• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      柑橘潰瘍病相關基因CsPGIP的克隆與表達

      2019-03-18 09:00:54胡安華祁靜靜張慶雯陳善春鄒修平許蘭珍彭愛紅雷天剛姚利曉龍琴何永睿李強
      中國農(nóng)業(yè)科學 2019年4期
      關鍵詞:潰瘍病株系柑橘

      胡安華,祁靜靜,張慶雯,陳善春,鄒修平,許蘭珍,彭愛紅,雷天剛,姚利曉,龍琴,何永睿,李強

      ?

      柑橘潰瘍病相關基因的克隆與表達

      胡安華,祁靜靜,張慶雯,陳善春,鄒修平,許蘭珍,彭愛紅,雷天剛,姚利曉,龍琴,何永睿,李強

      (西南大學/中國農(nóng)業(yè)科學院柑桔研究所,重慶 400712)

      【目的】克隆并分析其表達特性,轉化柑橘得到超表達轉基因株系,并進行柑橘潰瘍病抗性評價,為柑橘潰瘍病分子育種提供理論依據(jù)?!痉椒ā繌耐礤\橙和四季橘中克隆柑橘,使用Mega6進行多序列比對并構建系統(tǒng)發(fā)育樹;采用在線軟件BaCelLo和SignalP 4.0進行亞細胞定位和信號肽預測并用GFP瞬時表達確定CsPGIP在細胞內的定位;利用實時熒光定量PCR(qRT-PCR)比較接種潰瘍病菌前后高感品種和高抗品種中柑橘的表達特性,分析潰瘍病菌侵染與表達的相關性;農(nóng)桿菌介導遺傳轉化晚錦橙,采用GUS染色初篩、PCR鑒定和qRT-PCR相結合的方法鑒定超表達轉基因株系;觀察轉基因和野生型株系表型變化,分析其株高、葉片表型;離體針刺法對超表達轉基因株系和野生型株系進行柑橘潰瘍病抗性評價,統(tǒng)計病斑面積和病情指數(shù),分析表達對柑橘抗、感潰瘍病的影響?!窘Y果】晚錦橙和四季橘均編碼328個氨基酸,與已報道的柑橘中的同源性高達99.39%,都包含2個基因典型的LRR結構域(LRR_1和LRR_2);構建系統(tǒng)進化樹發(fā)現(xiàn)甜橙中的CsPGIP與葡萄中的PGIP(GSVIVT01033370001)遺傳距離最近,相似度達到62.97%,推測CsPGIP與葡萄中的PGIP具有類似的抗病效果。亞細胞定位和信號肽預測結果表明CsPGIP屬于分泌蛋白,GFP洋蔥瞬時表達證明柑橘CsPGIP定位在細胞膜和細胞壁,與預測結果一致。高感品種晚錦橙和高抗品種四季橘接種潰瘍病菌后的表達特性不同,在高感品種中表達顯著下調,而高抗品種中表達顯著上調且維持在較高水平,推測與柑橘潰瘍病的抗性相關。構建超表達載體并轉化晚錦橙,通過PCR鑒定和qRT-PCR確定其中9個(OE1、OE3、OE4、OE5、OE6、OE9、OE10、OE12和OE14)為超表達陽性株系。通過對轉基因株系的表型觀察發(fā)現(xiàn)OE3、OE14株系表型與野生型株系相比差異明顯,植株表現(xiàn)為較矮小,其中OE14出現(xiàn)葉片卷曲、增厚的表型變化。對超表達轉基因株系(8個株系)進行離體抗?jié)儾≡u價,結果顯示超表達轉基因株系可以使柑橘潰瘍病病斑面積降至野生型的24.11%—83.88%,其中OE1株系的病斑面積最??;從病情指數(shù)來看,除OE3株系外,其余株系的病情指數(shù)均比野生型顯著下降(為野生型的23.12%—75.49%),其中OE1下降最顯著,綜上結果可知超表達可以有效抑制柑橘潰瘍病菌的生長?!窘Y論】是柑橘響應潰瘍病菌侵染的重要基因,可抑制或減輕柑橘潰瘍病的發(fā)病程度,在柑橘抗?jié)儾C理研究方面具有較大的應用價值,也可作為柑橘抗?jié)儾》肿佑N的一個候選基因。

      柑橘潰瘍??;多聚半乳糖醛酸酶抑制蛋白;;超表達;潰瘍病抗性

      0 引言

      【研究意義】柑橘是我國南方最重要的果樹作物,其中柑橘潰瘍?。╟itrus bacterial canker,CBC)是影響柑橘產(chǎn)業(yè)發(fā)展最為嚴重的病害之一。柑橘潰瘍病是由地毯黃單胞柑橘致病變種(subsp.,)引起的世界性檢疫病害[1-3]。目前為控制柑橘潰瘍病危害通常采取化學防治為主,生物防治為輔的綜合防治策略[4]。由于以上防治措施對環(huán)境不友好,需要投入大量的人力、物力,因此培育抗病新品種是減少柑橘潰瘍病危害的根本途徑。近年來日趨成熟的分子育種技術具有效率高、周期短、可對性狀進行定向改良等優(yōu)點,愈來愈受到關注。通過分子育種挖掘潰瘍病相關的候選基因對于柑橘產(chǎn)業(yè)的發(fā)展具有重要意義?!厩叭搜芯窟M展】多聚半乳糖醛酸酶抑制蛋白(polygalacturonase inhibitor protein,PGIP)基因是一個常用的抗病基因,陳波等通過挖掘、分析柑橘中的(登錄號:BAA31841.1)編碼蛋白質序列,證明是一個編碼327個氨基酸并包含兩個富含亮氨酸重復序列(leucine-rich repeat,LRR)LRR-2、LRR-1的基因[5]。LRR結構域在植物生長發(fā)育和抗病反應等方面發(fā)揮著重要作用[6],與識別病原體的特異性有一定關系,且決定與配體結合的專一性[7],PGIP通過抑制病原菌多聚半乳糖醛酸酶(polygalacturonase,PGs)的活性防止病原菌侵染植物組織[8-15]。大量的研究證明PGIP可提高植物對真菌病害的抗性,例如棉花[16]、煙草[9,17-18]、小麥[19]、擬南芥[8,20]、谷子[21-22]等。但是越來越多的研究發(fā)現(xiàn)PGIP在抗細菌病方面也發(fā)揮重要的作用。組成型表達梨后發(fā)現(xiàn)PcPGIP對細菌葉緣焦枯菌()有明顯的抗性[23];Hwang等在煙草和結球甘藍中轉入蕪菁的后,發(fā)現(xiàn)該基因增強了對細菌性病害軟腐病菌()的抗性[14];青枯菌()中PGs的活性可被番茄莖中提取的PGIP強烈抑制[24];紋枯病菌()中PGs活性可以被水稻的原核表達產(chǎn)物抑制[25];FENG等[26]的研究則發(fā)現(xiàn)超表達可增強水稻對條斑病菌()的抗性,而抑制表達使水稻對條斑病更加敏感?!颈狙芯壳腥朦c】前期轉錄組研究發(fā)現(xiàn),潰瘍病高感品種晚錦橙()和高抗品種四季橘()在感染潰瘍病菌前后表達差異顯著,推測可能與柑橘潰瘍病的抗性相關?!緮M解決的關鍵問題】以柑橘潰瘍病抗性品種四季橘和感性品種晚錦橙為材料,通過生物信息學分析、亞細胞定位、表達分析和轉基因功能驗證等研究,探索與柑橘潰瘍病抗、感性的關系,為柑橘抗?jié)儾》肿佑N提供理論依據(jù)。

      1 材料與方法

      試驗于2016年12月至2018年8月在西南大學/中國農(nóng)業(yè)科學院柑桔研究所國家柑桔工程技術研究中心完成。

      1.1 植物材料與病原菌

      選取4年生晚錦橙和四季橘葉片(完全展開的3個月葉齡的春稍葉片)、2年生資陽香橙()砧木為供試材料。材料取自西南大學溫網(wǎng)室和國家柑桔品種改良中心育種圃(19° 51′ N,106° 37′ E)。晚錦橙種子取自成熟果實,消毒后無菌條件下播種于MS培養(yǎng)基,3周后取上胚軸切成1 cm莖段作為轉化外植體;潰瘍病菌是由西南大學柑桔研究所保存的亞洲種A株系。

      1.2 CsPGIP的克隆與分析

      晚錦橙和四季橘RNA提取采用RNA快速提取試劑盒(Aidlab),并反轉錄為cDNA(TaKaRa);根據(jù)Phytozome甜橙基因組[27]中基因序列(ID: orange1.1g020203m)設計特異引物OE-CsPGIP-f/r(表1)并分別以晚錦橙和四季橘cDNA為模板PCR擴增;PCR產(chǎn)物連接pGEM-T easy載體(Promega)并轉化感受態(tài)菌株DH5(TaKaRa),陽性克隆委托擎科生物有限公司測序;利用Mega6[28]進行氨基酸多序列比對分析并繪制NJ系統(tǒng)發(fā)育樹。

      1.3 CsPGIP的亞細胞定位

      利用BaCelLo[29]和SignalP4.0[30]進行CsPGIP的亞細胞定位和信號肽預測;根據(jù)序列設計不含終止密碼子的特異引物SCL-CsPGIP-f/r(表1)并以晚錦橙cDNA為模板進行PCR擴增,產(chǎn)物與pSAT6- mGFP-N1載體連接,構建CsPGIP::mGFP融合基因,再將融合基因連接到pLGN-2x35s載體,最終得到pLGN::CsPGIP::mGFP載體;將含有pLGN::CsPGIP:: mGFP載體和pLGN::mGFP載體的EHA105農(nóng)桿菌(OD=0.1)注射洋蔥下表皮,28℃暗培養(yǎng)36 h,制片并用熒光顯微鏡(OLYMPUS:BX51)觀察明、暗視野下的表達情況。

      下劃線標注的為酶切位點The enzyme sites are marked with underline

      1.4 柑橘潰瘍病菌對CsPGIP的誘導表達分析

      將高感品種晚錦橙和高抗品種四季橘葉片用自來水清洗干凈并用75%的乙醇擦拭消毒,無菌水沖凈后置于無菌培養(yǎng)皿。將OD600=0.5的潰瘍病菌菌懸液注射到晚錦橙和四季橘葉片下表皮,對照組注射無菌LB液體培養(yǎng)基,于28℃光照培養(yǎng)。分別于0、12、24、36、48 h取樣,切取葉片的接種部位提取總RNA并反轉錄。根據(jù)基因特異性區(qū)域和柑橘內參基因設計定量PCR引物qPCR-CsPGIP-f/r and qPCR-Actin-f/r(表1)。利用實時熒光定量PCR(quantitative real-time PCR,qRT-PCR)分析的相對表達量。每個處理進行3次生物學重復和3次技術重復。

      1.5 CsPGIP超表達載體構建與轉化

      將克隆的具有I和I酶切位點的片段和pLGNe-2×35S-MCS-nos超表達載體用I和I雙酶切,酶切后的基因片段和載體片段連接構建pLGNe-CsPGIP-2×35S-MCS-nos超表達載體并轉化農(nóng)桿菌(EHA105)。柑橘轉化參照PENG等[31]的方法。含有重組質粒的農(nóng)桿菌于LB液體培養(yǎng)基28℃培養(yǎng)至OD600=0.5,侵染晚錦橙外植體(1 cm上胚軸莖段)15 min,外植體用滅菌濾紙擦干后均勻擺放到共培養(yǎng)基(含2 mg·L-1IP、1 mg·L-1IAA和2,4-D、0.1 mg·L-1AS的MS培養(yǎng)基)于28℃暗培養(yǎng),72 h后轉移到篩選培養(yǎng)基(含2 mg·L-1BA、1 mg·L-1IAA、50 mg·L-1Kana的MS培養(yǎng)基)于28℃暗培養(yǎng),7 d后轉移到28℃光照培養(yǎng)。

      1.6 轉基因株系鑒定

      光照培養(yǎng)約50 d后,待不定芽生長到1 cm左右,切取少量芽進行GUS染色,顯色為藍色的芽初步認定為擬轉化芽。初篩得到的擬轉化芽嫁接到砧木,待長大后取其葉片提取基因組DNA,以此為模板用特異基因驗證引物OE-f(35s)/OE-r(CsPGIP)(表1)進行PCR鑒定。陽性轉基因株系提取RNA并反轉錄為cDNA,利用qRT-PCR分析各株系中的表達量。

      1.7 轉基因株系的抗性評價

      轉基因株系的抗病性評價參照PENG等[32]的方法進行。選取完全展開的3個月葉齡轉基因株系及野生型晚錦橙葉片,進行離體抗性評價。用接種針在每片葉片的背面刺4—6組孔,每組6個,每個針孔接種潰瘍病菌1 μL(OD600=0.5),同時對照組接種無菌LB培養(yǎng)基。28℃光照培養(yǎng)10 d,拍照記錄病斑。用軟件Image J V1.47(National Institutes of Health,Bethesda,MD)統(tǒng)計病斑面積(lesion area,LA,mm2)。按照病斑面積大小將病情分為8個級別,用字母LA表示病斑面積,0級(LA≤0.5 mm2),1級(0.5 mm2<LA≤1.0 mm2),2級(1.0 mm2<LA≤1.5 mm2),3級(1.5 mm2<LA≤2.0 mm2),4級(2.0 mm2<LA≤2.5 mm2),5級(2.5 mm2<LA≤3.0 mm2),6級(3.0 mm2<LA≤3.5 mm2),7級(LA>3.5 mm2)。根據(jù)以下公式計算病情指數(shù)(disease index,DI):DI=100×Σ(各級病斑數(shù)×相應級數(shù)值)/(病斑總數(shù)×最大級數(shù))。

      1.8 qRT-PCR與統(tǒng)計分析

      相對表達量采用2-ΔΔCt法(ΔCt = CtCsPGIP-CtActin)計算,使用Excel進行數(shù)據(jù)統(tǒng)計分析并繪圖。<0.05表示差異顯著,<0.01表示差異極顯著。

      2 結果

      2.1 CsPGIP生物信息學分析

      晚錦橙和四季橘的Cs編碼的CsPGIP均含有328個氨基酸,與已報道柑橘PGIP(BAA31841.1)[5]同源性為99.39%,3個基因編碼的PGIP均含有PGIP關鍵結構域LRR_1和LRR_2,屬于同源基因(圖1)。

      通過對CsPGIP與其他8個物種(擬南芥、高粱、水稻、亞麻屬、苜蓿、楊樹、谷子和葡萄)共38條PGIP序列進行系統(tǒng)發(fā)育分析,結果顯示不同物種間PGIP序列具有很強的保守性,相同物種具有較高的相似度;單子葉和雙子葉植物單獨聚在一起,分成兩個大組;柑橘CsPGIP與葡萄PGIP(GSVIVT01033370001)遺傳距離最近,相似度達到62.97%(圖2)。

      2.2 CsPGIP亞細胞定位

      利用BaCelLo進行CsPGIP亞細胞定位預測,定位于細胞膜上的預測分值(2.272)顯著高于其他部位(≤1.494),CsPGIP可能定位在細胞膜上。信號肽預測結果顯示其N端有含23個氨基酸的信號肽:MSNTSLLSLFFFLCLCISPSLSD,表明CsPGIP為分泌蛋白。為驗證亞細胞定位和信號肽的預測,以柑橘與構建融合表達載體,通過洋蔥表皮瞬時表達進行亞細胞定位,顯微觀察顯示融合蛋白定位在細胞膜和細胞壁結合部(圖3 A1-A3),進一步進行質壁分離后觀察顯示融合蛋白在細胞膜和細胞壁中都有積累(圖3 B1-B3),而對照組定位在整個細胞中(圖3 C1-C3、D1-D3)。CsPGIP定位在細胞膜和細胞壁中的觀察結果與預測一致。

      深藍色為相同氨基酸序列,淺藍色為不同的氨基酸序列,LRR_1和LRR_2為LRR結構域

      以上基因均來自Phytozome(http://www.phytozome.com/)基因組數(shù)據(jù)庫Genes in this study are all from Phytozome (http://www.phytozome.com/)

      A1:明視野觀察CsPGIP-GFP融合蛋白Image of CsPGIP-GFP under bright field;A2:暗視野觀察CsPGIP-GFP融合蛋白Image of CsPGIP-GFP under dark field;A3:A1、A2視野疊加Overlap of A1 and A2;B1:明視野觀察CsPGIP-GFP融合蛋白質壁分離Image of CsPGIP-GFP under bright field (plasmolysis);B2:暗視野觀察CsPGIP-GFP融合蛋白質壁分離Image of CsPGIP-GFP under dark field (plasmolysis);B3:B1、B2視野疊加Overlap of B1 and B2;C1:明視野觀察GFP表達Image of GFP under bright field;C2:暗視野觀察GFP表達Image of GFP under dark field;C3:C1、C2視野疊加Overlap of C1 and C2;D1:明視野觀察GFP質壁分離GFP of plasmolysis under bright field;D2:暗視野觀察GFP質壁分離GFP of plasmolysis under dark field;D3:D1、D2視野疊加Overlap of D1 and D2;標尺Scale:100 μm

      2.3 柑橘潰瘍病菌對CsPGIP的誘導表達分析

      實時熒光定量PCR結果分析顯示柑橘在5個時間點(0、12、24、36和48 h)表達水平存在不同程度的差異(圖4),其中高感品種晚錦橙在接種潰瘍病菌12 h后的表達出現(xiàn)顯著下調并維持在較低的水平。而高抗品種四季橘在接種潰瘍病菌后表達出現(xiàn)不同程度上調,在12 h時表達量最高,為0 h的2.91倍,12 h后仍維持在較高水平。結果表明表達與潰瘍病菌的侵染具有密切關系,經(jīng)潰瘍病菌誘導而顯著上調可能是四季橘抗?jié)儾〉脑蛑弧?/p>

      2.4 轉基因株系的鑒定及CsPGIP表達分析

      經(jīng)GUS染色初篩(結果未顯示)結合PCR鑒定,共獲得9個轉基因株系,分別為OE1、OE3、OE4、OE5、OE6、OE9、OE10、OE12和OE14(圖5-A)。以轉基因株系和野生型對照同期葉片提取RNA,qRT-PCR進行表達量測定,相對于野生型對照,以上9個株系表達量均出現(xiàn)不同程度的上調表達,其中OE10上調表達最高(圖5-B)。

      不同小寫字母表示差異顯著(P<0.05)Different lowercases indicate significant difference (P<0.05)

      A:CsPGIP轉基因株系的PCR鑒定PCR amplification of CsPGIP in over-expression transgenic lines;B:轉基因株系中CsPGIP的相對表達量檢測The relative expression level of CsPGIP in over-expression transgenic lines。 M:分子量標準Marker;OE1—OE14:Gus初篩的轉基因材料lines verified from Gus staining;WT:野生型wild-type;陽性株系特異擴增條帶為1 530 bp PCR product size of positive lines is 1 530 bp

      2.5 轉基因株系的表型分析

      觀察分析9株轉基因株系表型,3個樹齡一年的株系OE1、OE3和OE4中,OE3與野生型對照差異明顯,植株較矮小(圖6-A、6-D)。7個樹齡6個月的株系OE5、OE6、OE9、OE10、OE12和OE14與野生型比較,OE14株系出現(xiàn)了異常,植株矮小(圖6-B、6-E)、葉片卷曲、增厚(圖6-C)。

      A:樹齡1年的轉基因株系(OE1、OE3、OE4)和野生型對照(WT1)植株The phenotype of 1-year-old transgenic lines (OE1, OE3, OE4) and the wild-type control (WT1);B:樹齡6個月的轉基因株系(OE5、OE6、OE9、OE10、OE12、OE14)和野生型對照(WT2)植株Phenotype of 6-month-old transgenic lines (OE5, OE6, OE9, OE10, OE12, OE14) and the wild-type control (WT2);C:野生型對照WT2和轉基因株系OE14的葉片Leaves of WT2 and OE14;D:樹齡1年的轉基因株系(OE1、OE3、OE4)和野生型對照(WT1)的株高(測量方法:從嫁接口到頂梢的距離)Height of 1-year-old transgenic lines (OE1, OE3, OE4) and the wild-type control (measurement method: distance from the graft to the top tip);E:樹齡6個月的轉基因株系(OE5、OE6、OE9、OE10、OE12、OE14)和野生型對照(WT2)的株高Height of 6-month-old transgenic lines (OE5, OE6, OE9, OE10, OE12, OE14) and the wild-type control

      2.6 轉基因株系的潰瘍病抗性評價

      對8個轉基因株系(OE1、OE3、OE4、OE5、OE6、OE9、OE10和OE12)進行了抗病性評價。采用針刺法離體接種潰瘍病菌,以接種LB培養(yǎng)基的葉片作為對照。10 d后,接種LB培養(yǎng)基的葉片均未發(fā)?。▓D7-A),而接種潰瘍病菌的葉片均不同程度發(fā)病,病斑大小存在一定的差異(圖7-B);經(jīng)過統(tǒng)計分析,轉基因株系病斑面積顯著小于野生型對照(圖7-C),僅為野生型對照病斑面積的24.11%—83.88%;轉基因株系病情指數(shù)僅為野生型對照的23.12%—86.52%(圖7-D)。從轉基因株系接種潰瘍病菌抗性評價結果得出株系OE1、OE4、OE5、OE6、OE9、OE10和OE12可顯著減小葉片潰瘍病病情指數(shù),其中OE1株系對柑橘潰瘍病抗性得到極顯著提高。

      3 討論

      植物細胞壁是抵御病菌入侵的第一道防線,病原細菌和真菌必須通過植物細胞壁在植物體內建立生物營養(yǎng)感染的定殖位點后進行擴大感染[33]。PGIP是植物細胞壁產(chǎn)生的LRR類防御蛋白,能特異性的抑制病原菌分泌的PGs,從而抑制病原菌對植株的侵染。LRR基序是參與蛋白質之間互作的結構域[34],PGIP通過LRR基序抑制PGs的活性[35]。有研究表明PGIP在多種物種中對提高病害的抗性有顯著作用,棉花可增強植株對黃萎病和鐮孢菌枯萎病的抗性[16];過表達增強了結球甘藍對細菌性軟腐病的抗性[14];CaPGIPs在植物的抗病方面起著重要作用[36];葡萄VvPGIP1可以降低轉基因煙草對灰霉病菌的敏感性,并對病原菌的PGs有不同程度的抑制作用[17]。本研究結果表明,晚錦橙中的超量表達可增強柑橘對潰瘍病菌的抗性。

      A:接種LB培養(yǎng)基的轉基因株系和野生型對照葉片Disease spots of transgenic lines and the wild-type inoculated with LB;B:接種潰瘍病菌的轉基因株系和野生型對照葉片Disease spots of transgenic lines and the wild-type inoculated with Xcc;C:接種潰瘍病菌的轉基因株系和野生型對照病斑面積Lesion area of transgenic lines and the wild-type inoculated with Xcc;D:接種潰瘍病菌的轉基因株系和野生型對照病情指數(shù)Disease index of transgenic lines and the wild-type inoculated with Xcc。WT:野生型對照wild-type control;OE1—OE12:轉基因株系transgenic lines。*表示差異顯著(P<0.05),**表示差異極顯著(P<0.01)* represents significant difference (P<0.05), ** represents extremely significant difference (P<0.01)

      在潰瘍病菌的誘導下,在高感品種晚錦橙中下調表達而在高抗品種四季橘中顯著上調表達。晚錦橙和四季橘中的CsPGIP蛋白僅存在3個氨基酸的差異,但它們具有相同的LRR類防御蛋白特有的結構域LRR_1和LRR_2(圖1),因而這兩種蛋白本身對病原菌的抵抗能力可能差異不大。導致在不同潰瘍病抗性的柑橘品種中差異表達的原因可能是調控機制的差異。柑橘抵抗?jié)儾【娜肭质且粋€復雜的調控網(wǎng)絡。潰瘍病病原菌主要的效應因子pthA4通過III型分泌系統(tǒng)進行柑橘基因組后,與柑橘體內的潰瘍病感病基因結合[37]。研究表明,不同潰瘍病抗性的柑橘品種中都含有,但在不同抗性的柑橘品種中存在啟動子序列的差異[31],這種啟動子序列的差異可能會引起基因表達的差異。在不同的抗、感潰瘍病柑橘品種中,雖然相同,但其轉錄后可能存在轉錄后修飾現(xiàn)象,轉錄呈現(xiàn)多態(tài)性,這種轉錄后的修飾也會導致在不同抗性的柑橘品種中表達的差異。因而進一步克隆晚錦橙和四季橘中的啟動子,分析啟動子序列差異;同時對不同潰瘍病抗性的柑橘品種中轉錄的結構多態(tài)性進行研究,有望闡明在不同潰瘍病抗性的柑橘品種中差異表達的原因。

      本研究對9個轉基因株系進行表型分析,發(fā)現(xiàn)僅有兩個轉基因株系出現(xiàn)了植株矮小的現(xiàn)象,其中一個株系(OE14)的葉片卷曲增厚。多個物種的已在不同的植株中進行超表達,但轉基因并未引起植株表型的差異[16-26]。本研究中轉基因植株表型變化可能是隨機整合到柑橘基因組中時引起某些基因或調控序列失活造成的。由于僅有兩個株系出現(xiàn)了表型變化且其中一株過于矮小無法進行表型相關研究,后期將會對潰瘍病抗性評價、插入位點、基因表達和細胞組織結構進行綜合研究,以探究對植物生長發(fā)育的影響。

      潰瘍病抗性評價結果顯示不同的轉基因株系可不同程度顯著減小葉片病情指數(shù),其中OE1株系對柑橘潰瘍病抗性極顯著提高且表型正常。目前對柑橘潰瘍病抗性機理尚未清楚,因而篩選出的抗?jié)儾〉霓D基因柑橘可以作為材料進一步研究的作用機理。

      4 結論

      CsPGIP為定位于細胞壁和細胞膜的蛋白,受潰瘍病菌誘導表達。的表達特性表明該基因是柑橘響應潰瘍病侵染的重要基因,超表達該基因可以提高柑橘對潰瘍病的抗性,該基因在柑橘抗?jié)儾C理研究方面具有較大的應用價值,可作為柑橘抗?jié)儾》肿佑N的一個候選基因。

      [1] PITINO M, ARMSTRONG C M, DUAN Y P. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses., 2015, 2: 15042.

      [2] 賈瑞瑞, 周鵬飛, 白曉晶, 陳善春, 許蘭珍, 彭愛紅, 雷天剛, 姚利曉, 陳敏, 何永睿, 李強. 柑橘響應潰瘍病菌轉錄因子CsBZIP40 的克隆及功能分析. 中國農(nóng)業(yè)科學, 2017, 50(13): 2488-2497.

      JIA R R, ZHOU P F, BAI X J, CHEN S C, XU L Z, PENG A H, LEI T G, YAO L X, CHEN M, HE Y R, LI Q. Gene cloning and expression analysis of canker-related transcription factor CsBZIP40 in citrus., 2017, 50(13): 2488-2497. (in Chinese)

      [3] 楊楓, 陳傳武, 范七君, 石春梅, 謝宗周, 郭大勇, 劉繼紅. 溫度和多胺對柑橘潰瘍病發(fā)生的影響及作用機制. 中國農(nóng)業(yè)科學, 2018, 51(10): 1899-1907.

      YANG F, CHEN C W, FAN Q J, SHI C M, XIE Z Z, GUO D Y, LIU J H. Influence of temperature and polyamines on occurrence of citrus canker disease and underlying mechanisms., 2018, 51(10): 1899-1907. (in Chinese)

      [4] 陳力, 王中康, 黃冠軍, 曹月青, 夏玉先, 殷幼平. 柑橘潰瘍病生防菌株CQBS03的鑒定及其培養(yǎng)特性研究. 中國農(nóng)業(yè)科學, 2008, 41(8): 2537-2545.

      CHEN L, WANG Z K, HUANG G J, CAO Y Q, XIA Y X, YIN Y P. Evaluation ofstrain CQBS03 againstpv., 2008, 41(8): 2537-2545. (in Chinese)

      [5] 陳波, 羅慶華, 譚雅芹, 閆慧清. 柑橘PGIP的B細胞抗原表位分析和原核表達. 現(xiàn)代食品科技, 2018, 34(4): 18-22.

      CHEN B, LUO Q H, TAN Y Q, YAN H Q. B cell epitopes analysis and prokaryotic expression of PGIP in citrus., 2018, 34(4): 18-22. (in Chinese)

      [6] FREIBERG A, MACHNER M P, PFELI W, SCHUBERT W D, HEINZ D W, SECKLER R. Folding and stability of the leucine-rich repeat domain of internal in B from., 2004, 337(2): 453-461.

      [7] LEHMANN P. Structure and evolution of plant disease resistance genes., 2002, 43(4): 403-414.

      [8] FERRARI S, GALLETTI R, VAIRO D, GERVONE F, DE LORENZO G. Antisense expression of thegene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to., 2006, 19(8): 931-936.

      [9] JOUBERT D A, KARS I, WAGEMAKERS L, BERGMANN C, KEMP G, VIVIER M A, VAN KAN J A. A polygalacturonase- inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 frominleaves without any evidence forinteraction., 2007, 20(4): 392-402.

      [10] CHENG Q, CAO Y Z, PAN H X, WANG M X, HUANG M R. Isolation and characterization of two genes encoding polygalacturonase- inhibiting protein from., 2008, 35(10): 631-638.

      [11] HEGEDUS D D, LI R, BUCHWALDT L, PARKIN I, WHITWILL S, COUTU C, BEKKAOUI D, RIMMER S R.possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response toinfection, wounding and defense hormone treatment., 2008, 228(2): 241-253.

      [12] JANNI M, SELLA L, FAVARON F, BLECHL A E, DE LORENZO G, D’OVIDO R. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen., 2008, 21(2): 171-177.

      [13] DI C X, LI M, LONG F, BAI M P, LIU Y J, ZHENG X L, XU S J, XIANG Y, SUN Z L, AN L Z. Molecular cloning, functional analysis and localization of a novel gene encoding polygalacturonase- inhibiting protein in., 2009, 231(1): 169-178.

      [14] HWANG B H, BAE H, LIM H S, KIM K B, KIM S J, IM M H, PARK B S, KIM D S, KIM J. Overexpression of polygalacturonase- inhibiting protein 2 () of chinese cabbage (ssp.) increased resistance to the bacterial pathogenssp.., 2010, 103(3): 293-305.

      [15] D’OVIDIO R, RAIOLA A, CAPODICASA C, DEVOTO A, PONTIGGIA D, ROBERTI S, GALLETTI R, CONTI E, O’SULLIVAN D, DE LORENZO G. Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects., 2004, 135(4): 2424-2435.

      [16] LIU N N, ZHANG X Y, SUN Y, WANG P, LI X C, PEI Y K, LI F G, HOU Y X. Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance toandwilts in cotton., 2017, 7: 39840.

      [17] JOUBERT D A, SLAUGHTER A R, KEMP C, BECKER J V, KROOSHOF C H, BERGMANN C, BENEN C, PRETORIUS I S, WIER M A. The polygalacturonase-inhibiting protein (VvPGIPl) reducesin transgenic tobacco and differentially inhibits fungal polygalacturonases., 2006, 15(6): 687-702.

      [18] BORRAS-Hidalgo O, CAPRARI C, HERNANDEZ-Estevezi, DE Lorenzo G, CERVONE F. A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance againstand two oomycetes., 2012, 3: 268.

      [19] WANG A Y, WEI X N, RONG W, DANG L, DU L P, QI L, XU H J, SHAOY J, ZHANG Z Y. GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat., 2015, 15(3): 375-381.

      [20] MANFREDINI C, SICILIA F, FERRARI S, PONTIGGIA D, SALVI G, CAPRARI C, LORITO M, DE Lorenzo G. Polygalacturonase- inhibiting protein 2 ofinhibits BcPGl, a polygalacturonase ofimportant for pathogenicity, and protects transgenic plants from infection., 2005, 67(2): 108-115.

      [21] PRABHU S A, WAGENKNECHT M, MELVIN P, KUMAR B S G, VEENA M, SHAILASREE S, MOERSCHBACHER B M, KINI K R. Immuno-affinity purification ofPGIP1, a polygalacturonase inhibitor protein from pearl millet: studies on its inhibition of fungal polygalacturonases and role in resistance against the downy mildew pathogen., 2015, 42(6): 1123-1138.

      [22] PRABHU S A, KINI K R, RAJ S N, MOERSCHBACHER B M, SHETTY H S. Polygalacturonase-inhibitor proteins in pearl millet: possible involvement in resistance against downy mildew., 2012, 44(5): 415-423.

      [23] AGüERO C B, URATSU S L, GREVE C, POWELL A T, LABAVITCH J M, MEREDITH C P, DANDEKAR A M. Evaluation of tolerance to Pierce’s disease andin transgenic plants ofL. expressing the pear PGIP gene., 2005, 6(1): 43-51.

      [24] SCHACHT T, UNGER C, PICH A, WYDRA K. Endo- and exopolygalactuonases ofare inhibited by polygalactuonase-inhibiting protein (PGIP) activity in tomato stem extracts., 2011, 49(4): 377-387.

      [25] WANG R, LU L, PAN X, HU Z, LING F, YAN Y, LIU Y, LIN Y. Functional analysis of, 2015, 87(1/2): 181-191.

      [26] FENG C S, ZHANG X, WU T, YUAN B, DING X H, YAO F Y, CHU Z H. The polygalacturonase-inhibiting protein 4 (), a potential component of thelocus, confers resistance to bacterial leaf streak in rice., 2016, 243(5): 1297-1308.

      [27] GOODSTEIN D M, SHU S, HOWSON R, NEUPANE R, HAYES R D, FAZO J, MITROS T, DIRKS W, HELLSTEN U, PUTNAM N, ROKHSAR D S. Phytozome: a comparative platform for green plant genomics., 2012, 40(Database issue): D1178-D1186.

      [28] TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S. MEGA6: molecular evolutionary genetics analysis version 6.0., 2013, 30(12): 2725-2729.

      [29] PIERLEONI A, MARTELLI P L, FARISELLI P, CASADIO R. BaCelLo: a balanced subcellular localization predictor., 2006, 22(14): e408-e416.

      [30] PETERSEN T N, BRUNAK S, VON HEIJNE G, NIELSEN H. SignalP 4.0: discriminating signal peptides from transmembrane regions., 2011, 8(10): 785-786.

      [31] PENG A H, XU L Z, HE Y R, LEI T G, YAO L X, CHEN S C, ZOU X P. Efficient production of marker-free transgenic ‘Tarocco’ blood orange (Osbeck) with enhanced resistance to citrus canker using a Cre/site-recombination system., 2015, 123(1): 1-13.

      [32] PENG A H, CHEN S C, LEI T G, XU L Z, HE Y R, WU L, ZOU X P. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility genepromoter in citrus., 2017, 15(12): 1509-1519.

      [33] POWELL A L, VAN KAN J, TEN HAVE A, VISSER J, GREVE L C, BENNETT A B, LABAVITCH J M. Transgenic expression of pear PGIP in tomato limits fungal colonization., 2000, 13(9): 942-950.

      [34] DE LORENZO G, D’OVIDIO R, CERVONE F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi., 2001, 39(1): 313-335.

      [35] KOBE B, KAJAVA A V. The leucine-rich repeat as a protein recognition motif., 2001, 11(6): 725-732.

      [36] WANG X J, ZHU X P, TOOLEY P, ZHANG X G. Cloning and functional analysis of three genes encoding polygalacturonase- inhibiting proteins fromand transgenicin tobacco in relation to increased resistance to two fungal pathogens., 2013, 81(4/5): 379-400.

      [37] HU Y, ZHANG J L, JIA H G, SOSSO D, LI T, FROMMER W B, YANG B, WHITE F F, WANG N, JONES J B.is a disease susceptibility gene for citrus bacterial canker disease., 2014, 111(4): E521-E529.

      (責任編輯 岳梅)

      Cloning and Expression Analysis of the Citrus Bacterial Canker-Related Genein Citrus

      HU AnHua, QI JingJing, ZHANG QingWen, CHEN ShanChun, ZOU XiuPing, XU LanZhen, PENG AiHong, LEI TianGang, YAO LiXiao, LONG Qin, HE YongRui, LI Qiang

      (Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712)

      【Objective】The objective of this study is to cloneand analyze its expression characteristics, constructtransgenic citrus and evaluate the resistance to citrus bacterial canker (CBC), and to provide a theoretical basis for molecular breeding of citrus bacterial canker.【Method】was annotated from the genomic databases and cloned from Wanjincheng and Calamondin. Mega6 was used for multiple sequence alignment and phylogenetic tree was constructed. Two online softwares BaCelLo and SignalP 4.0 were used for the prediction of subcellular localization and signal peptide. The predicted result was then demonstrated by GFP transient expression. The expression profile ofinduced bysubsp.() was also analyzed in Wanjincheng and Calamondin by using qRT-PCR method. The correlation betweeninfection andexpression was analyzed. Genetic transformation of Wanjincheng was conducted by-mediated method. The over-expressed lines were identified by Gus staining, PCR and qRT-PCR. The phenotypic changes of transgenic and wild-type lines were observed, plant height and leaf phenotype were analyzed.acupuncture was used to evaluate the resistance of transgenic lines and wild-type lines to citrus bacterial canker. The effect ofexpression on resistance and susceptibility to citrus bacterial canker was analyzed by statistical analysis of lesion area (LA) and disease index (DI). 【Result】Thecloned from Wanjincheng and Calamondin encodes 328 amino acids, which is 99.39% homology with the reportedfrom Clementina, and contains two typical LRR domains (LRR_1 and LRR_2). In the phylogenetic tree, the genetic distance between CsPGIP and grape PGIP (GSVIVT01033370001) was the closest, and the similarity was 62.97%. It is inferred that CsPGIP and grape PGIP have similar resistance to disease. The prediction of subcellular localization and signal peptide indicated that CsPGIP was a secretory protein, and GFP transient expression proved that CsPGIP located on cell membrane and cell wall, which was consistent with the predicted results. The expression ofin canker sensitive plant Wanjincheng and canker resistant plant Calamondin was different after inoculated with. the expression ofwas significantly down-regulated in Wanjincheng, but significantly up-regulated and maintained at a high level in Calamondin. It is speculated thatwas related to resistance to citrus bacterial canker.over-expression vector was constructed and transformed into Wanjincheng, and nineover-expression lines (OE1, OE3, OE4, OE5, OE6, OE9, OE10, OE12 and OE14) were identified asover-expression positive lines by PCR identification and qRT-PCR. Through the phenotypic observation of transgenic lines, it was found that the phenotypes of OE3 and OE14 lines were significantly different from those of wild-type lines. The plant was short, in which OE14 was also abnormal with curly property and greater thickness. Thecanker resistance of eightover-expression lines was evaluated. The results showed that the lesion area on the eightover-expression lines was smaller compared to that on the wild-type (24.11%-83.88%), and the lesion area of OE1 was the smallest. In terms of disease index, the disease index ofover-expression lines (except OE3) was significantly lower than that of wild-type (23.12%-75.49%), and the decrease of OE1 was the most significant. The above results showed that over-expression ofcould effectively inhibit the growth of citrus bacterial canker.【Conclusion】is an important gene which can inhibit or reduce the incidence of citrus bacterial canker, and has a great application value in the mechanism study of citrus resistance to bacterial canker. In the same time, it can be used as a candidate gene for molecular breeding of citrus bacterial cankerresistance.

      citrus bacterial canker (CBC); polygalacturonase inhibitor protein;; over-expression; CBC resistance

      10.3864/j.issn.0578-1752.2019.04.006

      2018-10-13;

      2018-11-26

      國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系建設資金(CARS-26)、重慶市社會事業(yè)與民生體系保障科技創(chuàng)新專項(cstc2016shms-ztzx80001,cstc2017shms-xdny80051)、廣西科技重大專項(桂科AA18118046)

      胡安華,E-mail:782497097@qq.com。 通信作者李強,E-mail:liqiang@cric.cn。通信作者何永睿,E-mail:heyongrui@cric.cn

      猜你喜歡
      潰瘍病株系柑橘
      過表達NtMYB4a基因增強煙草抗旱能力
      冬季潰瘍病高發(fā) 防治須加強
      吃柑橘何來黃疸——認識橘黃病
      嫦娥5號返回式試驗衛(wèi)星小麥育種材料研究進展情況
      葡萄轉色期干梗掉粒 多是潰瘍病
      獼猴桃潰瘍病致病根源及防控對策
      柑橘大實蠅綜合治理
      “五及時”柑橘凍害恢復技術
      浙江柑橘(2016年4期)2016-03-11 20:12:59
      衢州椪柑變異株系—黃皮椪柑相關特性研究
      浙江柑橘(2016年1期)2016-03-11 20:12:31
      湘西自治州獼猴桃潰瘍病發(fā)生情況及防治措施探討
      密山市| 澄江县| 嘉义县| 卢龙县| 泗水县| 奉新县| 枝江市| 延寿县| 定州市| 兴城市| 阿巴嘎旗| 香格里拉县| 大化| 阳高县| 龙游县| 门源| 凌海市| 余庆县| 伊宁县| 遂川县| 峨眉山市| 威海市| 蕉岭县| 望奎县| 循化| 天峨县| 胶南市| 竹北市| 黄梅县| 镇赉县| 临沭县| 绥中县| 犍为县| 临夏市| 河池市| 郁南县| 太仓市| 五寨县| 卫辉市| 体育| 木里|