洲情色 制服丝袜| 国产单亲对白刺激| 久9热在线精品视频| 欧美日韩成人在线一区二区| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美在线二视频 | 国产乱人伦免费视频| 成人18禁高潮啪啪吃奶动态图| 波多野结衣一区麻豆| 视频区欧美日本亚洲| 1024香蕉在线观看| 国产亚洲精品一区二区www | av中文乱码字幕在线| 精品久久久精品久久久| 十分钟在线观看高清视频www| 亚洲七黄色美女视频| 国产精品二区激情视频| ponron亚洲| 一二三四在线观看免费中文在| 精品久久久久久久久久免费视频 | 精品久久久精品久久久| 91精品国产国语对白视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品一区二区三区在线| 成年动漫av网址| 日日夜夜操网爽| 嫁个100分男人电影在线观看| 国产成人精品无人区| 天天添夜夜摸| 久久国产精品大桥未久av| 另类亚洲欧美激情| 精品一区二区三卡| 亚洲精品成人av观看孕妇| 国产免费男女视频| 午夜福利影视在线免费观看| 王馨瑶露胸无遮挡在线观看| 欧美大码av| 制服诱惑二区| 久久久国产成人精品二区 | 人人妻人人澡人人爽人人夜夜| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久午夜电影 | 天天影视国产精品| 嫩草影视91久久| a级片在线免费高清观看视频| 亚洲av美国av| 国产精品.久久久| 久久国产精品大桥未久av| 久久99一区二区三区| 嫁个100分男人电影在线观看| 亚洲人成77777在线视频| 国产有黄有色有爽视频| 亚洲性夜色夜夜综合| 人人妻人人澡人人爽人人夜夜| 91成年电影在线观看| 久久人妻福利社区极品人妻图片| 久久中文字幕人妻熟女| 国产免费现黄频在线看| 国产成人精品在线电影| 日韩欧美免费精品| 狠狠婷婷综合久久久久久88av| 精品国产一区二区三区久久久樱花| 久久久国产精品麻豆| 91成年电影在线观看| 免费观看人在逋| 叶爱在线成人免费视频播放| 亚洲av日韩在线播放| 国产成人精品久久二区二区91| 亚洲七黄色美女视频| cao死你这个sao货| 满18在线观看网站| 色精品久久人妻99蜜桃| 在线观看午夜福利视频| 嫁个100分男人电影在线观看| 欧美精品一区二区免费开放| 国产色视频综合| 久久久精品国产亚洲av高清涩受| 国产精品秋霞免费鲁丝片| 免费不卡黄色视频| 国产精品亚洲av一区麻豆| 亚洲第一欧美日韩一区二区三区| 亚洲第一欧美日韩一区二区三区| 一级片'在线观看视频| 欧美国产精品一级二级三级| 国产精品 欧美亚洲| 久久人妻av系列| 亚洲在线自拍视频| 中文字幕av电影在线播放| 午夜91福利影院| 久久久久国产精品人妻aⅴ院 | 久久中文看片网| 亚洲成av片中文字幕在线观看| 五月开心婷婷网| 久久中文字幕人妻熟女| 国内毛片毛片毛片毛片毛片| 大型av网站在线播放| 99riav亚洲国产免费| 欧美人与性动交α欧美精品济南到| 国产国语露脸激情在线看| 亚洲成a人片在线一区二区| 中出人妻视频一区二区| 伦理电影免费视频| 黄色毛片三级朝国网站| 色播在线永久视频| 国产精品久久久久成人av| 咕卡用的链子| 91在线观看av| 亚洲精品国产色婷婷电影| 人人澡人人妻人| 国产成人免费观看mmmm| 国产成人啪精品午夜网站| 久久人妻av系列| 亚洲av成人一区二区三| 女性被躁到高潮视频| 一区二区三区激情视频| 日韩欧美国产一区二区入口| 日本欧美视频一区| 国产一卡二卡三卡精品| 19禁男女啪啪无遮挡网站| 中文字幕另类日韩欧美亚洲嫩草| 中亚洲国语对白在线视频| 久9热在线精品视频| 久久久精品免费免费高清| 久久国产精品大桥未久av| 国产欧美日韩一区二区精品| 成人影院久久| www日本在线高清视频| 欧美精品av麻豆av| 亚洲欧美激情综合另类| 人妻丰满熟妇av一区二区三区 | 亚洲精品国产区一区二| 巨乳人妻的诱惑在线观看| 黄色视频不卡| 最新的欧美精品一区二区| 亚洲欧美激情综合另类| 久久午夜综合久久蜜桃| 啦啦啦在线免费观看视频4| 免费日韩欧美在线观看| 超碰97精品在线观看| 免费少妇av软件| 捣出白浆h1v1| 电影成人av| 三级毛片av免费| svipshipincom国产片| 中文字幕av电影在线播放| 麻豆成人av在线观看| 国产精品久久久av美女十八| 国产精品免费一区二区三区在线 | 一夜夜www| 男女免费视频国产| a级毛片在线看网站| 99香蕉大伊视频| 日韩欧美在线二视频 | 欧美精品高潮呻吟av久久| 国产av一区二区精品久久| 91精品三级在线观看| 18禁美女被吸乳视频| 国产精品 国内视频| 精品熟女少妇八av免费久了| av网站在线播放免费| 精品国内亚洲2022精品成人 | 大型黄色视频在线免费观看| 亚洲国产精品sss在线观看 | 国产亚洲精品一区二区www | 交换朋友夫妻互换小说| 日本vs欧美在线观看视频| www.熟女人妻精品国产| 在线观看免费高清a一片| 国产精品亚洲一级av第二区| 韩国精品一区二区三区| 国产高清激情床上av| 日本黄色日本黄色录像| 亚洲aⅴ乱码一区二区在线播放 | 色老头精品视频在线观看| 韩国精品一区二区三区| 国产精品香港三级国产av潘金莲| 19禁男女啪啪无遮挡网站| 老司机深夜福利视频在线观看| 成人18禁在线播放| 免费在线观看日本一区| 757午夜福利合集在线观看| 丰满饥渴人妻一区二区三| tube8黄色片| 中文字幕人妻丝袜一区二区| 久久中文字幕一级| 欧美人与性动交α欧美精品济南到| 亚洲第一欧美日韩一区二区三区| 国产在线精品亚洲第一网站| 亚洲午夜精品一区,二区,三区| 日本五十路高清| 国产一区二区三区综合在线观看| av超薄肉色丝袜交足视频| 国产单亲对白刺激| 9191精品国产免费久久| 飞空精品影院首页| 亚洲精品美女久久av网站| 99在线人妻在线中文字幕 | 脱女人内裤的视频| 成年版毛片免费区| av天堂在线播放| 欧美激情高清一区二区三区| www.精华液| 成人av一区二区三区在线看| 人人妻人人爽人人添夜夜欢视频| 精品熟女少妇八av免费久了| 久久 成人 亚洲| 色在线成人网| 国产免费现黄频在线看| 免费在线观看黄色视频的| 国产精品一区二区免费欧美| 久久国产精品影院| 久久精品熟女亚洲av麻豆精品| 香蕉丝袜av| 亚洲人成伊人成综合网2020| 夜夜躁狠狠躁天天躁| 在线观看免费视频日本深夜| 久久国产精品男人的天堂亚洲| 久久国产精品大桥未久av| 麻豆国产av国片精品| 国产aⅴ精品一区二区三区波| 老熟妇乱子伦视频在线观看| tube8黄色片| 久久国产精品大桥未久av| 黄色片一级片一级黄色片| xxx96com| 日韩三级视频一区二区三区| 精品国产一区二区三区久久久樱花| tocl精华| 欧美国产精品一级二级三级| 亚洲va日本ⅴa欧美va伊人久久| 自线自在国产av| 一二三四社区在线视频社区8| 18在线观看网站| 亚洲精品国产一区二区精华液| 天天躁日日躁夜夜躁夜夜| 亚洲精品中文字幕在线视频| 欧美激情极品国产一区二区三区| 国产精品亚洲av一区麻豆| 亚洲中文字幕日韩| 男女床上黄色一级片免费看| 三上悠亚av全集在线观看| 老汉色av国产亚洲站长工具| 午夜精品久久久久久毛片777| 久久精品国产综合久久久| 极品少妇高潮喷水抽搐| 美女高潮到喷水免费观看| 黄色女人牲交| 国产精品久久视频播放| 午夜久久久在线观看| 欧美精品啪啪一区二区三区| 久久久国产欧美日韩av| 国产一区二区三区在线臀色熟女 | 久久久久精品人妻al黑| 日韩大码丰满熟妇| 伦理电影免费视频| 亚洲欧美日韩另类电影网站| 宅男免费午夜| 这个男人来自地球电影免费观看| √禁漫天堂资源中文www| 97人妻天天添夜夜摸| 精品视频人人做人人爽| 男女下面插进去视频免费观看| 久久草成人影院| 久久精品亚洲熟妇少妇任你| 精品人妻1区二区| 久久国产精品大桥未久av| 午夜老司机福利片| netflix在线观看网站| 亚洲伊人色综图| 精品久久久久久久毛片微露脸| 热99re8久久精品国产| 精品高清国产在线一区| 久久久久久人人人人人| 亚洲精品美女久久久久99蜜臀| 黄片大片在线免费观看| 中文字幕最新亚洲高清| 超碰97精品在线观看| 99国产精品免费福利视频| 午夜精品在线福利| 精品国内亚洲2022精品成人 | 国产av一区二区精品久久| 亚洲精品自拍成人| 欧美精品av麻豆av| 丰满饥渴人妻一区二区三| 99re6热这里在线精品视频| 69精品国产乱码久久久| 啦啦啦在线免费观看视频4| 男人舔女人的私密视频| 亚洲av电影在线进入| 极品人妻少妇av视频| 亚洲专区字幕在线| 搡老岳熟女国产| 啪啪无遮挡十八禁网站| 91大片在线观看| 黄网站色视频无遮挡免费观看| 日本精品一区二区三区蜜桃| 视频区图区小说| 老司机亚洲免费影院| 久久精品国产亚洲av香蕉五月 | 精品国产国语对白av| 欧美精品高潮呻吟av久久| 日韩人妻精品一区2区三区| 欧美另类亚洲清纯唯美| 麻豆成人av在线观看| 亚洲第一青青草原| 一级作爱视频免费观看| 亚洲av片天天在线观看| 国产成人系列免费观看| 大型av网站在线播放| 久久影院123| 少妇粗大呻吟视频| 日韩视频一区二区在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲色图av天堂| 欧美激情 高清一区二区三区| 如日韩欧美国产精品一区二区三区| 人人妻人人添人人爽欧美一区卜| 老熟女久久久| 狠狠狠狠99中文字幕| 多毛熟女@视频| 国产视频一区二区在线看| 99re6热这里在线精品视频| 无人区码免费观看不卡| 香蕉久久夜色| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品| 亚洲欧美日韩高清在线视频| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 亚洲精品国产色婷婷电影| 国产亚洲欧美98| 高清在线国产一区| 18禁观看日本| 日本a在线网址| 欧美精品av麻豆av| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品中文字幕一二三四区| 国产aⅴ精品一区二区三区波| 亚洲专区中文字幕在线| 亚洲av日韩在线播放| 夜夜躁狠狠躁天天躁| 无遮挡黄片免费观看| a在线观看视频网站| 亚洲欧美一区二区三区久久| 午夜福利乱码中文字幕| 国产熟女午夜一区二区三区| 久久精品亚洲精品国产色婷小说| 热99久久久久精品小说推荐| 免费在线观看黄色视频的| 久久精品亚洲熟妇少妇任你| 亚洲,欧美精品.| 色婷婷av一区二区三区视频| 欧美日韩av久久| 日本黄色日本黄色录像| 黄色怎么调成土黄色| 真人做人爱边吃奶动态| 三上悠亚av全集在线观看| 日本a在线网址| 国产成人av激情在线播放| 热99久久久久精品小说推荐| 色综合欧美亚洲国产小说| 国产亚洲精品第一综合不卡| 69av精品久久久久久| 波多野结衣一区麻豆| 国产精品 欧美亚洲| 久久人人97超碰香蕉20202| 免费观看a级毛片全部| 999精品在线视频| 高清毛片免费观看视频网站 | 精品久久久久久电影网| 黄色 视频免费看| 久久久水蜜桃国产精品网| 嫁个100分男人电影在线观看| 久久精品亚洲精品国产色婷小说| 一本一本久久a久久精品综合妖精| 首页视频小说图片口味搜索| 久久久久久免费高清国产稀缺| 狠狠狠狠99中文字幕| 热re99久久国产66热| 高清视频免费观看一区二区| 成熟少妇高潮喷水视频| 日韩欧美国产一区二区入口| 国产精品久久视频播放| 日韩免费高清中文字幕av| 91精品三级在线观看| 国产精品免费大片| 人人妻,人人澡人人爽秒播| 99riav亚洲国产免费| 欧美日韩瑟瑟在线播放| 国产精品.久久久| 国产高清国产精品国产三级| 极品少妇高潮喷水抽搐| 亚洲色图 男人天堂 中文字幕| 美女国产高潮福利片在线看| 国产免费现黄频在线看| 亚洲在线自拍视频| 欧美黑人精品巨大| 亚洲欧美激情综合另类| 身体一侧抽搐| 国产精品久久视频播放| 午夜91福利影院| 十八禁网站免费在线| 午夜成年电影在线免费观看| 婷婷精品国产亚洲av在线 | 高潮久久久久久久久久久不卡| 日韩 欧美 亚洲 中文字幕| 黄色片一级片一级黄色片| 女同久久另类99精品国产91| 久久人妻福利社区极品人妻图片| 免费在线观看日本一区| 日韩欧美一区二区三区在线观看 | 日日爽夜夜爽网站| 另类亚洲欧美激情| 精品午夜福利视频在线观看一区| 老熟女久久久| 久9热在线精品视频| 麻豆乱淫一区二区| 国产亚洲精品久久久久5区| 看片在线看免费视频| 国产一卡二卡三卡精品| 国产精品 欧美亚洲| 在线观看一区二区三区激情| 精品一区二区三区四区五区乱码| 在线观看www视频免费| 欧美精品人与动牲交sv欧美| 中文字幕精品免费在线观看视频| 国产亚洲欧美在线一区二区| 正在播放国产对白刺激| 欧美在线黄色| 日韩一卡2卡3卡4卡2021年| 大型黄色视频在线免费观看| 青草久久国产| 亚洲欧美日韩另类电影网站| 亚洲av欧美aⅴ国产| 老司机深夜福利视频在线观看| 国产亚洲欧美在线一区二区| 9色porny在线观看| 热99久久久久精品小说推荐| 大码成人一级视频| 亚洲av成人不卡在线观看播放网| 后天国语完整版免费观看| 亚洲欧美日韩另类电影网站| 99国产精品一区二区蜜桃av | 91麻豆精品激情在线观看国产 | 99久久综合精品五月天人人| 精品亚洲成a人片在线观看| 日韩有码中文字幕| 丝袜在线中文字幕| 高清毛片免费观看视频网站 | 777米奇影视久久| 日韩欧美国产一区二区入口| 欧美日韩一级在线毛片| 天堂俺去俺来也www色官网| 中亚洲国语对白在线视频| 老司机亚洲免费影院| 91av网站免费观看| netflix在线观看网站| 亚洲精品粉嫩美女一区| 我的亚洲天堂| 精品国产美女av久久久久小说| 777米奇影视久久| 免费少妇av软件| 亚洲精品乱久久久久久| av中文乱码字幕在线| 精品久久久久久电影网| 国产精品影院久久| e午夜精品久久久久久久| 亚洲精品在线观看二区| 香蕉国产在线看| 国产亚洲av高清不卡| 欧美日韩成人在线一区二区| 97人妻天天添夜夜摸| 亚洲精品美女久久av网站| 可以免费在线观看a视频的电影网站| 欧美+亚洲+日韩+国产| 大型av网站在线播放| 黄色毛片三级朝国网站| 日本黄色日本黄色录像| av国产精品久久久久影院| 久久久水蜜桃国产精品网| 亚洲欧美日韩高清在线视频| www.999成人在线观看| 精品少妇久久久久久888优播| 人妻一区二区av| 人人澡人人妻人| 十八禁网站免费在线| 看免费av毛片| 19禁男女啪啪无遮挡网站| 黄色a级毛片大全视频| 国产精品二区激情视频| 我的亚洲天堂| 亚洲精品美女久久久久99蜜臀| 高潮久久久久久久久久久不卡| 亚洲av成人av| 欧美最黄视频在线播放免费 | 麻豆乱淫一区二区| 十八禁人妻一区二区| 久久久久久免费高清国产稀缺| 免费观看a级毛片全部| 久久精品国产a三级三级三级| 99久久综合精品五月天人人| 一进一出好大好爽视频| 亚洲色图综合在线观看| 精品国产一区二区三区四区第35| videos熟女内射| av天堂久久9| 亚洲性夜色夜夜综合| 亚洲国产精品合色在线| a在线观看视频网站| 亚洲全国av大片| 精品国产一区二区久久| 日韩成人在线观看一区二区三区| 男女高潮啪啪啪动态图| 亚洲中文av在线| 高清欧美精品videossex| 国产色视频综合| 亚洲国产精品sss在线观看 | 十八禁人妻一区二区| 大型黄色视频在线免费观看| 亚洲国产中文字幕在线视频| 91精品三级在线观看| 一区二区三区国产精品乱码|