劉云逸
摘? 要:近年來(lái),運(yùn)動(dòng)所導(dǎo)致的慢性損傷一直是一個(gè)大家比較關(guān)注的熱點(diǎn)研究方向。而這其中運(yùn)動(dòng)導(dǎo)致的肌腱退行性改變也一直是此研究領(lǐng)域里面的一個(gè)重點(diǎn)和難點(diǎn)。一般相關(guān)研究大多是從各細(xì)胞因子、炎癥因子之間的相互作用來(lái)進(jìn)行研究,缺乏從細(xì)胞分化以及細(xì)胞外環(huán)境改變對(duì)分化影響的角度進(jìn)行的研究。因此,本文對(duì)應(yīng)力、細(xì)胞外基質(zhì)與肌腱細(xì)胞分化之間的關(guān)系進(jìn)行綜述,以期對(duì)相關(guān)領(lǐng)域的研究者有所啟發(fā)。
關(guān)鍵詞:運(yùn)動(dòng)損傷? 分化? 細(xì)胞外基質(zhì)? 機(jī)理研究
中圖分類(lèi)號(hào):G804? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A? ? ? ? ? ? ? ? ? ? ? ? 文章編號(hào):2095-2813(2019)02(a)-0028-03
隨著生活水平的日益提高,人們對(duì)于自身的健康也越來(lái)越重視,而通過(guò)運(yùn)動(dòng)來(lái)獲取健康是一個(gè)越來(lái)越受歡迎的選擇。但是,不合理的運(yùn)動(dòng)導(dǎo)致的損傷也成為了大家普遍面臨的困擾,這其中過(guò)度使用性肌腱?。╫veruse-induced)是發(fā)生的最多的運(yùn)動(dòng)損傷之一,尤其是跟腱、髕腱和肩袖肌腱是最容易發(fā)病的三個(gè)部位[1-2]因此,對(duì)于過(guò)度使用性肌腱病的研究也是當(dāng)今的研究熱點(diǎn)之一。通過(guò)相關(guān)領(lǐng)域的專(zhuān)家的不懈努力,我們對(duì)于過(guò)度使用性肌腱病的了解也越來(lái)越深。對(duì)于過(guò)度使用性肌腱病,它的一個(gè)比較典型的變化就是其細(xì)胞外基質(zhì)的變化,而細(xì)胞外基質(zhì)的變化會(huì)導(dǎo)致肌腱的質(zhì)量下降,進(jìn)一步的會(huì)慢慢產(chǎn)生慢性疼痛,從而最終會(huì)產(chǎn)生臨床診斷意義下的腱病,影響患者的生活質(zhì)量[3-5]而運(yùn)動(dòng)所產(chǎn)生的應(yīng)力變化是這一系列細(xì)胞外基質(zhì)改變的關(guān)鍵物理因素,也因此當(dāng)前的腱病研究也多著力于應(yīng)力、細(xì)胞外基質(zhì)及相關(guān)細(xì)胞因子之間變化的關(guān)系[6]。但是,我們不應(yīng)該僅僅看到細(xì)胞外基質(zhì)及相關(guān)細(xì)胞因子的變化,我們還應(yīng)該關(guān)注分泌這些因子的本體——細(xì)胞的變化。應(yīng)力會(huì)改變細(xì)胞外環(huán)境,而細(xì)胞外環(huán)境也會(huì)進(jìn)一步的去影響細(xì)胞的分化,分化導(dǎo)致細(xì)胞類(lèi)型的改變進(jìn)一步影響肌腱質(zhì)量,從而影響整個(gè)腱病的進(jìn)程[7]。因此,弄清楚應(yīng)力、細(xì)胞外基質(zhì)與肌腱細(xì)胞分化之間的關(guān)系將為我們進(jìn)一步深入的探尋過(guò)度使用性肌腱病的治病機(jī)理以及治療手段提供不小的助力。
1? 細(xì)胞外基質(zhì)概述
細(xì)胞外基質(zhì)是人體組織的重要組成部分,其能夠影響細(xì)胞的生長(zhǎng)、發(fā)育與死亡,細(xì)胞的形態(tài),細(xì)胞的分化,還有細(xì)胞的轉(zhuǎn)移都會(huì)受到細(xì)胞外基質(zhì)的調(diào)控。細(xì)胞外基質(zhì)利用黏附作用產(chǎn)生的力能夠動(dòng)態(tài)地感知細(xì)胞外環(huán)境的變化。并且由整合素和銜接蛋白介導(dǎo),細(xì)胞外基質(zhì)會(huì)與細(xì)胞微絲系統(tǒng)之間形成物理連接和調(diào)控的聯(lián)系團(tuán),這一部分也屬于細(xì)胞骨架的延伸。整合素屬于細(xì)胞表面分子,其與基質(zhì)中配體的結(jié)合控制著細(xì)胞外基質(zhì)的黏附作用。整合素的胞外區(qū)和胞內(nèi)區(qū)分別能夠與細(xì)胞外基質(zhì)和細(xì)胞骨架相連,當(dāng)整合素和其配體結(jié)合后會(huì)迅速與細(xì)胞內(nèi)的骨架結(jié)合,之后會(huì)聚合在一起形成黏著斑。細(xì)胞外基質(zhì)中相關(guān)感應(yīng)蛋白、黏著斑是細(xì)胞感受外環(huán)境變化的關(guān)鍵傳感器,正是這些結(jié)構(gòu)讓細(xì)胞能夠?qū)ν饨鐟?yīng)力變化產(chǎn)生相應(yīng)反應(yīng)[8,9]。
2? 力學(xué)應(yīng)力與肌腱細(xì)胞外基質(zhì)
肌腱細(xì)胞在機(jī)體內(nèi)的神經(jīng)-體液調(diào)控作用下,可持續(xù)地合成和分泌膠原和蛋白多糖,并降解和吸收代謝產(chǎn)物,調(diào)節(jié)著細(xì)胞周?chē)h(huán)境、維持新陳代謝的穩(wěn)定。力學(xué)應(yīng)力會(huì)通過(guò)改變肌腱細(xì)胞間縫隙連接的通透性從而控制細(xì)胞間的信號(hào)傳遞進(jìn)而影響整體的肌腱細(xì)胞代謝情況[10]。不同的應(yīng)力條件下,肌腱細(xì)胞外基質(zhì)會(huì)有不同的反應(yīng)。
在無(wú)應(yīng)力作用下,與剛?cè)〕龅募‰旖M織細(xì)胞進(jìn)行對(duì)比,非受力狀態(tài)體外培養(yǎng)48h后肌腱細(xì)胞的基質(zhì)金屬蛋白酶3\13的基因表達(dá)上調(diào),而Ⅰ型膠原和decorin的基因表達(dá)沒(méi)有顯著變化,這提示肌腱在非受力狀態(tài)下會(huì)趨向于降解,膠原變性增加且糖胺聚糖總量減少[11,12]。
在靜態(tài)應(yīng)力作用下,組織學(xué)染色后會(huì)發(fā)現(xiàn)膠原纖維的排列相對(duì)非受力組會(huì)更有序,基質(zhì)沉積增加;電鏡下發(fā)現(xiàn)膠原纖維增粗;肌腱組織變細(xì)、質(zhì)地變硬,力學(xué)強(qiáng)度增強(qiáng)。但在靜態(tài)拉力下培養(yǎng)出的膠原纖維排序分布仍不十分理想[13]。
對(duì)于動(dòng)態(tài)應(yīng)力作用,當(dāng)采用單軸循環(huán)拉力系統(tǒng)對(duì)肌腱細(xì)胞與聚乙醇酸纖維支架復(fù)合物施以10周的動(dòng)態(tài)拉力時(shí),與非受力組相比會(huì)發(fā)現(xiàn)Ⅴ型膠原和MMP-3的表達(dá)下調(diào),TIMP-1、3和MMP-1、2表達(dá)無(wú)顯著變化,動(dòng)態(tài)應(yīng)力組明顯提高了Ⅰ型及Ⅳ型膠原以及MMP-14的基因表達(dá)量。
此外肌腱細(xì)胞長(zhǎng)軸方向與拉力一致,且細(xì)胞之間相互平行,這表明肌腱細(xì)胞分布會(huì)被所受應(yīng)力影響且同時(shí)存在膠原的合成和分解代謝[14]。另有研究表明,肌腱細(xì)胞的合成與分解代謝的主次與其所受應(yīng)力大小和時(shí)間直接相關(guān)。當(dāng)肌腱細(xì)胞所受應(yīng)力超過(guò)自身耐受幅度時(shí)就會(huì)因結(jié)構(gòu)被破壞而趨于降解[15]。而適當(dāng)?shù)倪\(yùn)動(dòng)使得肌腱細(xì)胞膠原合成和降解平衡,對(duì)降低肌腱損傷的發(fā)生率并促進(jìn)肌腱質(zhì)量有益[16]。
3? 細(xì)胞外基質(zhì)與肌腱細(xì)胞分化
肌腱細(xì)胞最初的來(lái)源是胚胎時(shí)期的間充質(zhì)細(xì)胞,其由腱細(xì)胞和成纖維細(xì)胞兩種細(xì)胞構(gòu)成,并且這兩種細(xì)胞之間可互相轉(zhuǎn)換。腱細(xì)胞呈纖維狀排列,細(xì)胞核為梭形;成纖維細(xì)胞的形狀不規(guī)則或?yàn)槁褕A形,核為圓塊狀。在HE染色中常難以區(qū)分,故統(tǒng)稱(chēng)為肌腱細(xì)胞。肌腱組織內(nèi)還含有一種重要的干細(xì)胞,既肌腱干細(xì)胞,它擁有較強(qiáng)的增殖及向肌腱分化的能力,能夠很好地促進(jìn)損傷后的肌腱組織的結(jié)構(gòu)及功能的恢復(fù),肌腱干細(xì)胞已經(jīng)成為肌腱損傷后細(xì)胞治療的主要細(xì)胞來(lái)源[17]。而細(xì)胞外基質(zhì)則對(duì)于肌腱干細(xì)胞的分化有著非常重要的作用。
相關(guān)研究表明,成纖維細(xì)胞分泌的細(xì)胞外基質(zhì)能夠直接影響干細(xì)胞、內(nèi)皮細(xì)胞及腫瘤細(xì)胞等細(xì)胞的有絲分裂活動(dòng),對(duì)于促進(jìn)創(chuàng)傷的愈合起著重要的作用[18]。對(duì)于肌腱干細(xì)胞,成纖維細(xì)胞分泌的細(xì)胞外基質(zhì)會(huì)有效的增加肌腱干細(xì)胞向腱細(xì)胞分化相關(guān)基因的表達(dá),其中I型膠原和Scleraxis對(duì)于維持肌腱穩(wěn)態(tài)及促進(jìn)肌腱干細(xì)胞向腱細(xì)胞分化起著至關(guān)重要的作用,也是今后相關(guān)研究的重點(diǎn)[19]。
4? 結(jié)語(yǔ)
肌腱細(xì)胞主要由成纖維細(xì)胞和腱細(xì)胞兩種細(xì)胞構(gòu)成,而肌腱干細(xì)胞對(duì)于肌腱細(xì)胞的損傷恢復(fù)起著重要作用。無(wú)應(yīng)力作用下膠原趨向于分解,靜態(tài)應(yīng)力和動(dòng)態(tài)應(yīng)力作用下都會(huì)使膠原含量增加,且動(dòng)態(tài)應(yīng)力下膠原整體結(jié)構(gòu)會(huì)優(yōu)于靜態(tài)應(yīng)力作用的情況。另外應(yīng)力的大小和時(shí)間也會(huì)綜合影響細(xì)胞外基質(zhì)的成分和結(jié)構(gòu)。細(xì)胞外基質(zhì)中的I型膠原和Scleraxis會(huì)對(duì)肌腱干細(xì)胞的分化產(chǎn)生影響,在一定程度上會(huì)促進(jìn)肌腱干細(xì)胞向肌腱細(xì)胞的轉(zhuǎn)化。因此進(jìn)一步研究腱病進(jìn)程中I型膠原和Scleraxis對(duì)肌腱干細(xì)胞的影響非常有必要。
參考文獻(xiàn)
[1] Zwerver J,Bredeweg SW,Van Den Akker-Scheek I. Prevalence of Jumper's knee among nonelite athletes from different sports: a cross-sectional survey[J].Am J Sports Med,2011,39(9):1984-1988.
[2] Tashjian RZ.Epidemiology, natural history, and indications for treatment of rotator cuff tears[J].Clin Sports Med,2012,31(4):589-604.
[3] Peers KH,Lysens RJ.Patellar tendinopathy in athletes: current diagnostic and therapeutic recommendations[J]. Sports Med,2005,35(1):71-87.
[4] Gibbon WW,Cooper JR,Radcliffe GS.Distribution of sonographically detected tendon abnormalities in patients with a clinical diagnosis of chronic achilles tendinosis[J].J Clin Ultrasound,2000,28(2):61-66.
[5] Soslowsky LJ,Thomopoulos S,Tun S,et al.Neer Award 1999. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study[J].J Shoulder Elbow Surg,2000,9(2):79-84.
[6] Heinemeier KM,Skovgaard D,Bayer M L,et al.Uphill running improves rat Achilles tendon tissue mechanical properties and alters gene expression without inducing pathological changes[J].J Appl Physiol,2012, 113(5):827-836.
[7] Li HW,Gao WW,Tang YN,et al.Temporal Expression Of VEGF, bFGF And CRP In PBTJ In Vivo Cyclical Loading Model[J].Medicine and Science in Sports and Exercise,2014,46(5):639.
[8] Yip AK,Iwasaki K,Ursekar C,et al.Cellular Response to Substrate Rigidity Is Governed by Either Stress or Strain[J].Biophysical Journal,2013,104(1):19-29.
[9] Discher DE,Janmey P,Wang YL.Tissue cells feel and respond to the stiffness of their substrate[J].Science,2005,310(5751):1139-1143.
[10] Maeda E,Ye SJ,Wang W,et al.Gap junction permeability between tenocytes within tendon fascicles is suppressed by tensile loading[J].Biomechanics and Modeling in Mechanobiology,2012,11(3-4):439-447.
[11] Abreu EL,Leigh D,Derwin KA.Effect of altered mechanical load conditions on the structure and function of cultured tendon fascicles[J].J Orthop Res,2008,26(3):364-373.
[12] Ma Y,Yan X,Zhao H,et al.Effects of interleukin-1 receptor antagonist on collagen and matrix metalloproteinases in stress-shielded achilles tendons of rats[J].Orthopedics,2012,35(8):1238-1244.
[13] Deng D,Liu W,Xu F,et al.Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain[J].Biomaterials,2009,30(35):6724-6730.
[14] Masic A,Bertinetti L,Schuetz R,et al.Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized Raman spectroscopy[J].Biomacromolecules,2011,12(11):3989-3996.
[15] Legerlotz K,Jones GC,Screen HR,et al.Cyclic loading of tendon fascicles using a novel fatigue loading system increases interleukin-6 expression by tenocytes[J]. Scand J Med Sci Sports,2013,23(1):31-37.
[16] Kaux J F,Drion P,Libertiaux V,et al.Eccentric training improves tendon biomechanical properties: a rat model[J].J Orthop Res,2013,31(1):119-124.
[17] Bi Y,Ehirchiou D,Kilts T M,et al.Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche[J].Nat Med,2007,13(10):1219-1227.
[18] Abraham S,Riggs MJ, Nelson K,et al.Characterization of human fibroblast-derived extracellular matrix components for human pluripotent stem cell propagation[J].Acta Biomater,2010,6(12):4622-4633.
[19] Swiontkowski MF,Tolo VT.Skin-Derived Fibroblasts for the Treatment of Refractory Achilles Tendinosis: Preliminary Short-Term Results[J].Journal of Bone and Joint Surgery-American Volume,2015,97A(12):1011.