• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cenozoic Ephedraceae adaptation to global cooling in northwestern China

    2011-12-09 09:36:32YunFaMiaoXiaoLiYanYaJunShaoBaoYang
    Sciences in Cold and Arid Regions 2011年5期

    YunFa Miao , XiaoLi Yan , YaJun Shao , Bao Yang

    1. Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

    2. MOE Key Laboratory of Western China’s Environmental Systems & West Environment and Climate Changes Institute, Lanzhou University, Lanzhou 730000, China

    Cenozoic Ephedraceae adaptation to global cooling in northwestern China

    YunFa Miao1*, XiaoLi Yan2, YaJun Shao1, Bao Yang1

    1. Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

    2. MOE Key Laboratory of Western China’s Environmental Systems & West Environment and Climate Changes Institute, Lanzhou University, Lanzhou 730000, China

    Ephedraceae has been applied largely as a drought indicator to reconstruct Cenozoic paleoenvironment and paleoclimate. However, temperature indication of Ephedraceae has been largely ignored. Here, we provide a record of Ephedraceae percentage spanning from the Early Eocene to Middle Miocene (52-17 Myr B.P.) in the Xining Basin, northeastern Tibetan Plateau. This record is comparable to a compiled Cenozoic Ephedraceae record from five other basins in northwestern China. Both records show Ephedraceae percentages were high during the Early Eocene, and decreased gradually from the Middle Eocene to Late Oligocene,then maintained a stable level since the Late Oligocene. By comparing these two Ephedraceae records with the marine oxygen isotope record, we discuss the variation of Ephedraceae percentage in Middle Cenozoic in response to global temperature change.Ephedraceae percentage was high in the Early Paleogene, associated with subtropical or tropical vegetation types in a global greenhouse climate, and decreased in Early Oligocene, associated with global cooling, suggesting that Ephedraceae is warm-tolerant during the Paleogene. The low Ephedraceae percentages in the Late Oligocene and Miocene were uncoupled with global warming, which may imply that Ephedraceae began to adapt to a eurythermic climate in the inland desert environment of western China. Such adaptation may be a response to the high topography of the Tibetan Plateau.

    Ephedraceae; adaptation; temperature; Tibetan Plateau; Cenozoic

    1. Introduction

    Globally, Cenozoic climate shows a cooling trend starting from approximately 55 Myr B.P. and a series of dramatic cooling events (Zachosetal., 2001), which is linked with the accelerated rate of atmospheric CO2consumption of fast silicate weathering triggered by the Indo-Asian collision and associated tectonic events (e.g., Raymoetal., 1988; Raymo and Ruddiman, 1992; Edmond and Huh, 1997; Wallmann,2001). Regionally, uplift of the Tibetan Plateau and the Himalaya Mountains caused dramatic aridification in Central Asia and the onset of monsoonal climate in East Asia(Kutzbachetal., 1989; Ruddimanetal., 1989; Harris, 2006).Both global and regional climate changes were recorded in sediments, which may be revealed by climatic proxies (e.g.,δ18O values of carbonate; pollen).

    Palynological analysis is a well-established method for reconstructing paleoclimate and paleoenvironment (e.g.,temperature, precipitation, and elevation), in which Ephedraceae percentage variation is very sensitive to dry climate and is usually attributed to dry conditions due to frequent association with other xerophillous shrubs (e.g.,Nitraria(Zygophyllaceae) and Chenopodiaceae) in arid and semiarid climates (e.g., Krutzsch, 1961; Gurevitchetal.,2002; Yang, 2002; Sun and Wang, 2005). This widely distributed type even became dominant in Cenozoic vegetation assemblages in northwestern China (e.g., Song, 1958; Songetal., 1999; Sun and Wang, 2005). For example, the highest percentages in the Qaidam Basin vary from 10% to 50% of pollen assemblages (Zhuetal., 1985). However, whether Ephedraceae percentage variation is also sensitive to temperature change, it has been ignored in many studies because of a lack of absolute age control (Wangetal., 1990) or low sampling density (Wangetal., 1990; Dupont-Nivetetal.,2008). In this paper, we address the temperature implication of Ephedraceae in the Cenozoic based on pollen records in northwestern China.

    2. Modern Ephedraceae distribution

    Ephedraceae is a desert perennial shrubby gymnosperm,which is mainly distributed in desert and grass zones of Asia,America, Southeastern Europe and Northern Africa (Figure 1a) (Gurevitchetal., 2002; Yang, 2002). Ephedraceae generally grows in arid climates, with very small leaves and low transpiration (Cutlar, 1939; Yang, 2002). In China,Ephedragrows where mean annual temperature (MAT) varies between -4 °C and 12 °C (Zhengetal., 2008), while in northern Africa (Sahara region), it grows where MAT is approximately 30 °C. Therefore, modern Ephedraceae belongs to eurythermic plants.

    Figure 1 Modern Ephedraceae distribution (a) in Eurasian and African regions (grey area) (after Caveney et al., 2001) and (b) Ephedraceae percentage variation in the Xining Basin (palaeomagnetic age control is from Dai etal., 2006)

    3. Geologic background, sampling method and results of the Xining Basin

    Located in the northeastern Tibetan Plateau, the Xining Basin holds over 800-m thick lacustrine saline playa and distal alluvial fan deposits (Daietal., 2006). Previous palynological studies about the deposits show that the climate in this basin is consistent with Cenozoic global cooling (Wangetal., 1990) or strongly influenced by the uplift of the Tibetan Plateau (Dupont-Nivetetal., 2008). However, climate implications of the dominant species of Ephedraceae with nearly the highest percentages in the aforementioned studies were not well discussed. A more detailed palynological record is required to constrain regional climate and reveal Ephedraceae climate implication based on improved palaeomagnostratigraphy. A total of 123 pollen samples were collected through approximately 819-m thick Xiejia section in the Xining Basin (Longetal., 2011).

    Our data provides a record of Ephedraceae percentage spanning the Early Eocene to Middle Miocene (52-17 Myr B.P.) (Daietal., 2006) in the Xining Basin (Figure 1b). During 52-33 Myr B.P., Ephedraceae percentage varied between 20% and 60%, with an average of 28%. Ephedraceae percentage dropped to approximately 20% at 33 Myr B.P. and maintained relatively constant after 33 Myr B.P.

    4. Combined Ephedraceae records from five other basins in northwestern China

    In Asia, climate transformation from a zonal pattern to a monsoon-dominated pattern occurred during the Miocene with the disappearance of typical subtropical aridity and the onset of inland deserts (Liuetal., 1998; Sun and Wang,2005; Guoetal., 2008). Before the Miocene, Ephedraceae was widely distributed in the subtropical arid zone throughout China and even reached to the northern South Yellow Sea Basin, and offshore western Korea (Yietal., 2003).Since the Miocene, the arid zone in Eastern China was replaced by monsoonal climate, and Ephedraceae percentage declined (with occasional occurrence of <1%) due to high precipitation brought by the Asian summer monsoon (Sun and Wang, 2005; Guoetal., 2008). Such precipitation change in the Cenozoic apparently affected Ephedraceae percentage in Eastern China. Therefore, to eliminate the humid response of Ephedraceae percentage, we compared our record of the Xining Basin with the combined Ephedraceae records from five other basins in northwestern China, all of which remained in a dry climate throughout the Cenozoic. These basins include the Tarim, Qaidam, Zhungaer, Jiuquan and Lunpolar basins (Figure 2), and age correlations are summarized in Sun and Wang (2005). Both the total and average percentages of Ephedraceae from the combined records were calculated from original data in the Tarim (Wang, 1990), Qaidam (Zhuetal., 1985), Jiuquan(Ma, 1993), Lunpolar (Song and Liu, 1982) and Zhungaer basins (Sun and Wang, 1990).

    Ephedraceae percentage of the combined records shows that Ephedraceae percentage was high during the Paleocene and Eocene, then decreased dramatically during the Oligocene and remained low through the Miocene,which is similar to Ephedraceae percentage record in the Xining Basin.

    Figure 2 Five basins always in the Cenozoic dry area (shallow grey) in northwestern China based on palynological and paleobotanical data (after Sun and Wang, 2005)

    5. Discussion

    The Ephedraceae record in the Xining Basin and the combined Ephedraceae records in northwestern China are generally comparable to the oxygen isotopic record of marine forams (Figure 3). The oxygen isotopic record of marine forams has been interpreted as a response to global temperature change, with higher δ18O values pointing to lower global temperatures (Zachosetal., 2001). The high Paleocene and Eocene Ephedraceae percentage is associated with low δ18O values, and the decrease of Ephedraceae percentage in Early Oligocene is coeval with an increase of δ18O values. Such co-variation suggests that variation of Ephedraceae percentage is coupled with global climate change in the Early Cenozoic, with high Ephedraceae percentage occurring in a greenhouse climate, and low Ephedraceae percentage in an icehouse climate during the Antarctic ice cap expansion. However,after the Late Oligocene, constant low Ephedraceae percentage was uncoupled with variation of the marine isotopic record, suggesting that Ephedraceae percentage was uncoupled with global warming in the Late Oligocene and cooling since the Middle Miocene (Figure 3). Therefore,Ephedraceae was warm-tolerant type vegetation during the Paleogene and adapted to a eurythermic environment since the Late Oligocene.

    Cenozoic variation of Ephedraceae percentage in northwestern China is also associated with variation of major pollen and spores assemblages. Fossil Ephedraceae of gnetophyte pollen grains dates back to the Triassic, and most of the modern groups diversified within their clade during the Middle Cretaceous (approximately 100 Myr B.P.) and became widely distributed with high abundance from the Middle Cretaceous to Eocene (Campbell, 2002;Judd, 2002). During the warm climate of the Paleocene and Eocene, high percentages of Ephedraceae were always accompanied by a number of tropical or subtropical types of vegetation in six basins (Song and Liu, 1982; Zhuet al.,1985; Wangetal., 1990; Ma, 1993; Songetal., 1999).These vegetation types includeEngelhardtioipollenties(Engelhardtia),Sapotaceoidaepollenites(Sapotaceae),Liquidambarpollenites(Liquidambar),Magnolipollis(Magnoliaceae),Nyssapollenties(Nyssa),Ilexpollenite(Aquifoliaceae),Sapindaceidites(Sapindaceae),Podocarpidites(Podocarpaceae),Meliaceoidites(Meliaceae),Euphorbiacites(Euphorbiaceae),Rhoipites(Anacardiaceae)andRutaceoipollenites(Rutaceae). The high percentage of Ephedraceae and diversity of pollen types associated with abundant tropical and subtropical plant species suggest a warm climate during the Paleocene and Eocene. During the Oligocene, a decrease of Ephedraceae percentage was associated with the occurrence of various conifers, such asPinus,Picea,Abies,Cedrus,TsugaandCupressaceae, and C4plants,e.g., Chenopodiaceae and Compositae. The low Ephedraceae percentage during the Oligocene is associated with the low percentage of subtropical or tropical elements.Miocene pollen assemblages in northwestern China were more diversified than those during the Oligocene, where most subtropical or tropical elements disappeared. However, Ephedraceae percentage maintained low throughout the Late Oligocene up to the present, suggesting that Ephedraceae was uncoupled with local vegetation change.Therefore, pollen and spore assemblages in northwestern China also show that Ephedraceae was warm-tolerant during the Paleogene, and adapted to a eurythermic environment after the Late Oligocene.

    Figure 3 Comparison between Cenozoic records of Ephedraceae percentages in the Xining Basin, combined records of Ephedraceae percentages in the five basins (Tarim, Qaidam, Jiuquan, Lunpolar and Zhungaer basins) in northwestern China with the δ18O record of marine forams (Zachos etal., 2001).

    Uplift of the Tibetan Plateau and retreat of the epicontinental sea, which are closely linked to the Indo-Asian collision since approximately 55 Myr B.P., have triggered dramatic aridification and cooling of the Asian interior and the onset of the Asian monsoonal climate (Harris, 2006;Zhangetal., 2007). Modern East Asian monsoon system is initiated and established during the Miocene based on pollen-vegetation as well as other climatic proxies (Liuetal.,1998; Sun and Wang, 2005; Fanetal., 2006, 2007; Guoet al., 2008). We argue that warm-tolerant Ephedraceae began to inhabit a eurythermic environment since the Late Oligocene which was mainly driven by the uplift of the Tibetan Plateau.

    The Tibetan Plateau progressively gained high elevation and expanded towards northwestern China since approximately 55 Myr B.P. (Tapponnieretal., 2001; Rowley and Currie, 2006; DeCellesetal., 2007; Wangetal., 2008; van der Beeketal., 2009). However, the uplift wasn’t significant enough to change the narrow climate arid belt stretching across China before the Oligocene (Sun and Wang, 2005;Guoetal., 2008). During global climate warming in the Late Oligocene and climatic optimum in Middle Miocene, high topography produced by the uplift of the Tibetan Plateau as well as enlargement of the land surface may have cooled down the interior of northwestern China, and initiated a topographic barrier for water vapor from the oceans. At the same time, Ephedraceae adapted to the cooling rather than migrating or extinction if its germ plasm can adapt itself to environmental change, and thus evolved to a eurythermal type which replaced the warm-tolerant vegetation type, but the exact timing is unclear.

    6. Conclusions

    The record of Ephedraceae percentage in the precisely dated Xining Basin and combined Ephedraceae records from five basins in northwestern China suggest that Ephedraceae was warm-tolerant during the Paleocene and Eocene, and adapted to a cooler climate since the Late Oligocene. The adaptation of Ephedraceae to a eurythermic environment since the Late Oligocene may be mainly driven by the uplift of the Tibetan Plateau.

    This work is supported by NSFC Grants (40802041,41002050) and the Foundation for Excellent Youth Scholars of CAREERI, CAS (51Y184991). We thank Fan MJ for help in English improvement and two anonymous reviewers for their valuable comments and suggestions.

    Campbell NA, Reece JB, 2002. Biology, 6thEdition. Benjamin Cummings,San Francisco.

    Caveney S, Charlet DA, Freitag H, Maier-Stolte M, Starratt AN, 2001. New observations on the secondary chemistry of worldEphedra(Ephedraceae). American Journal of Botany, 88: 1199-1208.

    Cutlar HC, 1939. Monograph of the North American species of the genusEphedra. Annals of the Missouri Botanical Garden, 26(4): 373-424, 426,428.

    Dai S, Fang XM, Dupont-Nivet G, Song CH, Gao JP, Krijgsman W,Langereis C, Zhang WL, 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. Journal of Geophysical Research—Solid Earth, 111:B11102. DOI: 10.1029/2005JB004187.

    DeCelles PG, Quade J, Kapp P, Fan MJ, Dettman DL, Ding L, 2007. High and dry in central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253(3-4): 389-401.

    Dupont-Nivet G, Hoorn C, Konert M, 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geological Science of America, 36: 987-990.

    Edmond JM, Huh Y, 1997. Chemical weathering yields from basement and orogenic terrains in hot and cold climates. In: Ruddiman WF (ed.). Tectonic Uplift and Climate Change. Plenum Press, New York. 330-350.

    Fan MJ, Dettman DL, Song CH, Fang XM, Garzione CN, 2007. Climatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma:The stable isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3-4): 313-328.

    Fan MJ, Song CH, Dettman DL, Fang XM, Xu XH, 2006. Intensification of the Asian winter monsoon after 7.4 Ma: Grain-size evidence from the Linxia Basin, northeastern Tibetan Plateau, 13.1 Ma to 4.3 Ma. Earth and Planet Science Letters, 248(1-2): 186-197.

    Guo ZT, Sun B, Zhang ZS, Peng SZ, Xiao GQ, Ge JY, Hao QZ, Qiao YS,Liang MY, Liu JF, Yin QZ, Wei JJ, 2008. A major reorganization of Asian climate by the early Miocene. Climate of the Past, 4: 153-174.

    Gurevitch J, Schneider SM, Fox GA, 2002. The Ecology of Plants. Sinauer Associates, Inc., Sunderland MA.

    Harris NBW, 2006. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 241: 4-15.

    Judd WS, 2002. Plant Systematics: A Phylogenetic Approach, 2ndEdition.Sinauer Associates, Inc., Sunderland MA.

    Krutzsch W, 1961. Uber Funde von ''ephedroidem'' Pollen im deutschen Terti?r. Geologie, Beih 32: 15-53.

    Kutzbach JE, Guetter PJ, Ruddiman WF, Prell WL, 1989. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West:numerical experiments. Journal of Geophysical Research, 94(D15):18393-18407.

    Liu TS, Zheng MP, Guo ZT, 1998. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia. Quaternary Sciences, 3: 194-204.

    Long LQ, Fang XM, Miao YF, Bai Y, Wang YL, 2011. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin. Chinese Science Bulletin, 56(15): 1569-1578.

    Ma JQ, 1993. The Tertiary sporopollen assemblage in the Jiuquan Basin and the palaeoenvironment. Petroleum Geology & Experiment, 15(4):423-435.

    Raymo ME, Ruddiman WF, 1992. Tectonic forcing of late Cenozoic climate.Nature, 359: 117-122.

    Raymo ME, Ruddiman WF, Froelich PN, 1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16: 649-653.

    Rowley DB, Currie BS, 2006. Palaeoaltimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677-681.

    Ruddiman W, Prell W, Raymo M, 1989. Late Cenozoic Uplift in Southern Asia and the American West: rationale for general circulation modeling experiments. Journal of Geophysical Research, 94(D15): 18379-18391.

    Song ZC, 1958. Tertiary spores and pollen complex from the red beds of Jiuquan, Kansu and their geological and botanical significance. Acta Palaeontol. Sin., 6(2): 159-167.

    Song ZC, Liu GW, 1982. Early Tertiary Palynoflora and its significance of Palaeogeography from Northern and Eastern Xizang. In: Team of Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Academia Sinica (Eds.). Palaeontology of Xizang. Science Press, Beijing.165-190.

    Song ZC, Zheng YH, Li MN, 1999. Fossil spores and pollen of China (I):Late of Cretaceous-Tertiary spores and pollen. Science Press, Beijing.749-757.

    Sun MR, Wang XZ, 1990. Tertiary palynological assemblages from the Junggar Basin, Xinjiang. In: Institute of Geology, Chinese Academy of Geological Sciences, Research Institute of Petroleum Exploration and Development, Xinjiang Petroleum Administration (Eds.). Permian to Tertiary Strata and Palynological Assemblages in the North of Xinjiang.China Environmental Science Press, Beijing. 122-151.

    Sun XJ, Wang PX, 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology,Palaeoecology, 222: 181-222.

    Tapponnier P, Xu Z, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T,2001. Oblique stepwise rise and growth of the Tibetan Plateau. Science,294: 1671-1677.

    van der Beek PA, Van Melle J, Guillot S, Pêcher A, Reiners PW, Nicolescu S, Latif M, 2009. Eocene Tibetan Plateau remnants preserved in the northwest Himalaya. Nature Geoscience, 2: 364-368.

    Wallmann K, 2001. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2, and climate. Geochimica et Cosmochimica Acta, 65: 3005-3025.

    Wang CS, Zhao XX, Liu ZF, Lippert PC, Graham SA, Coe RS, Yi HS, Zhu LD, Liu S, Li YL, 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy Sciences of the United States of America, 105: 4987-4992.

    Wang DN, Sun XY, Zhao YN, 1990. Late Cretaceous to Tertiary palynofl oras in Xinjiang and Qinghai, China. Review of Palaeobotany Palynology,65: 95-104.

    Yang Y, 2002. Systematic and evolution ofEphedra L. (Ephedraceae) from China. PhD Thesis, Institute of Botany Chinese Academy of Sciences,Beijing. 1-231.

    Yi S, Yi S, Batten DJ, Yun H, Park SJ, 2003. Cretaceous and Cenozoic non-marine deposits of the Northern South Yellow Sea Basin, offshore western Korea: palynostratigraphy and palaeoenvironments. Palaeogeography, Palaeoclimatology, Palaeoecology, 191: 15-44.

    Zachos JC, Pagani M, Sloan L, Thomas E, Billups K, 2001. Trends, rhythms,and aberrations in global climate 65 Ma to present. Science, 292:686-693.

    Zhang ZS, Wang HJ, Guo ZT, Jiang DB, 2007. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeography, Palaeoclimatology, Palaeoecology, 245: 317-331.

    Zheng Z, Huang KY, Xu QH, Lu HY, Cheddadi R, Luo YL, Beaudouin C,Luo CX, Zheng YW, Li CH, Wei JH, Du CB, 2008. Comparison of climatic threshold of geographical distribution between dominant plants and surface pollen in China. Science in China (Series D: Earth Science),51(8): 1107-1120.

    Zhu ZH, Wu LY, Xi P, Song ZC, Zhang YY, 1985. A Research on Tertiary Palynology from the Qaidam Basin, Qinghai Province. Petroleum Industry Publishing House, Beijing. 1-41.

    10.3724/SP.J.1226.2011.00375

    *Correspondence to: Dr. YunFa Miao, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. No. 320, West Donggang Road, Lanzhou, Gansu 730000, China. Tel: +86-931-4967544; Email: miaoyunfa@lzb.ac.cn

    24 March 2011 Accepted: 15 June 2011

    欧美亚洲日本最大视频资源| 欧美人与性动交α欧美精品济南到 | 97在线人人人人妻| 超碰97精品在线观看| 中文乱码字字幕精品一区二区三区| 99热6这里只有精品| 咕卡用的链子| 亚洲欧洲日产国产| 亚洲综合色网址| 久久久亚洲精品成人影院| 国产精品不卡视频一区二区| 精品亚洲乱码少妇综合久久| 国产精品99久久99久久久不卡 | 国产乱人偷精品视频| av不卡在线播放| 精品第一国产精品| 中国三级夫妇交换| 欧美精品一区二区免费开放| 黑丝袜美女国产一区| 在线观看免费视频网站a站| 久久精品久久久久久久性| 国产乱来视频区| 久久午夜福利片| 国产精品一区二区在线不卡| 日本午夜av视频| av网站免费在线观看视频| 夫妻性生交免费视频一级片| 80岁老熟妇乱子伦牲交| 精品亚洲成a人片在线观看| 精品亚洲成a人片在线观看| 啦啦啦啦在线视频资源| 欧美日韩国产mv在线观看视频| 国产激情久久老熟女| 日韩精品有码人妻一区| 美女大奶头黄色视频| 国产熟女午夜一区二区三区| 亚洲国产av新网站| 国产综合精华液| 黄色视频在线播放观看不卡| 9191精品国产免费久久| 亚洲精品国产色婷婷电影| 七月丁香在线播放| 最新中文字幕久久久久| 免费人妻精品一区二区三区视频| 国产av码专区亚洲av| 黄色配什么色好看| 制服丝袜香蕉在线| 日本与韩国留学比较| 国产女主播在线喷水免费视频网站| 久久女婷五月综合色啪小说| 亚洲成av片中文字幕在线观看 | 成年人午夜在线观看视频| 国精品久久久久久国模美| 国产亚洲午夜精品一区二区久久| 人人澡人人妻人| 一本久久精品| 女性被躁到高潮视频| 亚洲高清免费不卡视频| 天美传媒精品一区二区| 制服人妻中文乱码| 日韩伦理黄色片| 成人手机av| 亚洲第一区二区三区不卡| 交换朋友夫妻互换小说| 精品人妻偷拍中文字幕| 国产黄色免费在线视频| 我的女老师完整版在线观看| 亚洲av男天堂| √禁漫天堂资源中文www| 各种免费的搞黄视频| 亚洲av.av天堂| 激情五月婷婷亚洲| av国产久精品久网站免费入址| 一二三四中文在线观看免费高清| 男男h啪啪无遮挡| 51国产日韩欧美| 自线自在国产av| 日韩精品免费视频一区二区三区 | 免费观看a级毛片全部| 免费不卡的大黄色大毛片视频在线观看| 免费观看性生交大片5| 亚洲精品成人av观看孕妇| 久久精品国产a三级三级三级| 亚洲,欧美,日韩| 午夜福利网站1000一区二区三区| 黄片无遮挡物在线观看| 午夜福利在线观看免费完整高清在| 在线天堂中文资源库| 80岁老熟妇乱子伦牲交| 丁香六月天网| 婷婷成人精品国产| 国产精品一区www在线观看| 侵犯人妻中文字幕一二三四区| 国产视频首页在线观看| 精品久久蜜臀av无| 草草在线视频免费看| 只有这里有精品99| 亚洲精品aⅴ在线观看| 老司机影院毛片| 九九在线视频观看精品| 日本黄大片高清| 亚洲精品乱码久久久久久按摩| 街头女战士在线观看网站| 国产精品一国产av| 又大又黄又爽视频免费| 成人国产av品久久久| 十八禁网站网址无遮挡| 久久久精品免费免费高清| 男人添女人高潮全过程视频| 九九爱精品视频在线观看| 性色av一级| 欧美精品亚洲一区二区| 国产乱来视频区| 韩国高清视频一区二区三区| 最近的中文字幕免费完整| 久久99热6这里只有精品| 97精品久久久久久久久久精品| 热re99久久精品国产66热6| 国产色爽女视频免费观看| 国产精品麻豆人妻色哟哟久久| 国产亚洲精品第一综合不卡 | 欧美精品一区二区免费开放| 伊人亚洲综合成人网| 天天操日日干夜夜撸| 国产探花极品一区二区| 亚洲三级黄色毛片| 久久精品国产亚洲av涩爱| 极品少妇高潮喷水抽搐| 亚洲综合色惰| 少妇的逼好多水| 国产精品久久久久久av不卡| 日韩一区二区三区影片| 在线亚洲精品国产二区图片欧美| 丝袜在线中文字幕| av在线观看视频网站免费| 91国产中文字幕| 看非洲黑人一级黄片| 一本色道久久久久久精品综合| 美女福利国产在线| 久久久久精品人妻al黑| 久久久久久人妻| 97人妻天天添夜夜摸| 免费观看无遮挡的男女| 欧美精品av麻豆av| 日韩大片免费观看网站| 91aial.com中文字幕在线观看| 国产成人精品在线电影| 亚洲,欧美精品.| 母亲3免费完整高清在线观看 | 三级国产精品片| 9热在线视频观看99| 中文乱码字字幕精品一区二区三区| 2021少妇久久久久久久久久久| 国产在视频线精品| 婷婷色综合www| 在现免费观看毛片| 久久久久久久国产电影| 国产深夜福利视频在线观看| 久久久久久久久久久免费av| 99国产综合亚洲精品| 国产不卡av网站在线观看| 大话2 男鬼变身卡| 日韩一本色道免费dvd| 制服诱惑二区| av播播在线观看一区| 制服丝袜香蕉在线| 日本黄大片高清| 国产福利在线免费观看视频| 日本-黄色视频高清免费观看| 免费女性裸体啪啪无遮挡网站| 99精国产麻豆久久婷婷| 欧美最新免费一区二区三区| 国产探花极品一区二区| 色5月婷婷丁香| 考比视频在线观看| videos熟女内射| 9191精品国产免费久久| 妹子高潮喷水视频| 免费黄色在线免费观看| 极品少妇高潮喷水抽搐| 在线天堂中文资源库| 成人毛片60女人毛片免费| 亚洲一码二码三码区别大吗| 亚洲精品,欧美精品| 制服诱惑二区| 日韩伦理黄色片| 国产成人91sexporn| 十分钟在线观看高清视频www| 七月丁香在线播放| 日本猛色少妇xxxxx猛交久久| 欧美国产精品一级二级三级| 亚洲国产精品一区三区| 校园人妻丝袜中文字幕| 精品卡一卡二卡四卡免费| 国产片特级美女逼逼视频| 国产精品一区www在线观看| 国产成人aa在线观看| 日韩一区二区三区影片| 妹子高潮喷水视频| 国产精品麻豆人妻色哟哟久久| 日韩 亚洲 欧美在线| 最近的中文字幕免费完整| av女优亚洲男人天堂| 亚洲国产精品成人久久小说| 男人爽女人下面视频在线观看| 最后的刺客免费高清国语| 黄色毛片三级朝国网站| 亚洲欧美日韩卡通动漫| 人妻人人澡人人爽人人| 国产日韩欧美视频二区| 精品人妻一区二区三区麻豆| 国产午夜精品一二区理论片| 国产一区二区三区综合在线观看 | 色哟哟·www| 欧美日韩视频高清一区二区三区二| 午夜福利视频精品| 欧美国产精品va在线观看不卡| 一级黄片播放器| av在线app专区| 色网站视频免费| 五月伊人婷婷丁香| 国产麻豆69| 亚洲内射少妇av| 99久久精品国产国产毛片| 侵犯人妻中文字幕一二三四区| 精品视频人人做人人爽| 欧美激情国产日韩精品一区| 女人久久www免费人成看片| 99国产综合亚洲精品| 亚洲一码二码三码区别大吗| freevideosex欧美| 欧美人与性动交α欧美精品济南到 | av国产久精品久网站免费入址| 99久国产av精品国产电影| 欧美xxxx性猛交bbbb| 性色av一级| 99视频精品全部免费 在线| 男女下面插进去视频免费观看 | av不卡在线播放| 少妇人妻精品综合一区二区| 999精品在线视频| av线在线观看网站| 久久国产精品男人的天堂亚洲 | 在线观看三级黄色| 国产亚洲最大av| 91在线精品国自产拍蜜月| 欧美xxxx性猛交bbbb| 国产成人欧美| 精品亚洲成国产av| 日本欧美视频一区| 亚洲性久久影院| 成人亚洲精品一区在线观看| 日本-黄色视频高清免费观看| 视频在线观看一区二区三区| 美女主播在线视频| 国产欧美另类精品又又久久亚洲欧美| 日本猛色少妇xxxxx猛交久久| 青青草视频在线视频观看| 久久午夜福利片| 欧美xxxx性猛交bbbb| 熟妇人妻不卡中文字幕| 国产精品久久久av美女十八| 亚洲欧美成人精品一区二区| 色94色欧美一区二区| 午夜福利网站1000一区二区三区| 欧美精品一区二区免费开放| 女人精品久久久久毛片| 久久久精品94久久精品| 一区二区三区四区激情视频| 在现免费观看毛片| 超碰97精品在线观看| 国产亚洲av片在线观看秒播厂| 秋霞伦理黄片| 伦理电影大哥的女人| 纵有疾风起免费观看全集完整版| 黄片无遮挡物在线观看| 桃花免费在线播放| 下体分泌物呈黄色| av在线app专区| 日韩在线高清观看一区二区三区| 90打野战视频偷拍视频| 精品福利永久在线观看| 国产精品无大码| 777米奇影视久久| 亚洲色图综合在线观看| 亚洲国产精品成人久久小说| 在线亚洲精品国产二区图片欧美| 免费少妇av软件| 国产在线视频一区二区| 国产成人精品久久久久久| 日本午夜av视频| 日本猛色少妇xxxxx猛交久久| 最近中文字幕高清免费大全6| 99久国产av精品国产电影| 美女视频免费永久观看网站| 亚洲欧美色中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 亚洲人成77777在线视频| 亚洲av中文av极速乱| 日韩一区二区三区影片| 伦精品一区二区三区| 日本vs欧美在线观看视频| 亚洲欧美中文字幕日韩二区| 亚洲欧美一区二区三区国产| 亚洲图色成人| 国产伦理片在线播放av一区| 中文字幕另类日韩欧美亚洲嫩草| 中文欧美无线码| 亚洲av福利一区| xxxhd国产人妻xxx| 久久久久精品性色| 久热久热在线精品观看| 在线观看免费视频网站a站| 国产成人精品在线电影| 国产黄频视频在线观看| 爱豆传媒免费全集在线观看| 人人妻人人添人人爽欧美一区卜| 国内精品宾馆在线| 女的被弄到高潮叫床怎么办| 少妇被粗大的猛进出69影院 | 这个男人来自地球电影免费观看 | 国产欧美日韩一区二区三区在线| 一区二区日韩欧美中文字幕 | 少妇被粗大猛烈的视频| av一本久久久久| 婷婷色综合www| 久久人人97超碰香蕉20202| 国产伦理片在线播放av一区| 亚洲一码二码三码区别大吗| 国产麻豆69| 国产成人av激情在线播放| 97人妻天天添夜夜摸| 一个人免费看片子| 国产在线视频一区二区| 午夜日本视频在线| 亚洲国产精品专区欧美| 黄色毛片三级朝国网站| 久久久久久人人人人人| 美女中出高潮动态图| 免费高清在线观看日韩| 亚洲熟女精品中文字幕| 激情五月婷婷亚洲| 女性被躁到高潮视频| 新久久久久国产一级毛片| 亚洲精品美女久久av网站| 18在线观看网站| 国产激情久久老熟女| 我要看黄色一级片免费的| 三上悠亚av全集在线观看| 久久av网站| 国产黄色免费在线视频| 九色成人免费人妻av| 高清欧美精品videossex| 自线自在国产av| 成年人免费黄色播放视频| 这个男人来自地球电影免费观看 | 久久人人97超碰香蕉20202| 亚洲在久久综合| 日本黄大片高清| 一本—道久久a久久精品蜜桃钙片| 亚洲成人手机| 国产精品久久久久久久久免| 国产精品不卡视频一区二区| 天天躁夜夜躁狠狠久久av| 亚洲综合色网址| 欧美人与性动交α欧美软件 | 国产精品国产三级专区第一集| 又粗又硬又长又爽又黄的视频| 一本久久精品| 亚洲av在线观看美女高潮| 女性生殖器流出的白浆| 五月伊人婷婷丁香| 黄片播放在线免费| 麻豆乱淫一区二区| 80岁老熟妇乱子伦牲交| 欧美精品人与动牲交sv欧美| 大片电影免费在线观看免费| av不卡在线播放| 亚洲国产毛片av蜜桃av| 久久久久久久久久人人人人人人| 亚洲美女视频黄频| 热re99久久国产66热| 中文字幕制服av| 日本黄色日本黄色录像| 成人黄色视频免费在线看| 日本av手机在线免费观看| 亚洲成人一二三区av| 欧美激情国产日韩精品一区| 国产精品无大码| 欧美日韩视频高清一区二区三区二| 亚洲 欧美一区二区三区| 韩国av在线不卡| 精品亚洲成国产av| a级片在线免费高清观看视频| 丝袜人妻中文字幕| 亚洲av电影在线观看一区二区三区| 久久人人爽人人片av| 久久亚洲国产成人精品v| 国产黄色免费在线视频| 精品久久国产蜜桃| 熟女人妻精品中文字幕| 久热这里只有精品99| 日韩av不卡免费在线播放| √禁漫天堂资源中文www| 九色亚洲精品在线播放| 人妻 亚洲 视频| 最新的欧美精品一区二区| 中国国产av一级| 国产无遮挡羞羞视频在线观看| 十八禁网站网址无遮挡| 日韩伦理黄色片| 久久精品国产综合久久久 | 日本色播在线视频| 高清不卡的av网站| 韩国精品一区二区三区 | 久久精品久久精品一区二区三区| 女的被弄到高潮叫床怎么办| 国产成人午夜福利电影在线观看| 汤姆久久久久久久影院中文字幕| 9色porny在线观看| 成人二区视频| 国产探花极品一区二区| 国产 一区精品| 高清不卡的av网站| 精品亚洲乱码少妇综合久久| 最近中文字幕2019免费版| 日韩中文字幕视频在线看片| 丝袜脚勾引网站| 伦精品一区二区三区| 国产极品粉嫩免费观看在线| 美女内射精品一级片tv| 精品亚洲成国产av| 交换朋友夫妻互换小说| 在线观看国产h片| 女人被躁到高潮嗷嗷叫费观| 老司机影院毛片| 一级片'在线观看视频| 秋霞在线观看毛片| 国产一区二区三区综合在线观看 | 一级黄片播放器| 日韩,欧美,国产一区二区三区| 少妇人妻 视频| 亚洲四区av| 精品国产一区二区三区四区第35| 91午夜精品亚洲一区二区三区| 成人漫画全彩无遮挡| 熟妇人妻不卡中文字幕| 肉色欧美久久久久久久蜜桃| 亚洲五月色婷婷综合| 巨乳人妻的诱惑在线观看| 亚洲精品视频女| av在线播放精品| 亚洲精品一区蜜桃| 制服丝袜香蕉在线| 国产成人av激情在线播放| 高清视频免费观看一区二区| 亚洲欧洲日产国产| 秋霞伦理黄片| 亚洲av福利一区| 久久久久久久大尺度免费视频| 国产av码专区亚洲av| 国产精品欧美亚洲77777| 蜜桃国产av成人99| 欧美最新免费一区二区三区| 欧美精品国产亚洲| 国产精品一二三区在线看| 国产免费一级a男人的天堂| 欧美国产精品va在线观看不卡| 九九在线视频观看精品| 日日摸夜夜添夜夜爱| 国产在线视频一区二区| 99久久中文字幕三级久久日本| 亚洲av在线观看美女高潮| 欧美精品一区二区大全| 天美传媒精品一区二区| 老女人水多毛片| 国产精品国产三级专区第一集| 毛片一级片免费看久久久久| 夜夜爽夜夜爽视频| 成人黄色视频免费在线看| 我要看黄色一级片免费的| 熟女av电影| 日日撸夜夜添| 秋霞在线观看毛片| 成人亚洲欧美一区二区av| 丰满乱子伦码专区| 黑人巨大精品欧美一区二区蜜桃 | 99九九在线精品视频| 久久久欧美国产精品| 久久这里只有精品19| 久久久久国产精品人妻一区二区| 国产在线免费精品| 日本猛色少妇xxxxx猛交久久| 狠狠精品人妻久久久久久综合| 交换朋友夫妻互换小说| 久久 成人 亚洲| 久热这里只有精品99| 成人国产麻豆网| 在线免费观看不下载黄p国产| 免费av不卡在线播放| 一级毛片电影观看| 国产乱人偷精品视频| 日韩av在线免费看完整版不卡| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 我的女老师完整版在线观看| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜制服| 国产精品女同一区二区软件| 国产一区有黄有色的免费视频| 欧美日韩视频精品一区| 男人爽女人下面视频在线观看| 九草在线视频观看| 一级毛片电影观看| av在线app专区| 欧美精品一区二区免费开放| 亚洲av免费高清在线观看| 日本黄色日本黄色录像| 国产男女内射视频| 亚洲国产精品国产精品| 街头女战士在线观看网站| 免费日韩欧美在线观看| 十八禁网站网址无遮挡| 多毛熟女@视频| 国产亚洲av片在线观看秒播厂| 成人黄色视频免费在线看| 国产精品一区www在线观看| 色网站视频免费| 久久久久久久精品精品| 亚洲精品久久成人aⅴ小说| 亚洲av成人精品一二三区| 飞空精品影院首页| 国产熟女欧美一区二区| av又黄又爽大尺度在线免费看| 晚上一个人看的免费电影| 视频在线观看一区二区三区| 最近手机中文字幕大全| www.av在线官网国产| 国产片内射在线| 久久久国产欧美日韩av| 久久精品久久久久久噜噜老黄| 三级国产精品片| 欧美精品人与动牲交sv欧美| 一级毛片我不卡| 国产精品.久久久| 久久人人爽av亚洲精品天堂| 欧美变态另类bdsm刘玥| 国产国拍精品亚洲av在线观看| 久久人人97超碰香蕉20202| 国产黄频视频在线观看| 国产 精品1| 亚洲av日韩在线播放| 亚洲婷婷狠狠爱综合网| 日本黄色日本黄色录像| 制服人妻中文乱码| 久久精品熟女亚洲av麻豆精品| 色吧在线观看| 国产在线一区二区三区精| 看非洲黑人一级黄片| 丰满饥渴人妻一区二区三| 日韩人妻精品一区2区三区| 中文字幕精品免费在线观看视频 | 人人澡人人妻人| 热99久久久久精品小说推荐| 久久99蜜桃精品久久| 熟女人妻精品中文字幕| 亚洲国产精品一区二区三区在线| 亚洲国产最新在线播放| 性高湖久久久久久久久免费观看| 黄色怎么调成土黄色| 免费在线观看完整版高清| 97在线视频观看| 日韩一区二区视频免费看| 国产男人的电影天堂91| 少妇精品久久久久久久| 国产成人91sexporn| 自线自在国产av| 最黄视频免费看| 亚洲国产欧美日韩在线播放| 两性夫妻黄色片 | 成年动漫av网址| 欧美精品国产亚洲| 国产成人精品一,二区| 成人国语在线视频| 国产亚洲精品第一综合不卡 | 黄色 视频免费看| 午夜av观看不卡| 久久精品久久久久久久性| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美一区二区三区国产| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品电影小说| 国产成人精品久久久久久| 国产精品久久久久成人av| 免费观看av网站的网址| 99久久精品国产国产毛片| 免费观看在线日韩| 我要看黄色一级片免费的| 全区人妻精品视频| 高清欧美精品videossex| 日本-黄色视频高清免费观看| 国产亚洲精品久久久com| a级片在线免费高清观看视频| 国产高清国产精品国产三级| 久久毛片免费看一区二区三区| 91久久精品国产一区二区三区| 赤兔流量卡办理| 狂野欧美激情性xxxx在线观看| 日韩在线高清观看一区二区三区| 中国国产av一级| 欧美人与善性xxx| 黄色怎么调成土黄色| 亚洲国产日韩一区二区| 亚洲精品av麻豆狂野| 国产免费现黄频在线看|