• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cenozoic Ephedraceae adaptation to global cooling in northwestern China

    2011-12-09 09:36:32YunFaMiaoXiaoLiYanYaJunShaoBaoYang
    Sciences in Cold and Arid Regions 2011年5期

    YunFa Miao , XiaoLi Yan , YaJun Shao , Bao Yang

    1. Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

    2. MOE Key Laboratory of Western China’s Environmental Systems & West Environment and Climate Changes Institute, Lanzhou University, Lanzhou 730000, China

    Cenozoic Ephedraceae adaptation to global cooling in northwestern China

    YunFa Miao1*, XiaoLi Yan2, YaJun Shao1, Bao Yang1

    1. Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

    2. MOE Key Laboratory of Western China’s Environmental Systems & West Environment and Climate Changes Institute, Lanzhou University, Lanzhou 730000, China

    Ephedraceae has been applied largely as a drought indicator to reconstruct Cenozoic paleoenvironment and paleoclimate. However, temperature indication of Ephedraceae has been largely ignored. Here, we provide a record of Ephedraceae percentage spanning from the Early Eocene to Middle Miocene (52-17 Myr B.P.) in the Xining Basin, northeastern Tibetan Plateau. This record is comparable to a compiled Cenozoic Ephedraceae record from five other basins in northwestern China. Both records show Ephedraceae percentages were high during the Early Eocene, and decreased gradually from the Middle Eocene to Late Oligocene,then maintained a stable level since the Late Oligocene. By comparing these two Ephedraceae records with the marine oxygen isotope record, we discuss the variation of Ephedraceae percentage in Middle Cenozoic in response to global temperature change.Ephedraceae percentage was high in the Early Paleogene, associated with subtropical or tropical vegetation types in a global greenhouse climate, and decreased in Early Oligocene, associated with global cooling, suggesting that Ephedraceae is warm-tolerant during the Paleogene. The low Ephedraceae percentages in the Late Oligocene and Miocene were uncoupled with global warming, which may imply that Ephedraceae began to adapt to a eurythermic climate in the inland desert environment of western China. Such adaptation may be a response to the high topography of the Tibetan Plateau.

    Ephedraceae; adaptation; temperature; Tibetan Plateau; Cenozoic

    1. Introduction

    Globally, Cenozoic climate shows a cooling trend starting from approximately 55 Myr B.P. and a series of dramatic cooling events (Zachosetal., 2001), which is linked with the accelerated rate of atmospheric CO2consumption of fast silicate weathering triggered by the Indo-Asian collision and associated tectonic events (e.g., Raymoetal., 1988; Raymo and Ruddiman, 1992; Edmond and Huh, 1997; Wallmann,2001). Regionally, uplift of the Tibetan Plateau and the Himalaya Mountains caused dramatic aridification in Central Asia and the onset of monsoonal climate in East Asia(Kutzbachetal., 1989; Ruddimanetal., 1989; Harris, 2006).Both global and regional climate changes were recorded in sediments, which may be revealed by climatic proxies (e.g.,δ18O values of carbonate; pollen).

    Palynological analysis is a well-established method for reconstructing paleoclimate and paleoenvironment (e.g.,temperature, precipitation, and elevation), in which Ephedraceae percentage variation is very sensitive to dry climate and is usually attributed to dry conditions due to frequent association with other xerophillous shrubs (e.g.,Nitraria(Zygophyllaceae) and Chenopodiaceae) in arid and semiarid climates (e.g., Krutzsch, 1961; Gurevitchetal.,2002; Yang, 2002; Sun and Wang, 2005). This widely distributed type even became dominant in Cenozoic vegetation assemblages in northwestern China (e.g., Song, 1958; Songetal., 1999; Sun and Wang, 2005). For example, the highest percentages in the Qaidam Basin vary from 10% to 50% of pollen assemblages (Zhuetal., 1985). However, whether Ephedraceae percentage variation is also sensitive to temperature change, it has been ignored in many studies because of a lack of absolute age control (Wangetal., 1990) or low sampling density (Wangetal., 1990; Dupont-Nivetetal.,2008). In this paper, we address the temperature implication of Ephedraceae in the Cenozoic based on pollen records in northwestern China.

    2. Modern Ephedraceae distribution

    Ephedraceae is a desert perennial shrubby gymnosperm,which is mainly distributed in desert and grass zones of Asia,America, Southeastern Europe and Northern Africa (Figure 1a) (Gurevitchetal., 2002; Yang, 2002). Ephedraceae generally grows in arid climates, with very small leaves and low transpiration (Cutlar, 1939; Yang, 2002). In China,Ephedragrows where mean annual temperature (MAT) varies between -4 °C and 12 °C (Zhengetal., 2008), while in northern Africa (Sahara region), it grows where MAT is approximately 30 °C. Therefore, modern Ephedraceae belongs to eurythermic plants.

    Figure 1 Modern Ephedraceae distribution (a) in Eurasian and African regions (grey area) (after Caveney et al., 2001) and (b) Ephedraceae percentage variation in the Xining Basin (palaeomagnetic age control is from Dai etal., 2006)

    3. Geologic background, sampling method and results of the Xining Basin

    Located in the northeastern Tibetan Plateau, the Xining Basin holds over 800-m thick lacustrine saline playa and distal alluvial fan deposits (Daietal., 2006). Previous palynological studies about the deposits show that the climate in this basin is consistent with Cenozoic global cooling (Wangetal., 1990) or strongly influenced by the uplift of the Tibetan Plateau (Dupont-Nivetetal., 2008). However, climate implications of the dominant species of Ephedraceae with nearly the highest percentages in the aforementioned studies were not well discussed. A more detailed palynological record is required to constrain regional climate and reveal Ephedraceae climate implication based on improved palaeomagnostratigraphy. A total of 123 pollen samples were collected through approximately 819-m thick Xiejia section in the Xining Basin (Longetal., 2011).

    Our data provides a record of Ephedraceae percentage spanning the Early Eocene to Middle Miocene (52-17 Myr B.P.) (Daietal., 2006) in the Xining Basin (Figure 1b). During 52-33 Myr B.P., Ephedraceae percentage varied between 20% and 60%, with an average of 28%. Ephedraceae percentage dropped to approximately 20% at 33 Myr B.P. and maintained relatively constant after 33 Myr B.P.

    4. Combined Ephedraceae records from five other basins in northwestern China

    In Asia, climate transformation from a zonal pattern to a monsoon-dominated pattern occurred during the Miocene with the disappearance of typical subtropical aridity and the onset of inland deserts (Liuetal., 1998; Sun and Wang,2005; Guoetal., 2008). Before the Miocene, Ephedraceae was widely distributed in the subtropical arid zone throughout China and even reached to the northern South Yellow Sea Basin, and offshore western Korea (Yietal., 2003).Since the Miocene, the arid zone in Eastern China was replaced by monsoonal climate, and Ephedraceae percentage declined (with occasional occurrence of <1%) due to high precipitation brought by the Asian summer monsoon (Sun and Wang, 2005; Guoetal., 2008). Such precipitation change in the Cenozoic apparently affected Ephedraceae percentage in Eastern China. Therefore, to eliminate the humid response of Ephedraceae percentage, we compared our record of the Xining Basin with the combined Ephedraceae records from five other basins in northwestern China, all of which remained in a dry climate throughout the Cenozoic. These basins include the Tarim, Qaidam, Zhungaer, Jiuquan and Lunpolar basins (Figure 2), and age correlations are summarized in Sun and Wang (2005). Both the total and average percentages of Ephedraceae from the combined records were calculated from original data in the Tarim (Wang, 1990), Qaidam (Zhuetal., 1985), Jiuquan(Ma, 1993), Lunpolar (Song and Liu, 1982) and Zhungaer basins (Sun and Wang, 1990).

    Ephedraceae percentage of the combined records shows that Ephedraceae percentage was high during the Paleocene and Eocene, then decreased dramatically during the Oligocene and remained low through the Miocene,which is similar to Ephedraceae percentage record in the Xining Basin.

    Figure 2 Five basins always in the Cenozoic dry area (shallow grey) in northwestern China based on palynological and paleobotanical data (after Sun and Wang, 2005)

    5. Discussion

    The Ephedraceae record in the Xining Basin and the combined Ephedraceae records in northwestern China are generally comparable to the oxygen isotopic record of marine forams (Figure 3). The oxygen isotopic record of marine forams has been interpreted as a response to global temperature change, with higher δ18O values pointing to lower global temperatures (Zachosetal., 2001). The high Paleocene and Eocene Ephedraceae percentage is associated with low δ18O values, and the decrease of Ephedraceae percentage in Early Oligocene is coeval with an increase of δ18O values. Such co-variation suggests that variation of Ephedraceae percentage is coupled with global climate change in the Early Cenozoic, with high Ephedraceae percentage occurring in a greenhouse climate, and low Ephedraceae percentage in an icehouse climate during the Antarctic ice cap expansion. However,after the Late Oligocene, constant low Ephedraceae percentage was uncoupled with variation of the marine isotopic record, suggesting that Ephedraceae percentage was uncoupled with global warming in the Late Oligocene and cooling since the Middle Miocene (Figure 3). Therefore,Ephedraceae was warm-tolerant type vegetation during the Paleogene and adapted to a eurythermic environment since the Late Oligocene.

    Cenozoic variation of Ephedraceae percentage in northwestern China is also associated with variation of major pollen and spores assemblages. Fossil Ephedraceae of gnetophyte pollen grains dates back to the Triassic, and most of the modern groups diversified within their clade during the Middle Cretaceous (approximately 100 Myr B.P.) and became widely distributed with high abundance from the Middle Cretaceous to Eocene (Campbell, 2002;Judd, 2002). During the warm climate of the Paleocene and Eocene, high percentages of Ephedraceae were always accompanied by a number of tropical or subtropical types of vegetation in six basins (Song and Liu, 1982; Zhuet al.,1985; Wangetal., 1990; Ma, 1993; Songetal., 1999).These vegetation types includeEngelhardtioipollenties(Engelhardtia),Sapotaceoidaepollenites(Sapotaceae),Liquidambarpollenites(Liquidambar),Magnolipollis(Magnoliaceae),Nyssapollenties(Nyssa),Ilexpollenite(Aquifoliaceae),Sapindaceidites(Sapindaceae),Podocarpidites(Podocarpaceae),Meliaceoidites(Meliaceae),Euphorbiacites(Euphorbiaceae),Rhoipites(Anacardiaceae)andRutaceoipollenites(Rutaceae). The high percentage of Ephedraceae and diversity of pollen types associated with abundant tropical and subtropical plant species suggest a warm climate during the Paleocene and Eocene. During the Oligocene, a decrease of Ephedraceae percentage was associated with the occurrence of various conifers, such asPinus,Picea,Abies,Cedrus,TsugaandCupressaceae, and C4plants,e.g., Chenopodiaceae and Compositae. The low Ephedraceae percentage during the Oligocene is associated with the low percentage of subtropical or tropical elements.Miocene pollen assemblages in northwestern China were more diversified than those during the Oligocene, where most subtropical or tropical elements disappeared. However, Ephedraceae percentage maintained low throughout the Late Oligocene up to the present, suggesting that Ephedraceae was uncoupled with local vegetation change.Therefore, pollen and spore assemblages in northwestern China also show that Ephedraceae was warm-tolerant during the Paleogene, and adapted to a eurythermic environment after the Late Oligocene.

    Figure 3 Comparison between Cenozoic records of Ephedraceae percentages in the Xining Basin, combined records of Ephedraceae percentages in the five basins (Tarim, Qaidam, Jiuquan, Lunpolar and Zhungaer basins) in northwestern China with the δ18O record of marine forams (Zachos etal., 2001).

    Uplift of the Tibetan Plateau and retreat of the epicontinental sea, which are closely linked to the Indo-Asian collision since approximately 55 Myr B.P., have triggered dramatic aridification and cooling of the Asian interior and the onset of the Asian monsoonal climate (Harris, 2006;Zhangetal., 2007). Modern East Asian monsoon system is initiated and established during the Miocene based on pollen-vegetation as well as other climatic proxies (Liuetal.,1998; Sun and Wang, 2005; Fanetal., 2006, 2007; Guoet al., 2008). We argue that warm-tolerant Ephedraceae began to inhabit a eurythermic environment since the Late Oligocene which was mainly driven by the uplift of the Tibetan Plateau.

    The Tibetan Plateau progressively gained high elevation and expanded towards northwestern China since approximately 55 Myr B.P. (Tapponnieretal., 2001; Rowley and Currie, 2006; DeCellesetal., 2007; Wangetal., 2008; van der Beeketal., 2009). However, the uplift wasn’t significant enough to change the narrow climate arid belt stretching across China before the Oligocene (Sun and Wang, 2005;Guoetal., 2008). During global climate warming in the Late Oligocene and climatic optimum in Middle Miocene, high topography produced by the uplift of the Tibetan Plateau as well as enlargement of the land surface may have cooled down the interior of northwestern China, and initiated a topographic barrier for water vapor from the oceans. At the same time, Ephedraceae adapted to the cooling rather than migrating or extinction if its germ plasm can adapt itself to environmental change, and thus evolved to a eurythermal type which replaced the warm-tolerant vegetation type, but the exact timing is unclear.

    6. Conclusions

    The record of Ephedraceae percentage in the precisely dated Xining Basin and combined Ephedraceae records from five basins in northwestern China suggest that Ephedraceae was warm-tolerant during the Paleocene and Eocene, and adapted to a cooler climate since the Late Oligocene. The adaptation of Ephedraceae to a eurythermic environment since the Late Oligocene may be mainly driven by the uplift of the Tibetan Plateau.

    This work is supported by NSFC Grants (40802041,41002050) and the Foundation for Excellent Youth Scholars of CAREERI, CAS (51Y184991). We thank Fan MJ for help in English improvement and two anonymous reviewers for their valuable comments and suggestions.

    Campbell NA, Reece JB, 2002. Biology, 6thEdition. Benjamin Cummings,San Francisco.

    Caveney S, Charlet DA, Freitag H, Maier-Stolte M, Starratt AN, 2001. New observations on the secondary chemistry of worldEphedra(Ephedraceae). American Journal of Botany, 88: 1199-1208.

    Cutlar HC, 1939. Monograph of the North American species of the genusEphedra. Annals of the Missouri Botanical Garden, 26(4): 373-424, 426,428.

    Dai S, Fang XM, Dupont-Nivet G, Song CH, Gao JP, Krijgsman W,Langereis C, Zhang WL, 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. Journal of Geophysical Research—Solid Earth, 111:B11102. DOI: 10.1029/2005JB004187.

    DeCelles PG, Quade J, Kapp P, Fan MJ, Dettman DL, Ding L, 2007. High and dry in central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253(3-4): 389-401.

    Dupont-Nivet G, Hoorn C, Konert M, 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geological Science of America, 36: 987-990.

    Edmond JM, Huh Y, 1997. Chemical weathering yields from basement and orogenic terrains in hot and cold climates. In: Ruddiman WF (ed.). Tectonic Uplift and Climate Change. Plenum Press, New York. 330-350.

    Fan MJ, Dettman DL, Song CH, Fang XM, Garzione CN, 2007. Climatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma:The stable isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3-4): 313-328.

    Fan MJ, Song CH, Dettman DL, Fang XM, Xu XH, 2006. Intensification of the Asian winter monsoon after 7.4 Ma: Grain-size evidence from the Linxia Basin, northeastern Tibetan Plateau, 13.1 Ma to 4.3 Ma. Earth and Planet Science Letters, 248(1-2): 186-197.

    Guo ZT, Sun B, Zhang ZS, Peng SZ, Xiao GQ, Ge JY, Hao QZ, Qiao YS,Liang MY, Liu JF, Yin QZ, Wei JJ, 2008. A major reorganization of Asian climate by the early Miocene. Climate of the Past, 4: 153-174.

    Gurevitch J, Schneider SM, Fox GA, 2002. The Ecology of Plants. Sinauer Associates, Inc., Sunderland MA.

    Harris NBW, 2006. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 241: 4-15.

    Judd WS, 2002. Plant Systematics: A Phylogenetic Approach, 2ndEdition.Sinauer Associates, Inc., Sunderland MA.

    Krutzsch W, 1961. Uber Funde von ''ephedroidem'' Pollen im deutschen Terti?r. Geologie, Beih 32: 15-53.

    Kutzbach JE, Guetter PJ, Ruddiman WF, Prell WL, 1989. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West:numerical experiments. Journal of Geophysical Research, 94(D15):18393-18407.

    Liu TS, Zheng MP, Guo ZT, 1998. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia. Quaternary Sciences, 3: 194-204.

    Long LQ, Fang XM, Miao YF, Bai Y, Wang YL, 2011. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin. Chinese Science Bulletin, 56(15): 1569-1578.

    Ma JQ, 1993. The Tertiary sporopollen assemblage in the Jiuquan Basin and the palaeoenvironment. Petroleum Geology & Experiment, 15(4):423-435.

    Raymo ME, Ruddiman WF, 1992. Tectonic forcing of late Cenozoic climate.Nature, 359: 117-122.

    Raymo ME, Ruddiman WF, Froelich PN, 1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16: 649-653.

    Rowley DB, Currie BS, 2006. Palaeoaltimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677-681.

    Ruddiman W, Prell W, Raymo M, 1989. Late Cenozoic Uplift in Southern Asia and the American West: rationale for general circulation modeling experiments. Journal of Geophysical Research, 94(D15): 18379-18391.

    Song ZC, 1958. Tertiary spores and pollen complex from the red beds of Jiuquan, Kansu and their geological and botanical significance. Acta Palaeontol. Sin., 6(2): 159-167.

    Song ZC, Liu GW, 1982. Early Tertiary Palynoflora and its significance of Palaeogeography from Northern and Eastern Xizang. In: Team of Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Academia Sinica (Eds.). Palaeontology of Xizang. Science Press, Beijing.165-190.

    Song ZC, Zheng YH, Li MN, 1999. Fossil spores and pollen of China (I):Late of Cretaceous-Tertiary spores and pollen. Science Press, Beijing.749-757.

    Sun MR, Wang XZ, 1990. Tertiary palynological assemblages from the Junggar Basin, Xinjiang. In: Institute of Geology, Chinese Academy of Geological Sciences, Research Institute of Petroleum Exploration and Development, Xinjiang Petroleum Administration (Eds.). Permian to Tertiary Strata and Palynological Assemblages in the North of Xinjiang.China Environmental Science Press, Beijing. 122-151.

    Sun XJ, Wang PX, 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology,Palaeoecology, 222: 181-222.

    Tapponnier P, Xu Z, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T,2001. Oblique stepwise rise and growth of the Tibetan Plateau. Science,294: 1671-1677.

    van der Beek PA, Van Melle J, Guillot S, Pêcher A, Reiners PW, Nicolescu S, Latif M, 2009. Eocene Tibetan Plateau remnants preserved in the northwest Himalaya. Nature Geoscience, 2: 364-368.

    Wallmann K, 2001. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2, and climate. Geochimica et Cosmochimica Acta, 65: 3005-3025.

    Wang CS, Zhao XX, Liu ZF, Lippert PC, Graham SA, Coe RS, Yi HS, Zhu LD, Liu S, Li YL, 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy Sciences of the United States of America, 105: 4987-4992.

    Wang DN, Sun XY, Zhao YN, 1990. Late Cretaceous to Tertiary palynofl oras in Xinjiang and Qinghai, China. Review of Palaeobotany Palynology,65: 95-104.

    Yang Y, 2002. Systematic and evolution ofEphedra L. (Ephedraceae) from China. PhD Thesis, Institute of Botany Chinese Academy of Sciences,Beijing. 1-231.

    Yi S, Yi S, Batten DJ, Yun H, Park SJ, 2003. Cretaceous and Cenozoic non-marine deposits of the Northern South Yellow Sea Basin, offshore western Korea: palynostratigraphy and palaeoenvironments. Palaeogeography, Palaeoclimatology, Palaeoecology, 191: 15-44.

    Zachos JC, Pagani M, Sloan L, Thomas E, Billups K, 2001. Trends, rhythms,and aberrations in global climate 65 Ma to present. Science, 292:686-693.

    Zhang ZS, Wang HJ, Guo ZT, Jiang DB, 2007. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeography, Palaeoclimatology, Palaeoecology, 245: 317-331.

    Zheng Z, Huang KY, Xu QH, Lu HY, Cheddadi R, Luo YL, Beaudouin C,Luo CX, Zheng YW, Li CH, Wei JH, Du CB, 2008. Comparison of climatic threshold of geographical distribution between dominant plants and surface pollen in China. Science in China (Series D: Earth Science),51(8): 1107-1120.

    Zhu ZH, Wu LY, Xi P, Song ZC, Zhang YY, 1985. A Research on Tertiary Palynology from the Qaidam Basin, Qinghai Province. Petroleum Industry Publishing House, Beijing. 1-41.

    10.3724/SP.J.1226.2011.00375

    *Correspondence to: Dr. YunFa Miao, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. No. 320, West Donggang Road, Lanzhou, Gansu 730000, China. Tel: +86-931-4967544; Email: miaoyunfa@lzb.ac.cn

    24 March 2011 Accepted: 15 June 2011

    黑人操中国人逼视频| 日日干狠狠操夜夜爽| 精品人妻在线不人妻| 嫩草影视91久久| 又紧又爽又黄一区二区| 香蕉久久夜色| 国产成人av激情在线播放| 亚洲成国产人片在线观看| 91麻豆精品激情在线观看国产| 中文亚洲av片在线观看爽| 免费一级毛片在线播放高清视频 | e午夜精品久久久久久久| 午夜福利视频1000在线观看 | 久久青草综合色| 国产成人啪精品午夜网站| 国产精品亚洲av一区麻豆| 国产精品久久视频播放| 91成年电影在线观看| 97人妻精品一区二区三区麻豆 | 亚洲精品久久国产高清桃花| 欧美黄色片欧美黄色片| 久久久国产欧美日韩av| 亚洲五月色婷婷综合| 久久久久久久久中文| 十分钟在线观看高清视频www| 亚洲国产精品成人综合色| 亚洲第一青青草原| 成人国产一区最新在线观看| 欧美精品亚洲一区二区| 亚洲欧洲精品一区二区精品久久久| 日本 欧美在线| 久久精品影院6| 人人妻,人人澡人人爽秒播| 99久久99久久久精品蜜桃| 性少妇av在线| 黄频高清免费视频| 国产欧美日韩一区二区三区在线| 国产成人一区二区三区免费视频网站| 99精品欧美一区二区三区四区| 99国产极品粉嫩在线观看| 亚洲最大成人中文| 看免费av毛片| 日韩一卡2卡3卡4卡2021年| 久久精品91无色码中文字幕| 国产亚洲欧美在线一区二区| 男人舔女人下体高潮全视频| 精品国产亚洲在线| netflix在线观看网站| 校园春色视频在线观看| 操出白浆在线播放| 最近最新中文字幕大全免费视频| 亚洲激情在线av| 亚洲伊人色综图| 777久久人妻少妇嫩草av网站| 50天的宝宝边吃奶边哭怎么回事| 日韩一卡2卡3卡4卡2021年| 日韩大码丰满熟妇| 淫秽高清视频在线观看| 精品国产美女av久久久久小说| 日韩免费av在线播放| 久久久久国产精品人妻aⅴ院| xxx96com| 国产单亲对白刺激| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久久久人妻精品电影| 老汉色av国产亚洲站长工具| 波多野结衣av一区二区av| 少妇 在线观看| 一本综合久久免费| 免费观看精品视频网站| 午夜福利成人在线免费观看| 国产色视频综合| 成人免费观看视频高清| avwww免费| 91字幕亚洲| 精品少妇一区二区三区视频日本电影| 99国产精品99久久久久| xxx96com| 欧洲精品卡2卡3卡4卡5卡区| 国产麻豆成人av免费视频| 中亚洲国语对白在线视频| 欧美激情 高清一区二区三区| av中文乱码字幕在线| 午夜两性在线视频| 亚洲国产精品合色在线| 精品久久久久久久人妻蜜臀av | 丰满人妻熟妇乱又伦精品不卡| 国产国语露脸激情在线看| 国产色视频综合| 99国产精品一区二区蜜桃av| 19禁男女啪啪无遮挡网站| 在线视频色国产色| 国产欧美日韩一区二区三区在线| 波多野结衣一区麻豆| 国内毛片毛片毛片毛片毛片| 免费高清视频大片| 一区二区日韩欧美中文字幕| ponron亚洲| 变态另类成人亚洲欧美熟女 | 精品国产美女av久久久久小说| 亚洲自拍偷在线| 欧美+亚洲+日韩+国产| 亚洲三区欧美一区| 少妇熟女aⅴ在线视频| 亚洲精品国产一区二区精华液| 老司机午夜十八禁免费视频| 国产精品久久久久久人妻精品电影| 国产高清激情床上av| 在线永久观看黄色视频| av中文乱码字幕在线| 大型黄色视频在线免费观看| 一区二区三区激情视频| www日本在线高清视频| 国产1区2区3区精品| 麻豆一二三区av精品| 正在播放国产对白刺激| 桃色一区二区三区在线观看| 午夜精品在线福利| 国产欧美日韩一区二区精品| 99riav亚洲国产免费| 久久久久久久午夜电影| 免费高清视频大片| 国产私拍福利视频在线观看| 国产一卡二卡三卡精品| 久久久久久国产a免费观看| 一级a爱片免费观看的视频| 精品国产国语对白av| 亚洲情色 制服丝袜| 老司机午夜福利在线观看视频| 多毛熟女@视频| 久久热在线av| 一边摸一边抽搐一进一出视频| 国产一区二区三区视频了| 午夜福利18| 久久亚洲精品不卡| 久久久水蜜桃国产精品网| 久久人妻熟女aⅴ| 香蕉丝袜av| 国产精品久久视频播放| 嫁个100分男人电影在线观看| 色精品久久人妻99蜜桃| 亚洲七黄色美女视频| 麻豆av在线久日| 国产熟女午夜一区二区三区| 99久久精品国产亚洲精品| 老司机福利观看| 国产aⅴ精品一区二区三区波| 窝窝影院91人妻| 99久久综合精品五月天人人| av天堂久久9| 久久热在线av| 色综合婷婷激情| 免费无遮挡裸体视频| 女人爽到高潮嗷嗷叫在线视频| 欧美乱色亚洲激情| 手机成人av网站| 国产99白浆流出| 人人妻人人澡欧美一区二区 | 日韩欧美一区视频在线观看| 免费在线观看完整版高清| 国产一区二区三区在线臀色熟女| 欧美激情高清一区二区三区| 国产成人精品无人区| 欧美在线一区亚洲| 中亚洲国语对白在线视频| 免费人成视频x8x8入口观看| 免费女性裸体啪啪无遮挡网站| av视频在线观看入口| 亚洲七黄色美女视频| 日韩av在线大香蕉| 高清黄色对白视频在线免费看| 满18在线观看网站| 久久香蕉激情| 国产精品 欧美亚洲| 国产1区2区3区精品| 午夜福利影视在线免费观看| 成年版毛片免费区| 午夜影院日韩av| 日本精品一区二区三区蜜桃| 精品免费久久久久久久清纯| 在线观看免费日韩欧美大片| 校园春色视频在线观看| 精品久久久久久成人av| 日日摸夜夜添夜夜添小说| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一区二区精品视频观看| 亚洲一区二区三区色噜噜| 亚洲精品国产区一区二| 亚洲自拍偷在线| 一二三四社区在线视频社区8| 午夜亚洲福利在线播放| 两性夫妻黄色片| 99国产精品免费福利视频| 淫秽高清视频在线观看| 午夜福利视频1000在线观看 | 18禁观看日本| 亚洲男人天堂网一区| 麻豆av在线久日| 日韩欧美在线二视频| 美女 人体艺术 gogo| 亚洲av熟女| 69精品国产乱码久久久| 精品国产乱子伦一区二区三区| 欧美激情久久久久久爽电影 | 国产亚洲精品久久久久5区| 日本一区二区免费在线视频| 国产激情欧美一区二区| 精品国产亚洲在线| 欧美老熟妇乱子伦牲交| 一夜夜www| 一进一出抽搐动态| 多毛熟女@视频| 免费在线观看视频国产中文字幕亚洲| 纯流量卡能插随身wifi吗| 亚洲成人国产一区在线观看| 极品教师在线免费播放| 亚洲色图 男人天堂 中文字幕| 国产精品久久电影中文字幕| 又黄又粗又硬又大视频| 神马国产精品三级电影在线观看 | 一本大道久久a久久精品| 女人高潮潮喷娇喘18禁视频| av视频在线观看入口| 精品久久久久久成人av| 老司机深夜福利视频在线观看| 色哟哟哟哟哟哟| 看黄色毛片网站| 久久久久久免费高清国产稀缺| 他把我摸到了高潮在线观看| 丝袜美腿诱惑在线| 久9热在线精品视频| 免费观看人在逋| 欧美日韩一级在线毛片| 国产人伦9x9x在线观看| 国产精品亚洲美女久久久| 国产视频一区二区在线看| 欧美黑人精品巨大| 免费人成视频x8x8入口观看| 大码成人一级视频| 欧美激情久久久久久爽电影 | 免费看美女性在线毛片视频| 国产欧美日韩一区二区三区在线| 99re在线观看精品视频| 51午夜福利影视在线观看| 日本撒尿小便嘘嘘汇集6| 久久久久久久久免费视频了| 欧美绝顶高潮抽搐喷水| 亚洲精品国产区一区二| 亚洲成av片中文字幕在线观看| 一本久久中文字幕| www.精华液| 亚洲国产精品合色在线| 免费少妇av软件| 日韩欧美免费精品| x7x7x7水蜜桃| 热re99久久国产66热| 纯流量卡能插随身wifi吗| 美女高潮到喷水免费观看| 在线观看免费日韩欧美大片| 久久午夜综合久久蜜桃| 身体一侧抽搐| 他把我摸到了高潮在线观看| 成年女人毛片免费观看观看9| 12—13女人毛片做爰片一| 国产精品久久久久久人妻精品电影| 免费一级毛片在线播放高清视频 | 老司机午夜福利在线观看视频| 999精品在线视频| 国产成人精品久久二区二区91| 中文字幕av电影在线播放| 男女做爰动态图高潮gif福利片 | 天天躁夜夜躁狠狠躁躁| 制服诱惑二区| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品成人综合色| 在线国产一区二区在线| 国产午夜精品久久久久久| 美女扒开内裤让男人捅视频| 涩涩av久久男人的天堂| 美女 人体艺术 gogo| 亚洲中文字幕日韩| 亚洲av熟女| 丝袜美足系列| 长腿黑丝高跟| 中文字幕最新亚洲高清| 久热这里只有精品99| 桃色一区二区三区在线观看| 日韩精品青青久久久久久| 国产精品久久久久久人妻精品电影| 一区二区三区国产精品乱码| 日韩三级视频一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 男人舔女人下体高潮全视频| 欧美一级毛片孕妇| 无遮挡黄片免费观看| 真人一进一出gif抽搐免费| 一边摸一边抽搐一进一出视频| 精品久久久久久久毛片微露脸| 91大片在线观看| 亚洲国产精品999在线| 国产精品美女特级片免费视频播放器 | 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| 久久国产精品影院| 大型av网站在线播放| 精品高清国产在线一区| 啦啦啦 在线观看视频| 日韩欧美国产在线观看| avwww免费| 国产97色在线日韩免费| av中文乱码字幕在线| 久久香蕉激情| 黄色 视频免费看| 久久久久国内视频| 在线观看66精品国产| 亚洲七黄色美女视频| 9191精品国产免费久久| 亚洲av电影在线进入| 91老司机精品| 欧美黄色片欧美黄色片| 最近最新中文字幕大全电影3 | 大陆偷拍与自拍| 淫妇啪啪啪对白视频| 国产蜜桃级精品一区二区三区| 大码成人一级视频| 一级a爱片免费观看的视频| 日韩一卡2卡3卡4卡2021年| 免费在线观看影片大全网站| 一边摸一边抽搐一进一小说| 在线十欧美十亚洲十日本专区| 女性生殖器流出的白浆| 怎么达到女性高潮| 18禁国产床啪视频网站| 欧美大码av| avwww免费| 老司机午夜福利在线观看视频| 亚洲精品在线观看二区| aaaaa片日本免费| 午夜精品国产一区二区电影| av福利片在线| 午夜福利高清视频| 99精品久久久久人妻精品| 亚洲电影在线观看av| 1024视频免费在线观看| 在线观看免费视频日本深夜| 一级,二级,三级黄色视频| 成人国产综合亚洲| 国产高清有码在线观看视频 | 久99久视频精品免费| 妹子高潮喷水视频| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品久久久久久毛片| 中亚洲国语对白在线视频| 亚洲一区中文字幕在线| 免费搜索国产男女视频| 欧美精品亚洲一区二区| 午夜福利在线观看吧| 少妇熟女aⅴ在线视频| 日韩欧美免费精品| 久久精品亚洲熟妇少妇任你| 亚洲一码二码三码区别大吗| 不卡av一区二区三区| 在线免费观看的www视频| 亚洲第一电影网av| 宅男免费午夜| 国产高清videossex| 国产精品香港三级国产av潘金莲| 午夜成年电影在线免费观看| 在线永久观看黄色视频| 制服人妻中文乱码| 国产精品久久久久久精品电影 | 成年版毛片免费区| 亚洲五月天丁香| 午夜激情av网站| 国产高清有码在线观看视频 | 国产单亲对白刺激| 巨乳人妻的诱惑在线观看| 少妇的丰满在线观看| 人人妻人人澡欧美一区二区 | 久热这里只有精品99| www.精华液| 一区福利在线观看| 亚洲第一电影网av| 在线免费观看的www视频| 制服人妻中文乱码| www.999成人在线观看| 久久影院123| 日韩欧美一区二区三区在线观看| 国产人伦9x9x在线观看| 国产成年人精品一区二区| 黄片播放在线免费| 变态另类丝袜制服| 午夜日韩欧美国产| 成在线人永久免费视频| 一本大道久久a久久精品| 91av网站免费观看| 一边摸一边抽搐一进一出视频| 国产成人精品久久二区二区91| 久久久久国产精品人妻aⅴ院| 欧美成人性av电影在线观看| 欧美精品啪啪一区二区三区| 一级片免费观看大全| 黄色成人免费大全| 成人手机av| 999精品在线视频| 久久香蕉激情| 人人妻,人人澡人人爽秒播| 老司机午夜十八禁免费视频| 国产精品久久久av美女十八| 亚洲国产中文字幕在线视频| 欧美老熟妇乱子伦牲交| 亚洲 欧美一区二区三区| 国产三级黄色录像| 香蕉久久夜色| 免费女性裸体啪啪无遮挡网站| 国产精品乱码一区二三区的特点 | 国产亚洲精品久久久久久毛片| 桃红色精品国产亚洲av| 国产高清视频在线播放一区| 非洲黑人性xxxx精品又粗又长| 日本五十路高清| 亚洲成国产人片在线观看| 国产又爽黄色视频| 久久久久精品国产欧美久久久| 久久中文看片网| 成人18禁高潮啪啪吃奶动态图| 午夜免费观看网址| 脱女人内裤的视频| videosex国产| 日韩国内少妇激情av| 免费人成视频x8x8入口观看| 黄网站色视频无遮挡免费观看| 香蕉国产在线看| 999精品在线视频| bbb黄色大片| 亚洲av成人不卡在线观看播放网| 久久精品国产99精品国产亚洲性色 | 亚洲精品国产精品久久久不卡| 可以在线观看毛片的网站| 90打野战视频偷拍视频| 欧美性长视频在线观看| 欧美成人一区二区免费高清观看 | 欧美 亚洲 国产 日韩一| 极品教师在线免费播放| 成人国产综合亚洲| 一本久久中文字幕| 精品电影一区二区在线| 国产精品亚洲av一区麻豆| 精品国产一区二区三区四区第35| 国产精品一区二区在线不卡| 啦啦啦 在线观看视频| 在线国产一区二区在线| 国产亚洲精品久久久久5区| 亚洲午夜理论影院| 美女高潮到喷水免费观看| 91老司机精品| 欧美av亚洲av综合av国产av| 在线观看免费视频网站a站| 午夜福利视频1000在线观看 | 国产精品爽爽va在线观看网站 | 黑人巨大精品欧美一区二区蜜桃| 一区在线观看完整版| 亚洲一区二区三区色噜噜| 国产成人影院久久av| 香蕉久久夜色| 国产一区二区激情短视频| 50天的宝宝边吃奶边哭怎么回事| 国产精品,欧美在线| 精品午夜福利视频在线观看一区| 亚洲中文字幕一区二区三区有码在线看 | 国产精品九九99| 50天的宝宝边吃奶边哭怎么回事| 色综合亚洲欧美另类图片| 成人亚洲精品av一区二区| 色在线成人网| 极品人妻少妇av视频| 午夜福利高清视频| 午夜精品久久久久久毛片777| 侵犯人妻中文字幕一二三四区| 一夜夜www| 又黄又粗又硬又大视频| 婷婷丁香在线五月| 此物有八面人人有两片| 中文字幕人妻熟女乱码| 不卡一级毛片| 嫁个100分男人电影在线观看| 在线十欧美十亚洲十日本专区| 女生性感内裤真人,穿戴方法视频| 欧美中文综合在线视频| 国产在线观看jvid| 国产区一区二久久| 黑人巨大精品欧美一区二区蜜桃| 久久久国产成人免费| 激情视频va一区二区三区| cao死你这个sao货| 免费无遮挡裸体视频| 一本久久中文字幕| 日本黄色视频三级网站网址| av超薄肉色丝袜交足视频| 亚洲精品国产色婷婷电影| 久99久视频精品免费| 在线观看免费视频日本深夜| 香蕉丝袜av| 国产精品野战在线观看| 国产精品免费一区二区三区在线| 亚洲av电影不卡..在线观看| 97人妻精品一区二区三区麻豆 | 久久久久久大精品| 脱女人内裤的视频| 老汉色av国产亚洲站长工具| 午夜免费鲁丝| 男女床上黄色一级片免费看| 国产精品一区二区在线不卡| 午夜免费观看网址| 中文字幕最新亚洲高清| 亚洲视频免费观看视频| 天堂影院成人在线观看| 91麻豆精品激情在线观看国产| 日本在线视频免费播放| 男女做爰动态图高潮gif福利片 | 又紧又爽又黄一区二区| 这个男人来自地球电影免费观看| 在线观看免费视频日本深夜| 久久精品91无色码中文字幕| 女同久久另类99精品国产91| 日本一区二区免费在线视频| av欧美777| 亚洲 欧美一区二区三区| 国产亚洲精品久久久久5区| 亚洲成人免费电影在线观看| av片东京热男人的天堂| 1024香蕉在线观看| 9191精品国产免费久久| 这个男人来自地球电影免费观看| 国产精品影院久久| 多毛熟女@视频| 国产亚洲欧美在线一区二区| 老司机在亚洲福利影院| 久久香蕉激情| 男人舔女人下体高潮全视频| 国产精品电影一区二区三区| cao死你这个sao货| 精品电影一区二区在线| 欧美成人免费av一区二区三区| 91精品三级在线观看| 老司机深夜福利视频在线观看| 国产精华一区二区三区| 好男人电影高清在线观看| 日本撒尿小便嘘嘘汇集6| 午夜影院日韩av| 成人18禁高潮啪啪吃奶动态图| 99国产综合亚洲精品| 麻豆成人av在线观看| 国产国语露脸激情在线看| 精品人妻在线不人妻| 色综合婷婷激情| 在线观看午夜福利视频| 最好的美女福利视频网| 天堂影院成人在线观看| 国内毛片毛片毛片毛片毛片| 国产午夜福利久久久久久| 精品久久蜜臀av无| 变态另类丝袜制服| 国产乱人伦免费视频| 国产精品秋霞免费鲁丝片| 久久亚洲精品不卡| 亚洲国产欧美网| 午夜免费激情av| 天天躁狠狠躁夜夜躁狠狠躁| 我的亚洲天堂| 大型av网站在线播放| 91字幕亚洲| 正在播放国产对白刺激| 日韩欧美免费精品| 黄色 视频免费看| 午夜久久久在线观看| 露出奶头的视频| 亚洲熟女毛片儿| 中文字幕色久视频| 黄色视频不卡| 亚洲专区国产一区二区| av片东京热男人的天堂| 亚洲成av片中文字幕在线观看| 在线十欧美十亚洲十日本专区| 99精品久久久久人妻精品| 在线观看免费视频网站a站| 色播在线永久视频| 国产精华一区二区三区| 欧美在线黄色| 热re99久久国产66热| 嫁个100分男人电影在线观看| 美女大奶头视频| 日日摸夜夜添夜夜添小说| 18美女黄网站色大片免费观看| 涩涩av久久男人的天堂| 午夜免费鲁丝| 日本 欧美在线| 91成人精品电影| 国产99久久九九免费精品| 最近最新免费中文字幕在线| 免费看a级黄色片| 人妻丰满熟妇av一区二区三区| 亚洲精品中文字幕一二三四区| 999久久久国产精品视频| 亚洲天堂国产精品一区在线| 性色av乱码一区二区三区2| 日韩免费av在线播放| 日韩欧美国产在线观看| 精品免费久久久久久久清纯| 男人舔女人的私密视频| 久久影院123| 国产成人精品无人区| 99国产极品粉嫩在线观看| 黄色a级毛片大全视频| 亚洲av熟女|