• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy Conditions and Conservation Laws in LRS Bianchi Type I Spacetimes via Noether Symmetries?

    2019-03-12 02:41:20SumairaSaleemAkhtarandTahirHussain
    Communications in Theoretical Physics 2019年3期

    Sumaira Saleem Akhtar and Tahir Hussain

    Department of Mathematics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan

    (Received October 9, 2018; revised manuscript received November 2, 2018)

    Abstract In this paper, we have completely classified the locally rotationally symmetric (LRS)Bianchi type I spacetimes via Noether symmetries(NS).The usual Lagrangian corresponding to LRS Bianchi type I metric is used to find the set of determining equations.To achieve a complete classification, these determining equations are generally integrated to find the components of NS vector field and the metric coefficients.During this procedure, several cases arise which give different Noether algebras of dimension 5,...,9, 11, and 17.A comparison is established between the obtained NS and the Killing and homothetic vectors.Corresponding to all NS generators, the conservation laws are stated by using Noether’s theorem.The metrics which we have obtained as a result of our classification are shown to be anisotropic or perfect fluids which satisfy certain energy conditions.

    Key words: Bianchi type I model, Noether symmetry, conservation Laws, energy conditions

    1 Introduction

    The Einstein’s field equations(EFEs),Gab=kTab,are ten tensor equations in the Einstein’s theory of general relativity, which relate the spacetime curvature with the energy and momentum within spacetime.The termGabappearing in these equations expresses the curvature of spacetime and is known as the Einstein tensor.Moreover,ksignifies the gravitational constant andTabdenotes the stress-energy tensor,which gives the description of density and flux of energy and momentum in the spacetime.

    An exact solution of the EFEs is a Lorentz metricgab,which is obtained by solving these equations in closed form and is conformable to a physically realisticTab.The study of the exact solutions of these equations is proved to be one of the important activities in different branches of physics.They describe the structure of spacetime including the inertial motion of objects in the spacetime.Moreover,these solutions lead to the prediction of black holes and different models of evolution of universe.The problem which one faces in finding the exact solutions of these equations is their highly nonlinear nature.These equations cannot be solved without some simplifying assumption,such as symmetry restriction ongab.Using such restrictions,there are numerous cases where the EFEs are solved completely.[1]

    The most basic symmetry is expressed in terms of a Killing vector (KV)Xsatisfying the relationLXgab= 0,whereLdenotes the Lie derivative operator andgabis the metric tensor.The KVs are closely related to the conservation laws in a spacetime.For a detailed study of exact solutions of EFEs with the help of symmetry restrictions ongaband the corresponding conservation laws, we refer to Refs.[1–3].

    Some other conventional symmetries, which have been studied in the literature include homothetic vectors (LXgab= 2ψgab);ψbeing a constant, curvature collineations (LXRabcd=0), Ricci collineations (LXRab=0)and matter collineations (LXTab=0).Recently, these collineations have been investigated for some physically important spacetimes.[4?9]

    In 1918,Emmy Noether[10]proposed her work in terms of Noether theorem.As a result of this theorem, one can find the expression for conserved quantity for each continuous symmetry transformation that leaves the action invariant.NS are also called the variational symmetries and they are associated with mechanical systems possessing a Lagrangian.In particular, for a metric ds2=gabdxadxb,the associated Lagrangian is given byIn this expression, a dot denotes differentiation with respect to the geodesics parametersof the world line of a point particle moving in a spacetime.It is well known that every KV is an NS but there may exist some NS, which are not KVs.Thus the additional NS may yield some extra conservation laws.Homothetic vectors (HVs)are also closely related with NS.Corresponding to every homothetic vectorX,we have an NS,X+2ψs?s.Conversely,if the vector fieldX+2ψs?sis an NS, thenXis an HV provided thatXdoes not depend ons.[11]

    In literature, NS, their relation will Killing and homothetic vectors and the corresponding conservation laws have been studied by many researchers,for details we refer to Refs.[11–19].

    The termTabappearing in EFEs is crucial as it describes the physics of a spacetime.The exact solutions of these equations may not give physically interesting results unless the source ofTabis specified.For different sources,Tabhas some particular form.For example, for an anisotropic fluid,Tab=(ρ+p⊥)uaub+(p||?p⊥)nanb+p⊥gab;ρ,uaandnabeing energy density,four-velocity and spacelike unit vector respectively.The quantitiesp⊥andp||respectively represent the perpendicular and parallel pressures tona.Moreover,uaua=?1,nana= 1 anduana= 0.[20]Similarly, for a perfect fluid we have the same form ofTabwithp||=p⊥=p.

    The positive energy condition is a relation satisfied by the componentT00of stress-energy tensor, which ensures that the energy density is non negative.The physical importance of this condition is evident from the fact that the empty vacuum may become unstable if both positive and negative energy regions are allowed.

    There are some other energy conditions including weak, strong, null and dominant energy conditions, which generalize the conditionT00≥0 to the whole tensorTab.The weak energy condition states thatTabvavb ≥0, for any timelike vectorvaat a point of the spacetime manifold.For an anisotropic source, all the energy conditions take the form:

    In particular, ifp||=p⊥, then these conditions reduce to the energy conditions for a perfect fluid.

    According to the Bianchi classification of all the 3-dimensional real Lie algebras, there are nine types of Bianchi spatially homogeneous but not necessarily isotropic spacetimes.As a subclass, these models contain the isotropic Friedmann-Robertson-Walker (FRW)universes.The Bianchi type models are of vital importance because the physical variables in these models are dependent on time only.Consequently, the EFEs and other governing equations reduce to ordinary differential equations.

    Among the Bianchi type models, the Bianchi type I spacetimes are those models for which the groupG3of translations of the 3-dimensional Euclidian space is Abelian.In the literature, Bianchi type I spacetimes have been thoroughly studied from the symmetry point of view.Paliathanasiset al.[21]presented the symmetry classification of the Klein-Gordon equation in Bianchi I spacetimes,which in turn related the Lie symmetries of this equation with the conformal Killing vectors (CKVs)of the underlying geometry.In the same analysis, it was also shown that the resulting Lie symmetries of the conformal algebra are also NS.Tsamparliset al.[22]studied the CKVs of Bianchi type I spacetimes and conjectured that there are only two conformally flat and two non conformally flat families of these spacetimes admitting CKVs.The same authors stated that for dynamical system whose equations of motion are of the formbeing an arbitrary function of its argument, the computation of Lie and NS reduce to the probelm of finding the special projective collieations.[23]These general results are then applied to the analytic computation of the Bianchi I metric.

    In this paper, we present a complete classification of LRS Bianchi type I spacetimes via NS and the corresponding conservation laws.The bounds for energy conditions are also calculated for all the obtained models.In next section, we derive the list of determining equations for NS.In Secs.3–9, we present different metrics, their Noether generators and corresponding conservation laws.For each of the obtained model in these sections, a brief discussion on the energy conditions is provided.A conclusion of the present work is appended at the end of the paper.

    2 Determining Equations

    The metric of the LRS Bianchi type I spacetimes is given by:[1]

    such thatA(t)≠0 andB(t)≠0.For this metric, the EFEs withk=1 give:

    Here a dot onAandBdenotes differentiation with respect tot.For an anisotropic fluid, these components become:

    while for a perfect fluid, we have the same values ofTabwithp||=p⊥=p.Following is the Lagrangian corresponding to the metric (2):

    An NS vector fieldXis a vector field of the formX=ξ(?/?s)+Xj(?/?aj), satisfying the following condition:

    whereX(1)=X+Xjs(?/?˙aj)is the first prolongation ofXandXjs=DXj ?˙ajDξwithD=(?/?s)+ ˙aj(?/?aj).Moreover,ξ,Xjand the Gauge functionFall depend onsandaj, whereaj=(t,x,y,z)are depending variables ofssuch that ˙aj=?aj/?s.

    Using the Noether’s theorem, the corresponding conservation law for each NS can be found with the help of the expression:

    We may simplify Eq.(6)by using the Lagrangian (5)to get the following set of determining equations:

    The componentsXaof the NS vector field, the Gauge functionFand the metric functionsAandBappearing in the above system can be found by decoupling and then integrating these equations systematically.In this way,we may get the exact form of LRS Bianchi type I metrics along with their NS.During this procedure, several cases arise which restrictAandBto satisfy certain conditions and give the exact form of LRS Bianchi type I metric admitting NS having dimension 5,...,9, 11, and 17.To avoid the repetition, we exclude to write the basic calculations and present the metrics along with their NS,conservation laws, Lie algebra and some physical implications in the upcoming sections.

    3 Minimal Set of NS

    The minimal set of NS admitted by LRS Bianchi Type I metric is found to be:

    whereX0is the symmetry corresponding to the Lagrangian andX1,...,X4are the minimum KVs of the metric (2).The above minimal set of NS is obtained under the following restrictions on metric functions.

    Table 1 Metrics admitting 5 NS

    Using Eq.(7), the conservation laws for the above set of minimal NS are obtained as:

    The corresponding Lie algebra for the generators given in Eq.(23)is:

    The metrics 5a–5c are anisotropic fluids for which:

    One may use these values in Eq.(1)to find the energy bounds for the metrics 5a-5c.For example, for the metric 5b, the energy conditions restrict the metric functionAas follows:

    4 Six NS

    IfA=α,whereαis a non zero constant andBsatisfies the conditions ¨B≠0 andB≠eβt,then the metric(2)becomes:

    For this metric, we obtain six NS, out of which five are same as given in Eq.(23)and the sixth one is a proper NS,X5= (s/2α2)?x, with the Gauge functionF=x.The corresponding invariant for this Noether generator is Υ5=s˙x?xand the Lie algebra of these six NS generators is given by:

    For the metric (28), being an anisotropic fluid, the physical terms are found to be:

    Here the dominant energy condition holds if/B+/B2≥0 and ¨B/B ≤0 and the remaining energy conditions are satisfied provided that ¨B/B ≤0.

    5 Seven NS

    In Table 2, we present some LRS Bianchi type I metrics each of which admits a 7-dimensional Lie algebra of NS.For each of these metrics, five NS are same as given in Eq.(23), while the extra two NS along with their conservation laws and Lie algebra are listed with each metric.

    Table 2 Metrics admitting 7 NS.

    For the metric 7a,X5is a KV andX6corresponds to a homothetic vector [(a1t+a2)/2a1]?twith the homothetic constant 1/2.In case 7b, bothX5andX6represent proper NS.Finally, bothX5andX6are KVs for the metrics 7c and 7d.

    The metric in case 7a is an anisotropic fluid with:

    The above expressions satisfy the dominant energy conditions ifc/b ≤1/2 and 3?4c/b ≥(b ?2c)2, while the weak energy conditions hold ifc/b ≤0.75 and 3?4c/b ≥?(b ?2c)2.Moreover, the strong energy conditions are satisfied whenc/b ≤1, 3?4c/b ≥ ?(b ?2c)2, and 2(1?c/b)≥?(b ?2c)2.

    Similarly, the metric in case 7b is an anisotropic fluid whose energy density and parallel pressure vanish andp⊥=?¨A/A.Here the dominant energy condition is clearly failed, while the remaining energy conditions are satisfied provided that ¨A/A<0.

    The energy momentum tensor components for the model 7c, being an anisotropic fluid, produces the following expressions:

    For the above values,the strong and dominant energy conditions are failed, while the weak energy conditions hold when 2βa/b ≤β2≤?βa/banda2/b2≤?βa/b.

    Finally, for the metric 7d we have:

    Here we have obtained a perfect fluid matter such that the dominant energy conditions hold if/B+/B2≥0 and/B2?/B ≥0,while strong and weak energy conditions respectively require/B ≤0 and/B2≥¨B/B.

    6 Eight NS

    In Table 3, we give all the LRS Bianchi type I metrics admitting eight NS,out of which five are same as given in Eq.(23).

    For metric 8a,X5andX6are proper NS, whileX7corresponds to an HV [(a1t+a2)/2a1]?t+x/2?x.In case of metric 8b,X5corresponds to an HV (B/2 ˙B)?t;X6is a proper NS whileX7is a KV.Finally for case 8c,X5is an NS corresponding to the HV(A/2 ˙A)?tandX6,X7are KVs.

    The metric 8a represents an anisotropic fluid with zero perpendicular pressure andρ=?p||=a21/(a1t+a2)2.All the energy conditions are satisfied here.Similarly,The metric 8b is also an anisotropic fluid for which we have:

    such that the strong and weak energy conditions hold if eithera ≥2c ≥0 ora ≤2c ≤0, while for dominant energy condition we must have (a ?2c)2≥|(a ?2c)(a ?6c)|and (a ?2c)2≥|2c(a ?2c)|.The physical terms for case 8c are given by:

    One may simplify the energy conditions using the above values, like the previous cases.

    Table 3 Metrics admitting 8 NS.

    7 Nine NS

    There are nine metrics each of which possesses 9-dimensional algebra of NS.All such metrics and the four additional NS different from those given in Eq.(23)for each of these metrics along with their conservation laws and Lie algebra are presented in Table 4.

    For the metric 9a,X5andX6represent KVs,X7is a proper NS whileX8is an NS corresponding to an HV(A/2a1)?t.In cases 9b–9f,X5andX6are KVs, whileX7andX8are proper NS.The metric given in case 9g admits three additional KVsX5,X6,andX7along with a proper Noether symmetryX8.For the metric 9h,X5is an NS which corresponds to an HV(A/2 ˙A)?t+(y/2)?y+(z/2)?z,X6is a KV whileX7andX8are proper NS.Finally, in case 9i, we have three additional KVsX6,X7,X8, and one NSX5corresponding to the HVA?t/2 ˙A.

    The metric 9a represents a perfect fluid, while all the remaining cases give anisotropic fluids.For the metric 9a, we findp||=p⊥=?ρ/3=?a21/(a1t+a2)2, which satisfy all the energy conditions.For the models in cases 9b–9d, we getρ=p||= 0 andp⊥=?k2, which do not satisfy any energy condition except the positive energy condition,ρ ≥0.Similarly, for models 9e and 9f,we haveρ=p||= 0 andp⊥=k2.Here the dominant energy condition fails,while all the remaining energy conditions are trivially satisfied.For the model 9g,we obtainρ=?p⊥=β2andp||=?3β2, which do not satisfy any energy condition exceptρ ≥0.The metric given in 9h is an anisotropic fluid for whichρ=p||= 0 andp⊥= 2c(a ?2c)/(at+2b)2.The dominant energy condition is clearly failed,while the remaining energy conditions are satisfied provided thatc(a ?2c)≥0.The following physical terms for the metric 9i reveal that it represents a perfect fluid model:

    The corresponding weak energy conditions hold fora(a ?2c)≥0,whereas the strong energy conditions requirea ≥2c ≥0 ora ≤2c ≤0.Moreover, the dominant energy conditions are satisfied ifa(a ?2c)≥0, and(a ?2c)(a ?3c)≤0.

    Table 4 Metrics admitting 9 NS.

    8 Eleven NS

    Following is the only one metric which admits eleven NS:

    whereβ≠0.The set of eleven NS for the above metric contains the minimal set of NS and the extra six NS(KVs)are obtained as:

    The Lie algebra for the above set of generators is found to be:

    and the corresponding conservation laws are:

    For the metric (37), we haveρ= 3β2andp=p||=p⊥=?3β2.Thus it gives a perfect fluid.Here the strong energy condition is violated while the remaining energy conditions are satisfied.

    9 Maximal Set of NS

    It is well known that the the dimension of Noether algebra for flat Minkowski metric is 17.Following is an another metric admitting 17 NS.

    wherea1≠0 andβ≠0.Five NS of the above metric are same as given in Eq.(23), while the remaining twelve are given as follows:

    In the above set,X5is an NS and its corresponding HV is(A/2a1)?t+(y/2)?y+(z/2)?z.Moreover,X6,...,X10are proper NS andX11,...,X16are KVs.The Lie algebra for these generators is given by:

    In this case, the conservation laws are obtained as:

    For the metric (40), we haveTab= 0.Thus it represents a vacuum solution.

    10 Conclusion

    In this paper, we have studied the NS of LRS Bianchi type I spacetimes.For a complete classification, the Noether determining equations are generally solved,which in result categorized the mentioned spacetimes metric into seven different classes according to the dimension of Noether algebra.The possible dimension of Lie algebra of Noether symmetry turned out to be 5, 6, 7, 8, 9, 11,and 17.These NS are compared with Killing and homothetic vectors and it is shown that the possible dimension of Killing algebra for LRS Bianchi type I spacetime is 4,5, 6, 7 or 10.Besides this, the conservations laws are presented for all the Noether symmetry generators by using the well known Noether’s theorem.Finally, it is observed that most of the obtained metrics are anisotropic or perfect fluids satisfying different energy conditions.

    Acknowledgments

    We are thankful to the referees for their useful suggestions on the manuscript.

    成年人午夜在线观看视频| 国产一区二区激情短视频 | 免费观看无遮挡的男女| 国产精品一二三区在线看| 波多野结衣av一区二区av| kizo精华| 天天躁夜夜躁狠狠久久av| 精品久久久久久电影网| 日日爽夜夜爽网站| 麻豆精品久久久久久蜜桃| 日本欧美视频一区| 成人亚洲精品一区在线观看| 大香蕉久久成人网| 两个人看的免费小视频| 女性被躁到高潮视频| 国产精品蜜桃在线观看| 夜夜骑夜夜射夜夜干| 一级毛片黄色毛片免费观看视频| 国产白丝娇喘喷水9色精品| 国产毛片在线视频| 一个人免费看片子| 久久久久久人人人人人| 97人妻天天添夜夜摸| 老司机亚洲免费影院| 黄片播放在线免费| 国产高清国产精品国产三级| 欧美少妇被猛烈插入视频| 久久久久国产一级毛片高清牌| 两个人看的免费小视频| 国产精品久久久久久av不卡| 午夜老司机福利剧场| 欧美 亚洲 国产 日韩一| 国产免费一区二区三区四区乱码| 在线观看国产h片| 日本av手机在线免费观看| 中文精品一卡2卡3卡4更新| 观看av在线不卡| 国产精品 国内视频| 色94色欧美一区二区| 成人午夜精彩视频在线观看| 国产日韩欧美亚洲二区| 人妻系列 视频| 不卡av一区二区三区| av国产久精品久网站免费入址| 一二三四中文在线观看免费高清| 黄色毛片三级朝国网站| www.精华液| 国产精品一区二区在线观看99| 国产男女超爽视频在线观看| 最近中文字幕2019免费版| 久久精品国产亚洲av天美| 如何舔出高潮| 久久国内精品自在自线图片| 又黄又粗又硬又大视频| 国产 精品1| 亚洲av免费高清在线观看| 精品少妇内射三级| 色播在线永久视频| 午夜免费鲁丝| 美女xxoo啪啪120秒动态图| 激情五月婷婷亚洲| 精品第一国产精品| 国产av国产精品国产| 日韩免费高清中文字幕av| 水蜜桃什么品种好| 老汉色∧v一级毛片| 日日啪夜夜爽| 成年动漫av网址| 高清视频免费观看一区二区| 女性生殖器流出的白浆| 在线天堂最新版资源| 精品人妻偷拍中文字幕| 又大又黄又爽视频免费| 亚洲内射少妇av| 中文字幕av电影在线播放| 午夜老司机福利剧场| 九色亚洲精品在线播放| 婷婷色综合大香蕉| 中文字幕人妻丝袜制服| 国产高清不卡午夜福利| 国产熟女欧美一区二区| 在线天堂最新版资源| 亚洲在久久综合| 亚洲中文av在线| 午夜福利在线观看免费完整高清在| 日韩av不卡免费在线播放| 久久久精品国产亚洲av高清涩受| 国产精品 欧美亚洲| 91精品国产国语对白视频| 欧美最新免费一区二区三区| av网站免费在线观看视频| 色婷婷av一区二区三区视频| 久久99热这里只频精品6学生| 性色avwww在线观看| 久久久久久免费高清国产稀缺| 熟妇人妻不卡中文字幕| 伊人久久国产一区二区| 看免费成人av毛片| 最新的欧美精品一区二区| xxx大片免费视频| www日本在线高清视频| 在现免费观看毛片| 免费看av在线观看网站| 亚洲欧美日韩另类电影网站| 日韩制服丝袜自拍偷拍| 亚洲人成网站在线观看播放| 国产av精品麻豆| 一区二区三区精品91| 国产一区亚洲一区在线观看| 午夜91福利影院| 男人舔女人的私密视频| 捣出白浆h1v1| 亚洲人成77777在线视频| 欧美精品一区二区免费开放| 婷婷色综合大香蕉| 爱豆传媒免费全集在线观看| 国产成人av激情在线播放| 在线观看免费高清a一片| 亚洲欧美日韩另类电影网站| 一级爰片在线观看| 午夜福利在线免费观看网站| 免费观看a级毛片全部| 女人精品久久久久毛片| 日韩不卡一区二区三区视频在线| 亚洲色图 男人天堂 中文字幕| 母亲3免费完整高清在线观看 | 国产野战对白在线观看| 三上悠亚av全集在线观看| 妹子高潮喷水视频| 99久久综合免费| 国产综合精华液| 国产视频首页在线观看| 国产成人免费观看mmmm| av免费在线看不卡| 中国三级夫妇交换| 国产一区亚洲一区在线观看| 99热网站在线观看| 中国三级夫妇交换| 日日摸夜夜添夜夜爱| 黄色视频在线播放观看不卡| 女人高潮潮喷娇喘18禁视频| 成年人免费黄色播放视频| 超色免费av| 久久久精品94久久精品| 毛片一级片免费看久久久久| 国产精品一二三区在线看| 欧美97在线视频| 不卡视频在线观看欧美| 90打野战视频偷拍视频| 国产女主播在线喷水免费视频网站| 日韩中字成人| 97在线视频观看| 丰满少妇做爰视频| 美女视频免费永久观看网站| 精品一品国产午夜福利视频| 久久久久久久久久久免费av| 欧美亚洲 丝袜 人妻 在线| 免费不卡的大黄色大毛片视频在线观看| xxxhd国产人妻xxx| 亚洲一区中文字幕在线| 纯流量卡能插随身wifi吗| 两个人免费观看高清视频| 最近中文字幕2019免费版| 哪个播放器可以免费观看大片| 精品午夜福利在线看| 亚洲精品av麻豆狂野| 91精品国产国语对白视频| 成年女人在线观看亚洲视频| 女人久久www免费人成看片| 久久精品亚洲av国产电影网| 欧美国产精品一级二级三级| 不卡av一区二区三区| 自线自在国产av| 18禁国产床啪视频网站| 久久鲁丝午夜福利片| 老鸭窝网址在线观看| 少妇的丰满在线观看| 国产精品久久久久成人av| 2021少妇久久久久久久久久久| 久久久久久免费高清国产稀缺| 久久精品熟女亚洲av麻豆精品| 久久精品人人爽人人爽视色| 亚洲美女黄色视频免费看| 欧美国产精品一级二级三级| 一级毛片我不卡| 晚上一个人看的免费电影| 国产成人午夜福利电影在线观看| 满18在线观看网站| av免费在线看不卡| 国产免费一区二区三区四区乱码| 黄色 视频免费看| 熟女av电影| 亚洲激情五月婷婷啪啪| 美女国产视频在线观看| 在线观看免费高清a一片| 亚洲少妇的诱惑av| 狠狠婷婷综合久久久久久88av| 免费在线观看黄色视频的| 精品一区在线观看国产| 亚洲国产色片| 三上悠亚av全集在线观看| 在线 av 中文字幕| 又黄又粗又硬又大视频| 999久久久国产精品视频| 国产av一区二区精品久久| 寂寞人妻少妇视频99o| 国产精品偷伦视频观看了| 最近中文字幕2019免费版| 欧美日韩国产mv在线观看视频| 亚洲精品在线美女| 熟女av电影| 男女边摸边吃奶| 亚洲内射少妇av| 青春草亚洲视频在线观看| 老司机亚洲免费影院| 亚洲av在线观看美女高潮| 欧美人与善性xxx| 大香蕉久久成人网| 老鸭窝网址在线观看| 1024视频免费在线观看| 亚洲综合色网址| 午夜福利影视在线免费观看| av在线老鸭窝| 男的添女的下面高潮视频| av又黄又爽大尺度在线免费看| 一区二区三区乱码不卡18| 精品99又大又爽又粗少妇毛片| 国产成人精品福利久久| 看非洲黑人一级黄片| 热re99久久国产66热| 免费黄网站久久成人精品| 最近中文字幕2019免费版| xxx大片免费视频| 日本欧美国产在线视频| 97在线人人人人妻| 国产淫语在线视频| 久久久欧美国产精品| 男人添女人高潮全过程视频| 国产成人一区二区在线| 欧美黄色片欧美黄色片| 国产av精品麻豆| 电影成人av| 天天操日日干夜夜撸| 电影成人av| 日本色播在线视频| 精品久久蜜臀av无| 香蕉丝袜av| 精品国产一区二区三区久久久樱花| 岛国毛片在线播放| av福利片在线| 国产精品久久久久久av不卡| 精品99又大又爽又粗少妇毛片| 国产免费现黄频在线看| 少妇被粗大猛烈的视频| 有码 亚洲区| 日韩中字成人| 人人妻人人澡人人看| 人人妻人人添人人爽欧美一区卜| 午夜激情av网站| 日韩精品免费视频一区二区三区| 精品国产乱码久久久久久男人| 看非洲黑人一级黄片| 亚洲 欧美一区二区三区| 在线亚洲精品国产二区图片欧美| 久久久久精品人妻al黑| 一区二区av电影网| 午夜日韩欧美国产| 涩涩av久久男人的天堂| 制服丝袜香蕉在线| 高清av免费在线| 免费黄色在线免费观看| 在线精品无人区一区二区三| 欧美人与性动交α欧美精品济南到 | 免费大片黄手机在线观看| 国产国语露脸激情在线看| 日韩欧美精品免费久久| 欧美在线黄色| 日韩一本色道免费dvd| 免费av中文字幕在线| 日日啪夜夜爽| 亚洲欧洲国产日韩| 日韩中文字幕欧美一区二区 | 精品少妇黑人巨大在线播放| 欧美日韩亚洲国产一区二区在线观看 | 日本wwww免费看| 亚洲精品成人av观看孕妇| 波野结衣二区三区在线| 啦啦啦视频在线资源免费观看| 国产精品国产av在线观看| 成人国语在线视频| 亚洲美女搞黄在线观看| 少妇被粗大猛烈的视频| 香蕉精品网在线| 亚洲一区二区三区欧美精品| 免费在线观看视频国产中文字幕亚洲 | 一边亲一边摸免费视频| 亚洲国产毛片av蜜桃av| 亚洲欧美成人综合另类久久久| 久久人人爽人人片av| 国产成人精品久久久久久| 国产精品久久久久久av不卡| 国产欧美亚洲国产| 精品少妇久久久久久888优播| 国产av一区二区精品久久| 一本—道久久a久久精品蜜桃钙片| 欧美日韩精品网址| kizo精华| 777久久人妻少妇嫩草av网站| 亚洲国产成人一精品久久久| 久久精品国产亚洲av涩爱| 国产欧美日韩综合在线一区二区| 校园人妻丝袜中文字幕| 黄网站色视频无遮挡免费观看| 不卡视频在线观看欧美| 亚洲色图 男人天堂 中文字幕| 国产1区2区3区精品| 如何舔出高潮| 90打野战视频偷拍视频| 亚洲国产欧美在线一区| 人妻系列 视频| 九草在线视频观看| 99久久中文字幕三级久久日本| 男人爽女人下面视频在线观看| 久久久精品免费免费高清| 欧美亚洲 丝袜 人妻 在线| 久久久久久久久久久久大奶| 久久ye,这里只有精品| 国产精品久久久久久久久免| 欧美激情高清一区二区三区 | 五月伊人婷婷丁香| av电影中文网址| 精品国产一区二区三区四区第35| 最新的欧美精品一区二区| 亚洲成人手机| 性高湖久久久久久久久免费观看| 黄色怎么调成土黄色| 考比视频在线观看| 又粗又硬又长又爽又黄的视频| 侵犯人妻中文字幕一二三四区| 大香蕉久久网| 亚洲国产av新网站| 亚洲精品日本国产第一区| 国产日韩欧美在线精品| 母亲3免费完整高清在线观看 | 午夜老司机福利剧场| 亚洲三级黄色毛片| 婷婷色麻豆天堂久久| av在线播放精品| av在线老鸭窝| 亚洲精品日韩在线中文字幕| 精品少妇久久久久久888优播| 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| 黄片播放在线免费| 韩国精品一区二区三区| 在线看a的网站| 欧美日韩视频高清一区二区三区二| 国产乱人偷精品视频| 日产精品乱码卡一卡2卡三| 国产精品99久久99久久久不卡 | av网站在线播放免费| 高清在线视频一区二区三区| 国产成人免费观看mmmm| 国产一区有黄有色的免费视频| 色婷婷av一区二区三区视频| 国产亚洲精品第一综合不卡| 国产一区亚洲一区在线观看| 国产色婷婷99| 色哟哟·www| 久久久久久久亚洲中文字幕| av免费在线看不卡| 国产亚洲av片在线观看秒播厂| 精品一区二区免费观看| 国产日韩欧美亚洲二区| 久久这里只有精品19| 免费黄色在线免费观看| 在线看a的网站| 日本欧美国产在线视频| 男的添女的下面高潮视频| av女优亚洲男人天堂| 午夜福利网站1000一区二区三区| 下体分泌物呈黄色| 国产精品国产三级专区第一集| 一级黄片播放器| 这个男人来自地球电影免费观看 | 热99久久久久精品小说推荐| 成人漫画全彩无遮挡| 国产精品国产av在线观看| 精品一区在线观看国产| kizo精华| xxxhd国产人妻xxx| 成人免费观看视频高清| 美国免费a级毛片| 欧美激情高清一区二区三区 | 亚洲国产毛片av蜜桃av| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品国产亚洲| 飞空精品影院首页| 一级,二级,三级黄色视频| 久久ye,这里只有精品| 伊人久久国产一区二区| 边亲边吃奶的免费视频| 亚洲精品av麻豆狂野| 考比视频在线观看| 精品一区二区三区四区五区乱码 | 国产淫语在线视频| 69精品国产乱码久久久| 国产精品久久久久成人av| 日本黄色日本黄色录像| √禁漫天堂资源中文www| 久久精品国产鲁丝片午夜精品| 国产精品国产三级专区第一集| 一区二区三区乱码不卡18| 99国产精品免费福利视频| av又黄又爽大尺度在线免费看| 如何舔出高潮| 亚洲激情五月婷婷啪啪| 最近手机中文字幕大全| 黄色配什么色好看| 91久久精品国产一区二区三区| 精品亚洲成a人片在线观看| 中文欧美无线码| 婷婷色综合www| 女人久久www免费人成看片| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| 精品国产乱码久久久久久小说| 亚洲精品成人av观看孕妇| 天堂中文最新版在线下载| 在线观看国产h片| 国产深夜福利视频在线观看| 亚洲成人av在线免费| 一级毛片电影观看| 日韩制服丝袜自拍偷拍| 亚洲激情五月婷婷啪啪| 一区二区三区乱码不卡18| 亚洲精品美女久久久久99蜜臀 | 久久久久国产网址| 亚洲欧洲精品一区二区精品久久久 | 日韩av免费高清视频| 伊人久久国产一区二区| 五月伊人婷婷丁香| 亚洲精品第二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人一二三区av| 看非洲黑人一级黄片| 国产在线一区二区三区精| 国产一区亚洲一区在线观看| 精品一品国产午夜福利视频| 丰满迷人的少妇在线观看| 老汉色av国产亚洲站长工具| 王馨瑶露胸无遮挡在线观看| 国产福利在线免费观看视频| 丰满饥渴人妻一区二区三| 最黄视频免费看| 97在线人人人人妻| 亚洲欧洲日产国产| 久久精品国产亚洲av涩爱| av卡一久久| 狠狠婷婷综合久久久久久88av| 亚洲国产精品成人久久小说| 免费高清在线观看视频在线观看| 午夜精品国产一区二区电影| 久久久久视频综合| 国产不卡av网站在线观看| 久久综合国产亚洲精品| 人人妻人人澡人人爽人人夜夜| 国产精品熟女久久久久浪| 成人18禁高潮啪啪吃奶动态图| 亚洲久久久国产精品| 卡戴珊不雅视频在线播放| 夫妻性生交免费视频一级片| 久久久久精品性色| 两性夫妻黄色片| 男人舔女人的私密视频| 大码成人一级视频| 国产精品不卡视频一区二区| 少妇猛男粗大的猛烈进出视频| 日本免费在线观看一区| 亚洲精品第二区| 欧美bdsm另类| 日本欧美视频一区| 美女xxoo啪啪120秒动态图| 久久精品人人爽人人爽视色| 国产老妇伦熟女老妇高清| 日产精品乱码卡一卡2卡三| 成年av动漫网址| 国产精品亚洲av一区麻豆 | 男的添女的下面高潮视频| 激情视频va一区二区三区| 少妇人妻 视频| 美女午夜性视频免费| 搡老乐熟女国产| av有码第一页| 亚洲国产色片| 69精品国产乱码久久久| 国产精品麻豆人妻色哟哟久久| 免费av中文字幕在线| 老汉色av国产亚洲站长工具| 又黄又粗又硬又大视频| 汤姆久久久久久久影院中文字幕| 伊人久久大香线蕉亚洲五| 免费不卡的大黄色大毛片视频在线观看| 两个人免费观看高清视频| 国精品久久久久久国模美| 美女脱内裤让男人舔精品视频| 亚洲欧美精品综合一区二区三区 | 最近的中文字幕免费完整| 观看av在线不卡| 欧美av亚洲av综合av国产av | 一级黄片播放器| 最新中文字幕久久久久| 国产xxxxx性猛交| 亚洲情色 制服丝袜| 美女脱内裤让男人舔精品视频| 国产黄色视频一区二区在线观看| 青草久久国产| 国产精品久久久久久精品古装| 成人手机av| 国产精品久久久久久av不卡| 亚洲欧美清纯卡通| 日韩,欧美,国产一区二区三区| 久久久久人妻精品一区果冻| av视频免费观看在线观看| 亚洲精品国产一区二区精华液| 日日啪夜夜爽| 亚洲国产av影院在线观看| 国产爽快片一区二区三区| 黄片无遮挡物在线观看| 国产乱来视频区| 免费高清在线观看视频在线观看| 午夜激情av网站| 中文天堂在线官网| 2021少妇久久久久久久久久久| 寂寞人妻少妇视频99o| 老司机亚洲免费影院| 亚洲成人av在线免费| 国产一区二区 视频在线| 成人午夜精彩视频在线观看| 欧美另类一区| 国产精品不卡视频一区二区| 久久久久久久久免费视频了| 久久久久精品人妻al黑| 一区二区三区四区激情视频| 黄色配什么色好看| 国产成人a∨麻豆精品| 久久国产精品大桥未久av| 中文字幕精品免费在线观看视频| av.在线天堂| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠久久av| 少妇熟女欧美另类| 欧美亚洲 丝袜 人妻 在线| 老汉色∧v一级毛片| 国产国语露脸激情在线看| 熟妇人妻不卡中文字幕| 亚洲国产av新网站| 在线观看人妻少妇| 中文精品一卡2卡3卡4更新| 国产精品香港三级国产av潘金莲 | 免费观看a级毛片全部| 日韩视频在线欧美| 久久精品久久精品一区二区三区| 成人毛片a级毛片在线播放| 午夜精品国产一区二区电影| 男女边吃奶边做爰视频| 黑丝袜美女国产一区| 建设人人有责人人尽责人人享有的| 国产97色在线日韩免费| 十八禁网站网址无遮挡| 亚洲欧美中文字幕日韩二区| 搡女人真爽免费视频火全软件| 久久毛片免费看一区二区三区| 9191精品国产免费久久| 国产精品偷伦视频观看了| 天天影视国产精品| 日本av手机在线免费观看| 最近最新中文字幕大全免费视频 | 国产乱来视频区| 亚洲一级一片aⅴ在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 18+在线观看网站| 在线观看免费高清a一片| 香蕉丝袜av| 狂野欧美激情性bbbbbb| 肉色欧美久久久久久久蜜桃| 制服诱惑二区| 性色av一级| 亚洲精品,欧美精品| 欧美亚洲日本最大视频资源| 两性夫妻黄色片| 久热久热在线精品观看| 少妇被粗大猛烈的视频| 九九爱精品视频在线观看| 亚洲av.av天堂| 亚洲国产毛片av蜜桃av| 欧美精品av麻豆av| 亚洲精品美女久久av网站| 精品国产国语对白av| 最近最新中文字幕大全免费视频 | 亚洲精品视频女| 晚上一个人看的免费电影| 国产成人免费观看mmmm| 久久狼人影院| av天堂久久9| 欧美激情极品国产一区二区三区| 男男h啪啪无遮挡| 国产av码专区亚洲av| 精品少妇一区二区三区视频日本电影 | 国产日韩欧美亚洲二区| 一边亲一边摸免费视频| 欧美黄色片欧美黄色片| 色播在线永久视频| 美女大奶头黄色视频| 老汉色∧v一级毛片|