• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane

    2023-09-05 08:48:06PengWang王鵬
    Chinese Physics B 2023年7期
    關(guān)鍵詞:王鵬

    Peng Wang(王鵬)

    School of Civil Engineering and Architecture,University of Jinan,Jinan 250022,China

    Keywords: Hamilton’s principle, Noether theorem, fractional derivative, multiscale electromechanical coupling,neuron membrane

    1.Introduction

    The action potential(AP)has been considered to be only an electric signal, and the well known Hodgkin–Huxley (H–H) model[1]is the foundation of this viewpoint.However, a recent experiment[2]found that the AP propagation accompanies mechanical deformation like swelling or contraction.So the standpoint of AP being a mechano-electrophysiological coupling process was proposed.[3]Engelbrechtet al.[4]gave a continuum mechanics model to explain this mechanoelectrical coupling phenomenon, Chenet al.[5]gave a finite element computation model and Drapaca[6]proposed an electromechanical model using Hamilton’s principle,and gave its Euler–Lagrange equation.Later, she extended this model to a fractional derivative scenario.[7]However, due to the complexity and nonlinearity, it is hard to solve the mathematical equations of these models.Symmetry is an important tool in finding the first integral, differential equation reduction and classification,[8]so we can apply symmetry in electromechanical coupling equations to find their conserved quantities,further to reduce orders of the differential equations.However,to our knowledge, the Noether symmetry and conserved quantities of neuron dynamics have not been investigated.

    Symmetry is a higher rule in physics.Since Noether revealed the relations between symmetry and conserved quantities in her eminent paper,[9]Noether theorem has had various extensions and has been applied in physics and mechanics.[10–22]Fractional calculus is increasingly important as it can more exactly describe complex phenomena in science and engineering.Fractional Noether theorem has been extended to the fractional Lagrange system, Hamilton system, generalized Hamilton system, Birkhoff system, and so on.[23–33]However,there is no research on fractional Noether symmetry in mechano-electrophysiological coupling equations of neuron dynamics.Considering the visco-elasticity of neuron membranes, we will adopt a fractional derivative of variable orders.In this paper we will generalize fractional Noether theorem to neuron dynamics.

    The structure of this paper is as follows.In Section 2 we will introduce a variable order fractional mechanoelectrophysiological model of a neuron membrane with Riemann–Liouville fractional derivative, deduce its variable order fractional Lagrange equation,and show that the variable order fractional H–H equation can be deduced from the variable order fractional Lagrange equation.In Section 3 variable order fractional Noether symmetry and conserved quantities of the neuron dynamics are studied,and the criterion of variable order fractional Noether symmetry and the form of variable order fractional conserved quantities are given.In Section 4 we will specifically discuss the deduced variable fractional conserved quantities in various conditions.The final section is the conclusion.

    2.The variable order fractional Lagrange equation of neuron membrane dynamics

    Conduction and processing of information are the characteristics of neurons.Neurons make use of electric signals to conduct information.As we know, action potential plays a key role in producing electric signals in neurons.However,experimental observations prove that action potential production is not only because of ion transmission across neuron membranes, but also accompanied with deformation of the neuron membrane, a multiscale mechanics and electrophysiology coupling process.Recently,Drapaca[7]proposed a new fractional multiscale mechano-electrophysiological coupling model using Hamilton’s principle, however its numerical solutions are in fact uncoupled.In this paper we will revisit the model,but study the more general case using Noether symmetry analysis.

    2.1.The model

    The membrane of a neuron consists of a phospholipid bilayer embedded channel protein.The propagation of electric signals in the neuron system is achieved by producing action potential accompanied with an ion channel open or shut.The action potential can induce deformation of the neuron membrane,and inversely the deformation of the neuron membrane can also induce action potential.We can use the Hodgkin–Huxley model to describe the electric process and a linear visco-elastic Kelvin–Voigt model to describe the mechanical process,and Maxwell models to control the activations of the Na+and K+channels, and the inactivation of the Na+channel, respectively.The coupling process is connected through membrane capacitance and displacement (see Fig.1).As we know, the neuron can be considered as an axis-symmetric cylinder with circular cross section, so we can study half the neuron by symmetry.

    Fig.1.Schematic of the mechano-electrophysiological coupling model of an axon membrane.The axon is considered as an axis-symmetric homogeneous circular cylinder with intracellular space filled with axoplasm, and the outer layer is the membrane.Using the symmetry and homogeneity of the column we only need to study half of the axon.At cellular scale we model the intracellular space as a viscoelastic material using the Kelvin model connected with axon capacitor(the dotted box ①),where(x2,x3,x3)denote the deformation motion of the cytoskeleton with different ionic channels, which correspond to the m,n,h gate. x1 is the displacement of the membrane.Mechanical motion or electrical stimuli can trigger the circuit.At subcellular scale ionic exchange obeys fractional Hodgkin–Huxley equations(the dotted box ②)and is controlled by Maxwell models.

    We can express the macro-mechanical kinetic energyT=m1(0(t)x1)2, wherem1denotes the half constant mass of the neuron,Ais the cross-sectional area,andx1is the macroscopic (cell level) displacement that depends on time.In order to use the nonconservative Hamilton principle proposed in Ref.[34], we use the left and right Riemann–Liouville fractional derivative of variable orders with 0≤α(t)<1

    However, definitions (1) and (2) will introduce additional memory effects for piecewise uniform accelerated motions.[35]Fortunately,when 0≤α(t)<1 the approximations

    In this paper we will use a Riemann–Liouville fractional derivative of variable orders with 0≤α(t)<1,|dα/dt|?1,t ∈(0,a).

    2.2.The fractional Lagrange equation of variable orders

    Based on the electric charge conservation law, we have a holonomic constraint to charge:eC ?eNa?eK?el=0, so the freedom of the coupling system is 10.Introduce generalized coordinates to express universally the spatial variables and electrical variables,qs(s= 1,...,10), whereq1=x1,q2=x2,q3=x3,q4=x4,q5=eNa,q6=eK,q7=el,q8= ?x2,q9= ?x3,q10= ?x4.The Lagrangian of the neuronal mechanoelectrophysiological model is

    The virtual work of nonconservative generalized forces is

    The Hamilton principle of the nonconservative mechanoelectrophysiological system of the axon membrane is

    By expanding the above equation, and using the communication relation0i(t)δ=δ0(t)which holds for the holonomic constrained system, and the relation of the fractional integral by parts[23–25,34]

    and the end points relationsδq(0)=0,δq(a)=0,we can get the fractional multi-scale mechano-electrophysiological coupling Lagrange equation of neuronal membrane dynamics

    whereψ=ψm+ψe.The coupling equation of motion describes the changes of ions between the outer layer and intracellular space and deformation of the neuron membrane.

    Whenψ=Qs=0, we can get the fractional Lagrange equation of a conservative system

    Putting the expression of LagrangianLinto Eq.(10), we can get the Euler–Lagrange differential equations

    whereV=Ui=qC/Cis the potential of the capacitor.

    Here the Euler–Lagrange equations are different from the equations in Ref.[7], because we suppose the elastic parameters of the cytoskeleton depend on the macro-deformation of the membrane.Kirchhoff’s current law demands0γ(t)(qC+qNa+qK+ql)=I,[7]whereIis a known external electric current applied on the membrane.

    Putting Eqs.(17)–(19) into Kirchhoff’s current law, the fractional Hodgkin–Huxley equation of the membrane potential can be found

    Because of lack of information on the mechanotransduction process of axons,the expressions ofm2,m3,m4,k2,k3,k4,η2,η3,η4,Qsare difficult to know,so in Ref.[7],the author made a simplification to neglect them by a scales comparison.However, these factors should affect the characteristics of axon action.So, in the following study we will treat the general cases by Noether symmetry analysis to study these neglected parameters and how they affect conserved quantities and the expression of these parameters, which may be useful for numerical solutions of the mechano-electrophysiological coupling equations of axons.

    3.Variable order fractional Noether theorem of neuronal membrane dynamics

    We introduce a one-parameter infinitesimal Lie transformation group in space(t,qs,˙qs)

    whereεis an infinitesimal parameter,andξ0(t,q, ˙q),ξs(t,q, ˙q)are infinitesimal transformation generators.The infinitesimal generator vector

    is the operator for the infinitesimal generator of the oneparameter Lie group of transformations(24)in space(t,q, ˙q).The first prolongation of the infinitesimal generator vector[34]is

    which defines a first extended one-parameter Lie group of transformation in space (t,q, ˙q) by partial derivatives, (˙)means first derivative tot.

    The Hamilton action is

    Under the infinitesimal transformation, the curveγis transformed to curveγ?.The corresponding Hamilton action is transformed to

    The variation ?Sof Hamilton actionSis the main linear part of the differenceS(γ?)?S(γ)to infinitesimal parameterε,and we have

    where ?denotes anisochronous variation, andδdenotes isochronous variation.Expanding the above equation,we have

    and using the relation

    wherefis an arbitrary function oft,we can get

    Put the infinitesimal transformation Eq.(24)into Eq.(30),and the following expression can be obtained:

    Definition 1If the variation of the Hamilton action satisfies

    the infinitesimal transformation(24)is a Noether symmetrical transformation.

    Based on definition 1,we can get the Noether symmetry criterion.

    Criterion 1If the infinitesimal generatorsξ0(t,q,),ξs(t,q,)satisfy

    the transformation invariance is named Noether symmetry,which is also called variational symmetry.For Noether symmetry we can deduce the invariant.

    Theorem 1For the Lagrange system (11), if the generatorsξ0(t,q, ˙q),ξs(t,q, ˙q)of the infinitesimal transformations have Noether symmetry(37),there exist fractional conserved quantities as

    which are called variable order fractional Noether conserved quantities.We can verify this theorem by defniingIN =0,which denotes thatINis a conserved quantity.[26]

    In the proving process of this theorem we have used condition(37)and variable order fractional Lagrange equation(11).In fact we can generalize the Noether symmetry to nonconservative dynamical systems.

    Definition 2If the Hamilton action is generalized quasiinvariant under the infinitesimal transformation group,that is,the variation satisfies

    the infinitesimal transformation (24) is a generalized quasisymmetrical transformation, whereGN(t,q,0i(t)q) is a gauge function,andδqsis the sum of the virtual work of the generalized non-conservative force.

    Based on definition 2,we can get the generalized Noether symmetry criterion.

    Criterion 2If there exists a gauge functionGN(t,q,0i(t)q) that makes the infinitesimal generatorsξ0(t,q,),ξs(t,q, ˙q)satisfy

    the infinitesimal transformation is named variable order fractional quasi-Noether symmetry.The Noether symmetry can always lead to conserved quantities.

    Theorem 2For the Lagrange equation Eq.(10) of neuronal membrane dynamics, if the infinitesimal generatorsξ0(t,q,),ξs(s,q,) satisfy equation (41) (criterion 2), the system has the following first integrals:

    which are variable order fractional Noether conserved quantities.

    Proof

    In the proving process of this proposition we have used condition(41)and variable order fractional Lagrange equation(10).

    4.Solutions of Noether symmetry generators and conserved quantities

    Putting the exact form of LagrangianL(6)and dissipative functionψinto the Noether identity Eq.(41),we have

    Next let us discuss the structures of Noether conserved quantities when external nonpotential forcesQs /= 0 (s=1,2,3,4,8,9,10).We will show that the forms of generalized potential forces impact the integrability of the system.In the following we use the approximate relation (3) to simplify the calculus,and for convenience we still use the symbols0i(t),ti(t).

    and we can work out the gauge function

    The corresponding Noether conserved quantities are

    and we can work out the gauge function

    The corresponding Noether conserved quantity is trivial withIN=0.

    Ifk1= const.and the generalized nonpotential forces have formsQ8=η20(t)q8,Q9=η30(t)q9,Q10=η40(t)q10,we have solutions

    and we can work out the gauge function

    The corresponding Noether conserved quantity is

    which denotes the micro mechanical potential energy.

    Ifk1=const.,C=const.,we have solutions

    and we can work out gauge functions respectively

    The corresponding conserved quantities are

    which denote the sum of the electric energy and the micro mechanical potential energy.

    In this section we have discussed the effects of parametersk(q2,q3,q4),C(q1) and non-potential forcesQson the forms of Noether conserved quantities.From the above calculations we can conclude that the Noether symmetry and Noether conserved quantities are strongly determined by nonpotential forces and the material parameters.We did not give all the conserved quantities for the neuron membrane dynamics model, because we can see the conserved quantities are strongly dependent on the external non-conservative forces and characteristic parameters of the neuron membrane.But we give general formulations(41)and(42)to calculate its conserved quantities.

    5.Conclusion

    Considering a neuron axon without myelin as an axissymmetrical cylinder with homogeneous deformation in a neuron membrane, we unified the deformation and electrophysiological multiscale coupling process through Hamilton’s principle in generalized coordinates with fractional derivative of variable orders.The Lagrange equation (10) of the variable order fractional multiscale mechano-electrophysiological model of the neuron membrane is given through which we can deduce the variable order fractional differential equations of motion found in Ref.[7] and the variable order fractional Hodgkin–Huxley equation.The variable order fractional Noether symmetry criterion (37) and (41) and Noether conserved quantities(38)and(42)are given under Lie group transformations.Through the variable order fractional Noether criterion we work out some solutions that correspond to Noether conserved quantities under different external stimuli.The results show that Noether conserved quantities closely depend on the external nonconservative forces and material parameters of the neuron, which need to be further verified by experiments.Other symmetrical methods,like Lie symmetry and Mei symmetry can also be applied to this system,and these will be studied in the future.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant Nos.12272148 and 11772141).

    猜你喜歡
    王鵬
    王鵬:初心不改 篤行致遠(yuǎn)
    甲狀腺乳頭狀癌頸部淋巴結(jié)轉(zhuǎn)移的術(shù)前高頻超聲診斷分析
    Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity?
    中國(guó)畫(huà)《山居祥夜》
    有所見(jiàn),有所鑒——王鵬眼鏡40周年慶典
    跟著王鵬叔叔拍雪豹
    神奇的線條
    童話世界(2018年11期)2018-05-28 02:23:04
    藝術(shù)百家:王鵬 張凱雷
    王鵬中國(guó)畫(huà)作品
    Tracking algorithm of BPSK signal in low bit SNR and high dynamic scenarios
    中国国产av一级| 免费看不卡的av| 亚洲经典国产精华液单| 国产精品成人在线| 超碰av人人做人人爽久久| 狂野欧美白嫩少妇大欣赏| 直男gayav资源| av在线亚洲专区| 18+在线观看网站| 成人亚洲欧美一区二区av| 欧美bdsm另类| 天天躁日日操中文字幕| 亚洲精品456在线播放app| 午夜免费男女啪啪视频观看| 三级国产精品欧美在线观看| 大片电影免费在线观看免费| 97热精品久久久久久| 成人二区视频| 久久久久国产网址| 亚洲美女视频黄频| 嫩草影院入口| 日本三级黄在线观看| 一个人看视频在线观看www免费| 亚洲精品视频女| 少妇的逼好多水| 婷婷色综合www| 直男gayav资源| 久久久久久久久久久免费av| 精品久久久久久久久亚洲| 欧美性感艳星| 极品教师在线视频| 欧美+日韩+精品| 国产永久视频网站| 精品久久国产蜜桃| 国产精品一区www在线观看| 免费少妇av软件| 全区人妻精品视频| 亚州av有码| 国语对白做爰xxxⅹ性视频网站| 九九爱精品视频在线观看| 日韩国内少妇激情av| 亚洲精品,欧美精品| 激情五月婷婷亚洲| 狂野欧美白嫩少妇大欣赏| 免费人成在线观看视频色| 高清午夜精品一区二区三区| 18禁裸乳无遮挡动漫免费视频 | 我的老师免费观看完整版| 丰满人妻一区二区三区视频av| 97热精品久久久久久| 久久精品国产鲁丝片午夜精品| 色综合色国产| 日日撸夜夜添| 在线 av 中文字幕| 欧美高清成人免费视频www| 亚洲精品亚洲一区二区| 日韩强制内射视频| 少妇熟女欧美另类| 亚洲欧美日韩东京热| 日韩欧美精品v在线| 综合色丁香网| 亚洲不卡免费看| 亚洲最大成人中文| 日韩制服骚丝袜av| 老司机影院成人| 大又大粗又爽又黄少妇毛片口| 永久网站在线| 亚洲精品国产色婷婷电影| 亚洲人与动物交配视频| 亚洲最大成人中文| 色吧在线观看| 能在线免费看毛片的网站| 高清在线视频一区二区三区| 寂寞人妻少妇视频99o| 亚洲国产欧美在线一区| 狂野欧美白嫩少妇大欣赏| 另类亚洲欧美激情| 一区二区三区精品91| 在线观看国产h片| 麻豆乱淫一区二区| 日本熟妇午夜| 18禁裸乳无遮挡动漫免费视频 | 久久99精品国语久久久| 亚洲欧美日韩卡通动漫| 老师上课跳d突然被开到最大视频| 成人亚洲欧美一区二区av| 一级毛片 在线播放| 精品久久久精品久久久| 国产日韩欧美在线精品| 婷婷色麻豆天堂久久| 青春草亚洲视频在线观看| 日韩一区二区三区影片| 精品少妇黑人巨大在线播放| 久久久成人免费电影| 精品久久久久久久末码| 亚洲三级黄色毛片| 精品人妻偷拍中文字幕| 欧美性猛交╳xxx乱大交人| 啦啦啦啦在线视频资源| 在线a可以看的网站| 免费不卡的大黄色大毛片视频在线观看| 日本欧美国产在线视频| 亚洲丝袜综合中文字幕| 欧美日韩在线观看h| 国产黄片视频在线免费观看| 国产色爽女视频免费观看| 纵有疾风起免费观看全集完整版| 99九九线精品视频在线观看视频| 亚洲国产成人一精品久久久| 日本-黄色视频高清免费观看| 一级片'在线观看视频| 水蜜桃什么品种好| 十八禁网站网址无遮挡 | 男女边摸边吃奶| 99九九线精品视频在线观看视频| 亚洲精品一区蜜桃| 欧美精品一区二区大全| 99九九线精品视频在线观看视频| 九九爱精品视频在线观看| 国产有黄有色有爽视频| 精品一区在线观看国产| 少妇熟女欧美另类| 国产一区二区三区综合在线观看 | 嫩草影院入口| 波多野结衣巨乳人妻| 国产午夜精品久久久久久一区二区三区| 综合色丁香网| 一级爰片在线观看| 街头女战士在线观看网站| 免费观看性生交大片5| 久久精品国产a三级三级三级| 欧美日韩一区二区视频在线观看视频在线 | 免费观看性生交大片5| av线在线观看网站| 日韩人妻高清精品专区| 一二三四中文在线观看免费高清| 黄色欧美视频在线观看| 国产一区二区三区av在线| 欧美成人a在线观看| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 日日啪夜夜撸| 黄色欧美视频在线观看| 黄片无遮挡物在线观看| 午夜老司机福利剧场| 大又大粗又爽又黄少妇毛片口| 国产极品天堂在线| 亚洲aⅴ乱码一区二区在线播放| 新久久久久国产一级毛片| 我的老师免费观看完整版| 中国国产av一级| 国产欧美日韩一区二区三区在线 | 秋霞在线观看毛片| 国产男女超爽视频在线观看| 综合色av麻豆| 中文字幕制服av| 一级毛片黄色毛片免费观看视频| 亚洲av一区综合| 免费看av在线观看网站| 精品国产露脸久久av麻豆| 久久久久久国产a免费观看| 欧美丝袜亚洲另类| 全区人妻精品视频| 我要看日韩黄色一级片| 亚洲天堂国产精品一区在线| 2021天堂中文幕一二区在线观| 国产成人免费无遮挡视频| 国产亚洲av片在线观看秒播厂| 麻豆久久精品国产亚洲av| 欧美一区二区亚洲| 国产精品麻豆人妻色哟哟久久| 久久久亚洲精品成人影院| 精品少妇久久久久久888优播| 直男gayav资源| 国产爱豆传媒在线观看| 亚洲精品久久午夜乱码| 亚洲三级黄色毛片| 少妇人妻 视频| 日本欧美国产在线视频| 大香蕉久久网| av一本久久久久| 嘟嘟电影网在线观看| 大陆偷拍与自拍| 成人特级av手机在线观看| 久久久久久久国产电影| 亚洲一区二区三区欧美精品 | 国产成人精品久久久久久| 中国国产av一级| 亚洲国产精品国产精品| 91aial.com中文字幕在线观看| 97热精品久久久久久| 午夜免费观看性视频| 亚洲熟女精品中文字幕| 黄色视频在线播放观看不卡| 看免费成人av毛片| 国产精品三级大全| 97在线人人人人妻| 日韩av不卡免费在线播放| 国产免费视频播放在线视频| 亚洲精品一二三| 一区二区av电影网| 久久久久精品性色| 国产av码专区亚洲av| 搡老乐熟女国产| 高清在线视频一区二区三区| 亚洲成人中文字幕在线播放| 中文乱码字字幕精品一区二区三区| 91狼人影院| 免费电影在线观看免费观看| 香蕉精品网在线| 国产午夜福利久久久久久| 校园人妻丝袜中文字幕| 免费黄频网站在线观看国产| eeuss影院久久| 中文乱码字字幕精品一区二区三区| 天天一区二区日本电影三级| 日韩强制内射视频| 精品一区二区三卡| 七月丁香在线播放| 三级国产精品片| 精品国产露脸久久av麻豆| 99九九线精品视频在线观看视频| 国产探花在线观看一区二区| 久久久久久久久大av| 少妇熟女欧美另类| 纵有疾风起免费观看全集完整版| 插阴视频在线观看视频| 免费大片黄手机在线观看| 九色成人免费人妻av| 成年av动漫网址| 亚洲精品自拍成人| 大香蕉97超碰在线| 内射极品少妇av片p| 黑人高潮一二区| 三级国产精品片| 肉色欧美久久久久久久蜜桃 | av福利片在线观看| 校园人妻丝袜中文字幕| 97超碰精品成人国产| 日本wwww免费看| 最近的中文字幕免费完整| h日本视频在线播放| 国产精品爽爽va在线观看网站| 极品少妇高潮喷水抽搐| 欧美日韩精品成人综合77777| 精品一区二区三区视频在线| 日本免费在线观看一区| 国产免费视频播放在线视频| 特级一级黄色大片| 亚洲av福利一区| 18禁动态无遮挡网站| 亚洲精品aⅴ在线观看| 免费观看无遮挡的男女| 色5月婷婷丁香| 在线观看三级黄色| 精品99又大又爽又粗少妇毛片| 亚洲av中文av极速乱| 午夜老司机福利剧场| 国产精品99久久久久久久久| 一级毛片电影观看| av在线老鸭窝| 七月丁香在线播放| 久久精品国产亚洲av天美| 2022亚洲国产成人精品| 乱系列少妇在线播放| 老司机影院毛片| av在线天堂中文字幕| 成人美女网站在线观看视频| 国产成人91sexporn| 婷婷色av中文字幕| 2021天堂中文幕一二区在线观| 好男人在线观看高清免费视频| 99久久九九国产精品国产免费| 综合色av麻豆| 久久久精品免费免费高清| av免费在线看不卡| 亚洲不卡免费看| 街头女战士在线观看网站| 亚洲国产色片| 麻豆久久精品国产亚洲av| 大片免费播放器 马上看| 国产伦理片在线播放av一区| 久久ye,这里只有精品| 国产成人a区在线观看| 日韩精品有码人妻一区| 美女视频免费永久观看网站| 国产精品成人在线| 青春草国产在线视频| 纵有疾风起免费观看全集完整版| 热99国产精品久久久久久7| 久久女婷五月综合色啪小说 | 人妻 亚洲 视频| 国产成人91sexporn| 久热久热在线精品观看| 一区二区三区精品91| 国产精品一区www在线观看| 在线天堂最新版资源| 少妇猛男粗大的猛烈进出视频 | 欧美日韩国产mv在线观看视频 | 日韩中字成人| 亚洲精品456在线播放app| 成人国产av品久久久| 免费看a级黄色片| 男人爽女人下面视频在线观看| 久久女婷五月综合色啪小说 | kizo精华| 综合色av麻豆| 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 亚洲三级黄色毛片| 国产成人精品婷婷| 亚洲三级黄色毛片| 国产av不卡久久| videos熟女内射| 久久精品国产自在天天线| 久久精品久久久久久久性| 男的添女的下面高潮视频| 亚洲va在线va天堂va国产| 大香蕉久久网| 久久韩国三级中文字幕| 成人免费观看视频高清| 校园人妻丝袜中文字幕| 国产成人freesex在线| 欧美性猛交╳xxx乱大交人| 80岁老熟妇乱子伦牲交| 欧美另类一区| 国产又色又爽无遮挡免| 舔av片在线| 亚洲av中文字字幕乱码综合| 国产成人福利小说| a级一级毛片免费在线观看| 各种免费的搞黄视频| 久久精品国产亚洲av天美| 国产一区二区在线观看日韩| 亚洲精品国产av蜜桃| 国产午夜精品久久久久久一区二区三区| 午夜激情福利司机影院| 国产极品天堂在线| 韩国高清视频一区二区三区| 91aial.com中文字幕在线观看| 久久人人爽人人片av| 久久久亚洲精品成人影院| 中文乱码字字幕精品一区二区三区| av.在线天堂| 好男人视频免费观看在线| 黄色一级大片看看| av卡一久久| 人妻制服诱惑在线中文字幕| 少妇猛男粗大的猛烈进出视频 | 在现免费观看毛片| 永久网站在线| av女优亚洲男人天堂| 成年女人看的毛片在线观看| 毛片女人毛片| 午夜福利网站1000一区二区三区| 黄色视频在线播放观看不卡| 亚洲精品日韩在线中文字幕| 国产精品一二三区在线看| 婷婷色麻豆天堂久久| 久久久久国产精品人妻一区二区| 日产精品乱码卡一卡2卡三| 国产黄片美女视频| 麻豆国产97在线/欧美| 国产免费又黄又爽又色| 精品午夜福利在线看| av黄色大香蕉| 亚洲一级一片aⅴ在线观看| av黄色大香蕉| av又黄又爽大尺度在线免费看| 老师上课跳d突然被开到最大视频| 免费av毛片视频| 日日啪夜夜爽| 最近最新中文字幕免费大全7| 日日啪夜夜爽| 国产成年人精品一区二区| 久久久久久久亚洲中文字幕| 大片电影免费在线观看免费| 国产午夜精品一二区理论片| 嫩草影院精品99| 午夜免费男女啪啪视频观看| 亚洲av一区综合| 99re6热这里在线精品视频| 午夜免费鲁丝| www.av在线官网国产| 久久久精品94久久精品| 亚洲精品一区蜜桃| 各种免费的搞黄视频| 国产成人a区在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品乱码久久久v下载方式| 日韩不卡一区二区三区视频在线| 国产大屁股一区二区在线视频| 国产精品国产三级国产av玫瑰| av在线老鸭窝| 国产精品三级大全| 中国美白少妇内射xxxbb| 18禁在线播放成人免费| 天天一区二区日本电影三级| 嫩草影院入口| 日本-黄色视频高清免费观看| 国产精品嫩草影院av在线观看| 国产成人精品久久久久久| 男人爽女人下面视频在线观看| 国内少妇人妻偷人精品xxx网站| 丝袜脚勾引网站| 亚洲激情五月婷婷啪啪| 97精品久久久久久久久久精品| 男女边摸边吃奶| 久久久久性生活片| 久久国产乱子免费精品| 99久久人妻综合| 一级毛片 在线播放| 一级爰片在线观看| 丰满乱子伦码专区| 亚洲在久久综合| 91在线精品国自产拍蜜月| 成人免费观看视频高清| 男插女下体视频免费在线播放| 国产精品一区二区性色av| 国产成人aa在线观看| 亚洲精品亚洲一区二区| 一级av片app| 3wmmmm亚洲av在线观看| av在线app专区| 777米奇影视久久| 欧美潮喷喷水| 青春草亚洲视频在线观看| 伊人久久精品亚洲午夜| 18禁在线无遮挡免费观看视频| 色网站视频免费| 男人和女人高潮做爰伦理| 中文天堂在线官网| 人妻系列 视频| 亚洲成人中文字幕在线播放| 极品少妇高潮喷水抽搐| 少妇的逼好多水| 欧美高清成人免费视频www| 综合色丁香网| 成人亚洲欧美一区二区av| 色婷婷久久久亚洲欧美| 亚洲av国产av综合av卡| 特大巨黑吊av在线直播| 中国三级夫妇交换| 日韩欧美一区视频在线观看 | 欧美国产精品一级二级三级 | 日韩欧美一区视频在线观看 | 久久久久久久午夜电影| 伊人久久精品亚洲午夜| 一本久久精品| 22中文网久久字幕| 麻豆乱淫一区二区| 免费播放大片免费观看视频在线观看| 在线观看一区二区三区激情| 一级毛片电影观看| 久久久久国产网址| 久久国内精品自在自线图片| 日韩人妻高清精品专区| 晚上一个人看的免费电影| 久久久久久伊人网av| 国产淫语在线视频| 日韩国内少妇激情av| 综合色丁香网| 亚洲成人av在线免费| 国产淫片久久久久久久久| 亚洲真实伦在线观看| 婷婷色av中文字幕| 一级毛片 在线播放| 久热这里只有精品99| 中国国产av一级| 少妇高潮的动态图| 国产亚洲av嫩草精品影院| 亚洲精品乱码久久久久久按摩| 热re99久久精品国产66热6| 日韩不卡一区二区三区视频在线| 在线观看一区二区三区激情| 中国国产av一级| 18+在线观看网站| av国产精品久久久久影院| 成人亚洲欧美一区二区av| 国产老妇伦熟女老妇高清| 国产亚洲5aaaaa淫片| 亚洲国产成人一精品久久久| 五月玫瑰六月丁香| 在线播放无遮挡| 免费观看性生交大片5| 高清午夜精品一区二区三区| 人妻系列 视频| 精品国产三级普通话版| 久久精品熟女亚洲av麻豆精品| 嫩草影院精品99| 国产精品.久久久| 国产精品熟女久久久久浪| 在线观看av片永久免费下载| 91精品国产九色| 日日撸夜夜添| 亚洲精华国产精华液的使用体验| 嫩草影院入口| 男女边摸边吃奶| 欧美极品一区二区三区四区| 又粗又硬又长又爽又黄的视频| 麻豆成人av视频| 王馨瑶露胸无遮挡在线观看| 亚洲精品亚洲一区二区| 高清毛片免费看| 国产男人的电影天堂91| 色5月婷婷丁香| 性色avwww在线观看| 午夜日本视频在线| 别揉我奶头 嗯啊视频| 国产精品人妻久久久影院| 色5月婷婷丁香| 能在线免费看毛片的网站| 亚洲精品乱码久久久久久按摩| 亚洲精品国产av蜜桃| 亚洲自偷自拍三级| 99re6热这里在线精品视频| 亚洲欧美清纯卡通| 久久久午夜欧美精品| 亚洲精品乱码久久久v下载方式| 国产男女内射视频| 看免费成人av毛片| 亚洲国产精品成人久久小说| 精品国产乱码久久久久久小说| 青春草视频在线免费观看| 国产黄片视频在线免费观看| 人妻夜夜爽99麻豆av| 国产精品久久久久久久久免| 亚洲精品色激情综合| 日日摸夜夜添夜夜添av毛片| 久久久久九九精品影院| 欧美亚洲 丝袜 人妻 在线| 又爽又黄a免费视频| 激情 狠狠 欧美| 最近中文字幕2019免费版| 久久精品国产亚洲网站| www.色视频.com| 日韩在线高清观看一区二区三区| 一个人观看的视频www高清免费观看| 交换朋友夫妻互换小说| 狠狠精品人妻久久久久久综合| 国产亚洲91精品色在线| 国产探花极品一区二区| 国产淫片久久久久久久久| 久久精品国产自在天天线| 可以在线观看毛片的网站| 卡戴珊不雅视频在线播放| 日本-黄色视频高清免费观看| 亚洲精品中文字幕在线视频 | 国产免费一级a男人的天堂| 国产精品久久久久久精品古装| 国产精品人妻久久久影院| 精品少妇黑人巨大在线播放| 久久久久网色| 日韩精品有码人妻一区| 欧美变态另类bdsm刘玥| 18禁在线无遮挡免费观看视频| 神马国产精品三级电影在线观看| 97在线人人人人妻| 国产精品女同一区二区软件| 国产成人精品久久久久久| 如何舔出高潮| 国产一区二区亚洲精品在线观看| 夫妻性生交免费视频一级片| 成年免费大片在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久大av| 国产伦理片在线播放av一区| 毛片女人毛片| 久久精品国产自在天天线| 午夜视频国产福利| 精品久久久精品久久久| 深夜a级毛片| 久久精品熟女亚洲av麻豆精品| 午夜福利视频精品| 亚洲av国产av综合av卡| av在线老鸭窝| 国精品久久久久久国模美| 国产乱人视频| 精品99又大又爽又粗少妇毛片| 精品一区在线观看国产| 在线天堂最新版资源| 蜜桃亚洲精品一区二区三区| 有码 亚洲区| 夫妻性生交免费视频一级片| 欧美丝袜亚洲另类| 国产精品人妻久久久影院| 精品酒店卫生间| 久久人人爽人人片av| 亚洲av免费在线观看| 岛国毛片在线播放| 最近2019中文字幕mv第一页| 最近最新中文字幕免费大全7| 国产成人freesex在线| 水蜜桃什么品种好| 色吧在线观看| 黄色配什么色好看| 97精品久久久久久久久久精品| 亚洲一级一片aⅴ在线观看| 久久鲁丝午夜福利片| 亚洲精品第二区| 日韩三级伦理在线观看| 国产欧美亚洲国产| 秋霞在线观看毛片| xxx大片免费视频| 久久久久久久久久久免费av| 色视频www国产| 亚洲内射少妇av| 国产老妇女一区| 特大巨黑吊av在线直播| 日韩强制内射视频| 国内精品美女久久久久久| 99久久人妻综合| 天美传媒精品一区二区| 男女边摸边吃奶| 在线观看一区二区三区激情|