• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of air masses on particle number concentration and size distribution at Mt. Waliguan, Qinghai Province, China

    2011-12-09 09:36:34MingJinZhanJunYingSunJianMinYin
    Sciences in Cold and Arid Regions 2011年5期

    MingJin Zhan , JunYing Sun , JianMin Yin

    1. Jiangxi Climate Center, Nanchang, 330046, China

    2. Center for Atmosphere Watch and Service, Beijing 10081, China

    Influence of air masses on particle number concentration and size distribution at Mt. Waliguan, Qinghai Province, China

    MingJin Zhan1*, JunYing Sun2, JianMin Yin1

    1.Jiangxi Climate Center, Nanchang, 330046, China

    2.Center for Atmosphere Watch and Service, Beijing 10081, China

    Particle size distribution of 12-500 nm was measured at Mt. Waliguan, China Global Atmosphere Watch Baseline Observatory,from Aug. in 2005 to May in 2007. 72-hr back-trajectories at 100-m arrival height above ground level for the same period were calculated at 6:00, 12:00, and 21:00 (Beijing Time) for each day using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT-4) model developed by NOAA/ARL. It was found that air mass sources significantly impact particle number concentration and size distribution at Mt. Waliguan. Cluster analysis of back-trajectories show that higher Aitken mode particle number concentration was observed when air masses came from or passed by the northeastern section of Mt. Waliguan, with short trajectory length. High number concentration of nucleation mode was associated with air masses from clean regions, with long trajectory length.

    particle number concentration; particle size distribution; back-trajectories; cluster analysis; Mt. Waliguan

    1. Research background

    Particle size is a very important property of a particle,relating to its lifespan, transport distance and impact on the environment and human health. Atmospheric particle diameter varies substantially from one to another, ranging from several nm to 100 μm. Based on the distribution of surface area concentration, three aerosol modes were summarized by Whiteby (1978), namely Aitken mode with a size of <0.05 μm, accumulation mode with a size range of 0.05-2 μm, and coarse particle mode with a size of >2 μm.In the 1990s, with the development of measurement technology and instruments, a lower limit of 3 nm was obtained for aerosol particle diameter. Hussein and other researchers(Hussein, 2005) modified Whiteby’s classification and defined four modes,i.e., nucleation mode (<25 nm), Aitken mode (25-100 nm), accumulation mode (0.1-1 μm), and coarse particle mode (>1 μm). Though different researchers may have different definitions on particle size of each mode,the classification developed by Husseinet al. (2005) is generally accepted by the aerosol community. Different mode particles demonstrate differences in formation and removal mechanism. Nucleation mode particles are usually formed by low volatile substance in the atmosphere, and then grow from molecular clusters into nucleation mode particles via condensation and coagulation processes (Hussein, 2005).Aitken mode particles mainly come from direct emission from combustion processes (Whiteby, 1978). Meanwhile,the growth of nucleation mode particles into Aitken mode particles through condensation and coagulation is also an important way (Kerminenet al., 2001). The Aitken mode particles can be removed by wet deposition or grow into accumulation mode particles (Kulmalaet al., 2004) due to coagulation processes. The main sources of accumulation mode particles are condensation and coagulation of Aitken mode particles and steam condensation during combustion.Coagulation and condensation growth decreases when particle size approaches 1 μm (Tanget al., 2006), which makes it difficult for particles to grow larger than 1 μm through coagulation and condensation, therefore, wet deposition is the main removal mechanism (Kulmalaet al.,2004). Coarse mode particles mainly come from primary aerosols during mechanical processes such as dust, sea salt powder, and volcanic ash.

    Previous research has shown that source and property of air mass have significant impacts on particle number and size distribution. ZhiJun Wu (2007) analyzed the impact of air mass on particle number concentration and size distribution in Beijing. They found that nucleation mode particles are dominant when the air mass originates from clean regions of China (northeast, northwest), while Aitken mode particles are dominant when the air mass originates from near Beijing. Birmiliet al.(2001) analyzed the impact that air mass has on particle number and size distribution in Europe. They found higher Aitken mode density and lower accumulation mode density when the air mass was from the Atlantic; there were higher accumulation mode particles in the air when the air mass was from Russia.

    At present, there are few observational studies of atmospheric particle number and size distribution in China.This study documents the impact of air mass source on particle number concentration and size distribution at Mt.Waliguan through analysis of particle number and size data collected at the China Global Atmosphere Watch Baseline Observatory, Mt. Waliguan, from August in 2005 to May in 2007, and calculated backward-trajectories data during the same period.

    2. Measurement site and instruments

    2.1. Measurement site

    Measurements were carried out at the China Global Atmosphere Watch Baseline Observatory, which is one of 24 global atmosphere watch baseline observatories under the framework of the World Meteorological Organization(WMO), and is also the only baseline observatory in the hinterland of the Eurasian continent. This observatory is located on the mountaintop of Mt. Waliguan in Hainan Zang Autonomous Region of Qinghai Province, at an altitude of 3,816 m (100.90°E, 36.29°N) (Figure 1). Mt. Waliguan belongs to the Nanshan range on the northeastern border of the Qinghai-Tibet Plateau, an isolated spindle-shaped mountain range oriented from northwest to southeast. With a relative height difference of 600 m, this mountain is far from industrial and densely populated areas, so it is almost no human direct influence. Xining City, the capital of Qinghai, is situated in the Huangshui River valley, about 90 km east of Mt.Waliguan. This river valley is bordered by numerous mountains with altitudes of over 4,000 m. Qiabuqia County, located in a basin valley, is about 30 km west of Mt. Waliguan.This county has a population of over 30,000, with some woolen, light, and processing industries. Mt. Waliguan and the neighboring areas are mainly covered with vegetation,arid and semi-arid deserts (South-West), grasslands and sandbars (South). People in this region live mainly on the livestock industry, except some farming in the river valleys.Neighboring areas are sparsely populated, with an average of six people per km2. For hundreds of kilometers in the western areas, population distribution is very sparse, with few residential areas, thus there is little anthropogenic pollution (Zhou, 2005).

    2.2. Instruments

    On-line measurements of fine particle number concentration and size distribution were obtained by use of the Differential Mobility Particle Sizer (DMPS), mainly consisting of a Differential Mobility Analyzer (DMA) and Condensation Particle Counter (CPC) (Finish Meteorological Institute). From August in 2005 to May in 2007,particle size measurements ranged from 12-500 nm at Mt.Waliguan, with a time resolution of 5-6 minutes. Due to instrument problems, no data were obtained from February to March and from July to August, 2006. Valid data was obtained for 436 days.

    3. The influence of air mass sources on the particle number concentration and the size distribution

    Air mass back-trajectories were calculated with the National Oceanic and Atmospheric Administration Air Resource Laboratory (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT_4) model, and NCEP/NCAR reanalysis data (http://www.arl.noaa.gov/).72-hr back-trajectories at 100-m arrival height above ground level for the same time period were calculated at 6:00, 12:00,21:00 (Beijing Time) for each day at Mt. Waliguan. Atmospheric aerosol number and size distribution data of 00:00-8:00, 8:00-16:00, 16:00-24:00 were regarded as that of particle number and size distribution at 6:00, 12:00, and 21:00, respectively. Three data groups were obtained after the data was processed, namely 72-hr back-trajectories data and particle number and size distribution data at 6:00, 12:00,21:00. 1,437 data groups were obtained after sorting.

    3.1. Cluster analysis theory

    Cluster analysis is used to group particles with nearly similar trajectories. Supposing there areNtrajectories, each of their trajectory spatial variance is defined as zero respectively, and each trajectory has a dependant cluster (spatial variance of each cluster is calculated by sum of squares of the distance between each trajectory and corresponding point of average trajectory). Calculate the two clusters’ spatial variance in all possible groupings and then merge these two clusters into a new group so as to sum the spatial variance of all clusters (TSV) that have the minimum increase after merging. Research shows thatTSVincreases rapidly at first, then slows down; butTSVincreases rapidly again after merging when clusters reach a certain amount, which means that the two clusters to be merged are very different from each other. Taking the point whereTSVis the second rapid increase as the final point of cluster grouping, considering each cluster divided before the point as the final cluster, and then calculating average of these clusters which represent several main airflow types of the sampling point in this period. Back-trajectory is calculated using the HYSPLIT model (Draxler, 1992; Yanet al., 1999).

    Particle number concentration in a certain particle diameter section is calculated as below:

    whereirepresents ordinal number of the trajectory in a cluster;nrepresents total trajectory number contained in the cluster,Nrepresents hour average concentration in a certain particle diameter section observed at the corresponding trajectoryi.

    Figure 1 Geographical location of Mt. Waliguan, China Global Atmosphere Watch Baseline Observatory

    3.2. The influence of air mass sources on the particle number and size distribution

    Figure 2 is the result of clustering using HYSPLIT. It can be seen from the graph that sources, transmission paths and trajectory lengths of the five back-trajectories are different. Thus, it can be concluded that the first cluster takes up 14% of the total days, 26% of summer days (June to August) and 44% of autumn days (September to November). The air mass originated mainly in the eastern and northeastern section of Mt. Waliguan. The back-trajectory length is shorter than those of the third, fourth and fifth clusters. The second cluster takes up 38% of the total days,47% of autumn days and 23% of winter days (December to February (next year)). The air mass originated mainly in the Qinghai-Tibet Plateau area in the western section of Mt.Waliguan. The third cluster takes up 28% of the total days,21% of spring days (March to May), 33% of autumn days and 44% of winter days. The air mass originated in the southern part of Xinjiang Province, in comparatively pollution-free deserts. The fourth cluster takes up 15% of the total days, 30% of autumn days and 64% of winter days.The air mass originated in the northern part of Xinjiang Province via Gansu and Inner Mongolia. Some clusters passed through northeast of Mt. Waliguan. The fifth cluster takes up 4% of the total days, and mainly 80% of winter days. The air mass originated in the northern part of India and central Asia via the Himalayas, most of which are pollution-free areas. Its back-trajectory length is obviously longer than the others.

    It can be seen from Table 1 and Figure 3, clusters 1 and 4 are similar in particle number and size distribution, particle number concentrations mainly in the Aitken mode and accumulation mode are almost the same. The reason for this may be that both clusters 1 and 4 pass over the eastern and northeastern sections of Mt. Waliguan, with Xining and Lanzhou in this direction. Thus, clusters 1 and 4 are under the influence of anthropogenic pollution. Particle number concentrations are very similar in clusters 3 and 5. Particle number concentration in the nucleation mode is obviously higher than in the other modes. Air masses in clusters 3 and 5 have longer trajectory lengths and faster speed. Under this condition, Mt. Waliguan often has sunny weather, dry and clean air, which makes it easy to form new particles. Particle number concentration in Aitken mode and accumulation mode are relatively lower due to fast movement. Particle number concentration in Aitken mode and accumulation mode in cluster 2, of which the particle diameter is larger than 50 nm, are very similar to those in clusters 3 and 5. But particle number concentration of those with particle diameter smaller than 50 nm is obviously lower than those in clusters 3 and 5.

    Figure 2 The back-trajectories of the five clusters and their average at Mt. Waliguan

    Table 1 Average temperature, relative humidity, particle number concentration of different back-trajectory clusters

    Figure 3 Average particle number size distribution of different back-trajectory clusters

    4. Conclusion

    Back-trajectories were divided into five categories through HYSPLIT cluster analysis. Particle number concentration in Aitken mode and accumulation mode in clusters 1 and 4, which passed over the northern and eastern sections of Mt. Waliguan, are higher due to anthropogenic pollution.Particle number concentration of nucleation mode is very high in clusters 3 and 5 which travel a long distance and whose source areas and passing areas have little pollution,while particle number concentration in Aitken mode and accumulation are lower.

    Back-trajectories in cluster 2, mainly from the northwestern section of Mt. Waliguan, are similar to those in clusters 3 and 5, but particle number concentration of nucleation mode is obviously low. In conclusion, air mass sources greatly impact particle number concentration and size distribution.

    The research was sponsored by National Key Development Program for Fundamental Research (973 Program) Project(Nos. 2006CB403703 and 2006CB403701)

    Birmili W, Wiedensohler A, Heintzenberg J, Lehmann K, 2001. Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology. Journal of Geophysical Research Atmospheres, 106(23): 32005-32018.

    Draxler RR, 1992. Hybrid Single-Particle Lagrangian Integrated Trajectories(HY-SPLIT): Version 3.0—User’s Guide and Model Description, NOAA Technical Memo ERL ARL, 195.

    Hussein T, 2005. Indoor and outdoor aerosol particle size characterization in Helsinki. Report Series in Aerosol Science, 74: 1-53.

    Kerminen VM, Pirjola L, Kulmala M, 2001. How significantly does coagulational scavenging limit atmospheric particle production. Journal of Geophysical Research—Atmospheres, 106(20): 119-125.

    Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM,Birmili W, McMurry PH, 2004. Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 35: 143-176.

    Tang XY, Zhang YH, Shao M, 2006. Atmospheric Environmental Chemistry.Higher Education Press, Beijing.

    Whiteby KH, 1978. The Physical characteristics of sulfur aerosol. Atmospheric Environment, 12: 135-159.

    Wu ZJ, 2007. Variations and Characteristics of Fine and Ultrafine Particle Number Size Distributions in the Urban Atmosphere of Beijing. PhD Thesis of Peking University. 123-125.

    Yan P, Fang XM, Li XS, 1999. Analysis of the source region and variation of surface SO2at Lin’an Station. Quarterly Journal of Applied Meteorology,10(3): 267-275.

    Zhou XJ, 2005. Final Progress Report of China Global Atmosphere Watch Baseline Observatory. China Metrological Press, Beijing.

    10.3724/SP.J.1226.2011.00436

    *Correspondence to: MingJin Zhan, Engineer of Jiangxi Climate Center. No.109, North 2nd Road of Governmental Compound,Nanchang, Jiangxi 330046, China. Tel: +86-791-6273521; Email: hellorm@126.com

    22 April 2011 Accepted: 11 July 2011

    亚洲人成网站高清观看| 麻豆久久精品国产亚洲av| 在线观看av片永久免费下载| 亚洲内射少妇av| 一区二区三区乱码不卡18| 成人二区视频| 日本熟妇午夜| 欧美日韩在线观看h| 国产亚洲午夜精品一区二区久久 | 长腿黑丝高跟| 99在线视频只有这里精品首页| 亚洲不卡免费看| 两性午夜刺激爽爽歪歪视频在线观看| 91aial.com中文字幕在线观看| 九九久久精品国产亚洲av麻豆| 噜噜噜噜噜久久久久久91| 国产精品嫩草影院av在线观看| 精品久久久久久久久久久久久| 熟妇人妻久久中文字幕3abv| av免费观看日本| av在线天堂中文字幕| 国产精品一区www在线观看| 中文字幕人妻熟人妻熟丝袜美| 免费无遮挡裸体视频| 亚洲欧美日韩无卡精品| 日韩成人av中文字幕在线观看| 免费黄色在线免费观看| 看片在线看免费视频| 国产精品一区二区性色av| 国产成人91sexporn| 卡戴珊不雅视频在线播放| 女人被狂操c到高潮| 18+在线观看网站| 欧美一区二区精品小视频在线| av又黄又爽大尺度在线免费看 | 日韩,欧美,国产一区二区三区 | 乱码一卡2卡4卡精品| 黄色日韩在线| 亚洲一级一片aⅴ在线观看| 国模一区二区三区四区视频| av在线老鸭窝| 精品国产一区二区三区久久久樱花 | av国产免费在线观看| 欧美一区二区精品小视频在线| 午夜福利视频1000在线观看| 日韩高清综合在线| 毛片一级片免费看久久久久| 91久久精品国产一区二区成人| 六月丁香七月| 久久久久网色| 成人美女网站在线观看视频| 亚洲精品乱码久久久久久按摩| 国产成人福利小说| a级毛色黄片| 国产在线男女| 成人三级黄色视频| 两个人视频免费观看高清| 又爽又黄无遮挡网站| 国产伦理片在线播放av一区| 3wmmmm亚洲av在线观看| 性色avwww在线观看| 高清在线视频一区二区三区 | 日韩欧美三级三区| 国产精品久久久久久精品电影小说 | 97人妻精品一区二区三区麻豆| 我要搜黄色片| 免费黄网站久久成人精品| 国产精品一区二区三区四区免费观看| 亚洲一级一片aⅴ在线观看| 久久国内精品自在自线图片| 久久久精品大字幕| 日韩精品青青久久久久久| 久久精品综合一区二区三区| 美女高潮的动态| 91狼人影院| 黄片无遮挡物在线观看| 久久韩国三级中文字幕| 国产在线一区二区三区精 | 日本av手机在线免费观看| 嘟嘟电影网在线观看| 少妇熟女aⅴ在线视频| 3wmmmm亚洲av在线观看| 大香蕉97超碰在线| 看黄色毛片网站| 2022亚洲国产成人精品| 欧美性猛交╳xxx乱大交人| 国产亚洲一区二区精品| 少妇熟女aⅴ在线视频| 久久久久精品久久久久真实原创| 午夜福利视频1000在线观看| 日韩欧美在线乱码| 村上凉子中文字幕在线| 毛片一级片免费看久久久久| 中文字幕久久专区| 国产精品福利在线免费观看| 午夜福利在线观看吧| 天堂影院成人在线观看| 国产一级毛片七仙女欲春2| 国产国拍精品亚洲av在线观看| 亚洲成人久久爱视频| 中文字幕av在线有码专区| 亚洲精品乱码久久久久久按摩| 免费av毛片视频| 精品久久久久久久久亚洲| 非洲黑人性xxxx精品又粗又长| 99在线视频只有这里精品首页| 一级av片app| 99久久成人亚洲精品观看| av黄色大香蕉| av专区在线播放| kizo精华| 岛国毛片在线播放| 成人毛片a级毛片在线播放| 免费观看a级毛片全部| 久久久久久久午夜电影| 91精品伊人久久大香线蕉| 日本欧美国产在线视频| 非洲黑人性xxxx精品又粗又长| 免费看日本二区| 欧美极品一区二区三区四区| 亚洲人成网站高清观看| 日本免费在线观看一区| 综合色av麻豆| 亚洲久久久久久中文字幕| 国产高清不卡午夜福利| 午夜日本视频在线| 黄色配什么色好看| 18+在线观看网站| 观看免费一级毛片| 国产色爽女视频免费观看| 国产成人精品久久久久久| 女人久久www免费人成看片 | 国产亚洲av嫩草精品影院| av女优亚洲男人天堂| 亚洲国产精品成人久久小说| 丝袜美腿在线中文| 日日摸夜夜添夜夜爱| 欧美xxxx性猛交bbbb| 国产伦在线观看视频一区| 久久精品久久久久久噜噜老黄 | 久久欧美精品欧美久久欧美| 欧美xxxx黑人xx丫x性爽| 久久久久久久亚洲中文字幕| 2021天堂中文幕一二区在线观| 99九九线精品视频在线观看视频| 国产在视频线在精品| 日韩欧美 国产精品| 听说在线观看完整版免费高清| 久热久热在线精品观看| 夫妻性生交免费视频一级片| 少妇的逼好多水| 成年免费大片在线观看| 大香蕉久久网| 丰满乱子伦码专区| 麻豆乱淫一区二区| 国产黄片美女视频| 精品人妻偷拍中文字幕| 国产三级中文精品| 国产欧美另类精品又又久久亚洲欧美| av视频在线观看入口| 午夜福利视频1000在线观看| 男人狂女人下面高潮的视频| 一级毛片aaaaaa免费看小| 老司机影院毛片| 草草在线视频免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | kizo精华| 国产av码专区亚洲av| 美女大奶头视频| 我要看日韩黄色一级片| 午夜精品国产一区二区电影 | 色尼玛亚洲综合影院| 夜夜看夜夜爽夜夜摸| 国产精品三级大全| 99热这里只有精品一区| ponron亚洲| 久久综合国产亚洲精品| 中文字幕久久专区| 久久久久精品久久久久真实原创| 久99久视频精品免费| 久久久久免费精品人妻一区二区| 色吧在线观看| 成人鲁丝片一二三区免费| 国产黄片美女视频| 乱人视频在线观看| 最近最新中文字幕大全电影3| 久久精品人妻少妇| 亚洲综合精品二区| 国产伦一二天堂av在线观看| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| av在线蜜桃| 搡老妇女老女人老熟妇| 国产成人精品一,二区| 22中文网久久字幕| 国产精品久久久久久av不卡| 99久久精品一区二区三区| 人人妻人人澡欧美一区二区| 日韩高清综合在线| 不卡视频在线观看欧美| 亚洲av福利一区| 久久精品国产亚洲网站| 欧美日韩一区二区视频在线观看视频在线 | 亚洲性久久影院| 国产精品av视频在线免费观看| 大香蕉97超碰在线| 99久久九九国产精品国产免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 激情 狠狠 欧美| 国产精品久久电影中文字幕| 午夜福利在线在线| 免费观看的影片在线观看| 亚洲成av人片在线播放无| 日韩精品有码人妻一区| 免费看av在线观看网站| 亚洲av日韩在线播放| 超碰av人人做人人爽久久| 尤物成人国产欧美一区二区三区| 自拍偷自拍亚洲精品老妇| 久久99热这里只频精品6学生 | 乱码一卡2卡4卡精品| 国产精品日韩av在线免费观看| 一边亲一边摸免费视频| 免费大片18禁| 久久精品国产亚洲网站| av在线亚洲专区| 免费看a级黄色片| 淫秽高清视频在线观看| 欧美丝袜亚洲另类| 成人一区二区视频在线观看| 色噜噜av男人的天堂激情| 99久国产av精品国产电影| 色5月婷婷丁香| 国产精品一及| 欧美极品一区二区三区四区| 久久99精品国语久久久| 午夜福利在线观看吧| 免费av观看视频| 99热网站在线观看| 欧美成人免费av一区二区三区| 人妻夜夜爽99麻豆av| 国产高清有码在线观看视频| 久久亚洲国产成人精品v| 国产精品久久久久久精品电影| 最近的中文字幕免费完整| 三级男女做爰猛烈吃奶摸视频| 国产精品日韩av在线免费观看| 亚洲人成网站在线播| 亚洲av中文av极速乱| 天天躁日日操中文字幕| 内射极品少妇av片p| 五月玫瑰六月丁香| 直男gayav资源| 午夜福利在线在线| 亚洲成人久久爱视频| 少妇高潮的动态图| 免费看美女性在线毛片视频| 赤兔流量卡办理| 亚洲怡红院男人天堂| 少妇熟女欧美另类| 国产成人精品久久久久久| 最近中文字幕高清免费大全6| 啦啦啦观看免费观看视频高清| av播播在线观看一区| 老司机影院成人| 国产精品1区2区在线观看.| 我要看日韩黄色一级片| 国产黄色小视频在线观看| 成人美女网站在线观看视频| 日韩大片免费观看网站 | 黄色配什么色好看| 欧美一区二区亚洲| 国产午夜精品一二区理论片| 国产av不卡久久| 成人亚洲精品av一区二区| 又粗又爽又猛毛片免费看| 一边摸一边抽搐一进一小说| 亚洲在久久综合| 少妇的逼好多水| 日韩欧美国产在线观看| 精品国产三级普通话版| 三级国产精品片| 永久免费av网站大全| 亚洲婷婷狠狠爱综合网| 女人久久www免费人成看片 | 亚洲欧美精品自产自拍| 丰满少妇做爰视频| 免费无遮挡裸体视频| 听说在线观看完整版免费高清| 国产成人精品一,二区| 搡女人真爽免费视频火全软件| 久久精品国产亚洲网站| 精品人妻偷拍中文字幕| 国产精品一区www在线观看| 精品不卡国产一区二区三区| 一边摸一边抽搐一进一小说| 看十八女毛片水多多多| 校园人妻丝袜中文字幕| 国产在线男女| 九色成人免费人妻av| 又爽又黄a免费视频| 国产午夜精品久久久久久一区二区三区| 午夜福利在线观看吧| 欧美激情国产日韩精品一区| 床上黄色一级片| 在线播放国产精品三级| 美女大奶头视频| 51国产日韩欧美| 精品国产露脸久久av麻豆 | 成人欧美大片| 欧美高清性xxxxhd video| 国产伦理片在线播放av一区| 国产女主播在线喷水免费视频网站 | 久久久久久久久大av| 成人鲁丝片一二三区免费| 我的老师免费观看完整版| 好男人视频免费观看在线| 大又大粗又爽又黄少妇毛片口| 最近最新中文字幕免费大全7| 男人狂女人下面高潮的视频| 国产极品天堂在线| 一级黄片播放器| 天天躁夜夜躁狠狠久久av| 2021少妇久久久久久久久久久| 三级男女做爰猛烈吃奶摸视频| 国产黄片视频在线免费观看| 国产伦一二天堂av在线观看| 嫩草影院精品99| 成人欧美大片| 精品久久久久久久久av| 国产精品野战在线观看| 久久人人爽人人爽人人片va| 可以在线观看毛片的网站| 最近最新中文字幕免费大全7| 欧美另类亚洲清纯唯美| 国产精品av视频在线免费观看| 亚洲精品456在线播放app| 久久久午夜欧美精品| 老司机影院成人| 熟女电影av网| 美女cb高潮喷水在线观看| .国产精品久久| 成人午夜高清在线视频| 伊人久久精品亚洲午夜| 免费大片18禁| 久久久久久久久久成人| 最近中文字幕高清免费大全6| 国产精品不卡视频一区二区| 国产精品女同一区二区软件| 久久久久免费精品人妻一区二区| 欧美一区二区亚洲| 天天一区二区日本电影三级| 日本免费a在线| av在线亚洲专区| 中文字幕熟女人妻在线| 亚洲精华国产精华液的使用体验| 我要看日韩黄色一级片| 国产在线男女| 欧美性感艳星| 国产精品99久久久久久久久| 久久精品久久精品一区二区三区| 一个人看视频在线观看www免费| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 中文字幕熟女人妻在线| 久久久久免费精品人妻一区二区| 免费看美女性在线毛片视频| 人妻制服诱惑在线中文字幕| 免费观看性生交大片5| 欧美+日韩+精品| 床上黄色一级片| 一级爰片在线观看| 国产av不卡久久| 一级爰片在线观看| 精品久久国产蜜桃| 看黄色毛片网站| 成年女人永久免费观看视频| 久久这里有精品视频免费| 97超视频在线观看视频| 国产亚洲av片在线观看秒播厂 | 少妇的逼好多水| 国产精品麻豆人妻色哟哟久久 | 欧美色视频一区免费| 天堂中文最新版在线下载 | 国产精品日韩av在线免费观看| 欧美潮喷喷水| 久久久精品94久久精品| 亚洲无线观看免费| 精品免费久久久久久久清纯| 国产黄片美女视频| 国产免费视频播放在线视频 | 亚洲欧美精品自产自拍| 99在线视频只有这里精品首页| 亚洲av日韩在线播放| 在现免费观看毛片| 日韩欧美 国产精品| 欧美xxxx性猛交bbbb| 国内少妇人妻偷人精品xxx网站| 欧美xxxx性猛交bbbb| 久久精品人妻少妇| 日本黄色片子视频| 免费播放大片免费观看视频在线观看 | 国产免费男女视频| 天美传媒精品一区二区| 18+在线观看网站| 嫩草影院精品99| 97超碰精品成人国产| 在线观看美女被高潮喷水网站| 国产免费男女视频| av在线播放精品| 国产精品.久久久| 一个人观看的视频www高清免费观看| 91精品一卡2卡3卡4卡| 国产一区二区亚洲精品在线观看| 精品久久久久久久人妻蜜臀av| 国产精品爽爽va在线观看网站| 日韩在线高清观看一区二区三区| 日日干狠狠操夜夜爽| 日韩,欧美,国产一区二区三区 | 国产免费一级a男人的天堂| 国产淫片久久久久久久久| 我的老师免费观看完整版| 简卡轻食公司| 久久99蜜桃精品久久| 女人被狂操c到高潮| 色噜噜av男人的天堂激情| 高清毛片免费看| 亚洲一级一片aⅴ在线观看| 国产成人a区在线观看| 亚洲自偷自拍三级| 国产精品人妻久久久久久| 激情 狠狠 欧美| 亚洲最大成人中文| 亚洲高清免费不卡视频| 天堂中文最新版在线下载 | 嫩草影院精品99| 国产伦在线观看视频一区| 久久99热这里只频精品6学生 | 99在线视频只有这里精品首页| 99久久精品国产国产毛片| 精品久久久噜噜| 精品人妻一区二区三区麻豆| 91午夜精品亚洲一区二区三区| 最近手机中文字幕大全| 国产探花极品一区二区| 国产亚洲午夜精品一区二区久久 | 亚洲怡红院男人天堂| 麻豆av噜噜一区二区三区| 你懂的网址亚洲精品在线观看 | 色5月婷婷丁香| 精品午夜福利在线看| 国产精品伦人一区二区| 日韩一本色道免费dvd| 日韩高清综合在线| 内射极品少妇av片p| 麻豆国产97在线/欧美| 真实男女啪啪啪动态图| eeuss影院久久| 三级国产精品片| 亚洲欧美精品专区久久| 午夜福利成人在线免费观看| 国产一区亚洲一区在线观看| 国产午夜精品一二区理论片| 国产高清有码在线观看视频| 人体艺术视频欧美日本| 能在线免费观看的黄片| 久久99精品国语久久久| 99久久人妻综合| 日韩欧美三级三区| 中文字幕av在线有码专区| 久久精品久久精品一区二区三区| 精品国产一区二区三区久久久樱花 | 十八禁国产超污无遮挡网站| 亚洲欧洲日产国产| 两性午夜刺激爽爽歪歪视频在线观看| 18禁裸乳无遮挡免费网站照片| 寂寞人妻少妇视频99o| 久久久久性生活片| 欧美日韩精品成人综合77777| 亚洲天堂国产精品一区在线| 亚洲av免费在线观看| av黄色大香蕉| 久久久亚洲精品成人影院| 边亲边吃奶的免费视频| 最后的刺客免费高清国语| 日本熟妇午夜| 超碰av人人做人人爽久久| 国产成人午夜福利电影在线观看| 男女边吃奶边做爰视频| 久久这里有精品视频免费| 97在线视频观看| 成人午夜精彩视频在线观看| 精品久久国产蜜桃| 看黄色毛片网站| 亚洲最大成人av| 尾随美女入室| 一级毛片久久久久久久久女| 国产精品野战在线观看| 国产欧美另类精品又又久久亚洲欧美| 又爽又黄a免费视频| 亚洲综合色惰| 亚洲精品一区蜜桃| 国产成人免费观看mmmm| 久久久a久久爽久久v久久| av国产免费在线观看| 成人av在线播放网站| 人体艺术视频欧美日本| 最近手机中文字幕大全| 亚洲精品日韩在线中文字幕| 午夜精品国产一区二区电影 | 色5月婷婷丁香| 亚洲精品影视一区二区三区av| av.在线天堂| 国产麻豆成人av免费视频| 村上凉子中文字幕在线| 亚洲天堂国产精品一区在线| 嫩草影院精品99| 亚洲av二区三区四区| 国产精品熟女久久久久浪| 中文欧美无线码| 国产在视频线在精品| 精品久久久久久久久av| 国产探花极品一区二区| 久久久色成人| 亚洲乱码一区二区免费版| 高清在线视频一区二区三区 | 真实男女啪啪啪动态图| a级毛片免费高清观看在线播放| 一个人看视频在线观看www免费| 国产亚洲av嫩草精品影院| 日本五十路高清| 直男gayav资源| 综合色av麻豆| 伦理电影大哥的女人| 毛片女人毛片| 免费观看a级毛片全部| 国产综合懂色| 日韩强制内射视频| 欧美区成人在线视频| 亚洲成人久久爱视频| 美女大奶头视频| 男女那种视频在线观看| 听说在线观看完整版免费高清| 看十八女毛片水多多多| 水蜜桃什么品种好| 免费播放大片免费观看视频在线观看 | 精品不卡国产一区二区三区| 亚洲欧美一区二区三区国产| 国产精品福利在线免费观看| 三级国产精品片| 欧美+日韩+精品| 伦理电影大哥的女人| 超碰av人人做人人爽久久| 国产探花在线观看一区二区| www.色视频.com| 欧美97在线视频| 偷拍熟女少妇极品色| 三级男女做爰猛烈吃奶摸视频| 热99re8久久精品国产| 久久久久精品久久久久真实原创| 亚洲av中文字字幕乱码综合| 嫩草影院新地址| av.在线天堂| 蜜桃亚洲精品一区二区三区| 国产精品国产三级国产av玫瑰| 欧美高清成人免费视频www| 综合色丁香网| 精品国产露脸久久av麻豆 | 一级二级三级毛片免费看| h日本视频在线播放| 国产精品嫩草影院av在线观看| av免费观看日本| 亚洲在线自拍视频| 超碰av人人做人人爽久久| 午夜福利在线观看免费完整高清在| 亚洲成人久久爱视频| 成人三级黄色视频| 一级爰片在线观看| 一二三四中文在线观看免费高清| 亚洲中文字幕一区二区三区有码在线看| 久久精品久久久久久久性| 亚州av有码| 亚洲,欧美,日韩| 国产精华一区二区三区| 看非洲黑人一级黄片| 天堂网av新在线| 国产精品女同一区二区软件| 国产一级毛片七仙女欲春2| 午夜精品国产一区二区电影 | 麻豆久久精品国产亚洲av| 嘟嘟电影网在线观看| 高清av免费在线| 夫妻性生交免费视频一级片| 中文字幕精品亚洲无线码一区| 欧美日韩精品成人综合77777| 天堂av国产一区二区熟女人妻| 国产高清有码在线观看视频| 纵有疾风起免费观看全集完整版 | 国产午夜精品一二区理论片| 嫩草影院入口| 国产av在哪里看| 欧美97在线视频| 亚洲欧美日韩卡通动漫| 欧美又色又爽又黄视频| 国产色爽女视频免费观看| 国产黄片视频在线免费观看| 亚洲激情五月婷婷啪啪| 精品久久久久久成人av| 成人特级av手机在线观看| 成年女人看的毛片在线观看| 国产精品伦人一区二区| a级毛片免费高清观看在线播放| 最近中文字幕2019免费版| 久久精品久久久久久久性| 长腿黑丝高跟|