• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interaction of Wave Trains with Defects?

    2019-03-12 02:41:46XianWeiChen陳賢偉PengFeiLi李鵬飛XiaoPingYuan袁曉平YeHuaZhao趙葉華JunMa馬軍andJiangXingChen陳江星
    Communications in Theoretical Physics 2019年3期
    關(guān)鍵詞:馬軍李鵬

    Xian-Wei Chen (陳賢偉), Peng-Fei Li (李鵬飛), Xiao-Ping Yuan (袁曉平), Ye-Hua Zhao (趙葉華),Jun Ma (馬軍), and Jiang-Xing Chen (陳江星)

    1Department of Public Elementary Education, Zhejiang Guangsha College of Applied Construction Technology,Dongyang 322100, China

    2Information Engineering School, Hangzhou Dianzi University, Hangzhou 310018, China

    3Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China

    4Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China

    (Received December 2, 2018; revised manuscript received December 19, 2018)

    Abstract The evolution and transition of planar wave trains propagating through defects (obstacles)in an excitable medium are studied.When the frequency of the planar wave trains is increased, three different dynamical regimes,namely fusion, “V” waves, and spiral waves, are observed in turn and the underlying mechanism is discussed.The dynamics is concerned with the shapes of the defects.Circle, triangle, and rectangle defects with different sizes are considered.The increase of pacing frequency broadens the fan-shaped broken region in the behind of a rectangle defect.The increase of width of a triangle defect leads to breakup of wave trains easier while the change of height shows opposite effect, which is presented in a phase diagram.Dynamical comparison on defects with different shapes indicates that the decrease of the defect width along the propagation of wave trains makes the fan-shaped region and the minimal frequency for breakup of spiral both increased.

    Key words: planar wave trains, defects, fusion, “V” pattern, spiral wave

    1 Introduction

    Nonlinear waves in excitable media are ubiquitous.[1?5]The emergence of defects in cardiac tissue, such as complex anatomical structures, blood vessels, and even scars from tissue damage, may lead to serious life-threatening consequences.[6]The defects (obstacles)give rise to the breakup of propagating wave trains initiated from the pacemaker, and subsequently results in formation of spiral waves.It is difficult to remove the pinned spirals on the defects, which represents ectopic pacing and tachyrhythmia.[7]In some cases, the defects also lead to breakup of spiral and consequent chaotic state, which is the precursor of lethal ventricular fibrillation.[8?9]Therefore, the studies on the interaction of traveling wave with defects had attracted much attention.

    The interaction of wave trains with an anatomical defect can be quite complex especially in the spatiotemporally chaotic state associated with spiral turbulence.[7,10?11]Indeed, experiments concerning defects in cardiac tissue have yielded various results.[12?16]For example, some experiments reported that small defects do not affect spiral waves but,as the size of the defect is increased, such a wave can get pinned to the defect.[17]Various other experiments have been done to discuss the role of an anatomical defect as an anchoring site for spiral waves, which showed reducing the defect size or prolong the wavelength promotes complex oscillations,conduction failure, and leads to complex spiral wave behavior.[6,18]Simulations in excitable media showed that the rotating frequency and pulse behavior were size dependent in circular domain.[19?20]By starting with a large defect and decreasing its radius, a continuous transition was created from periodic motion to a modulated period-2 rhythm,and then to spiral wave breakup.These results may provide a useful basis for refining cardiac ablation techniques currently in use.[21?22]

    Although great progress has been made on this topic in recent years,[10?13,23?25]it is still open for its complexity and significance.When the planar wave trains(PWTs)interact with a defect, the shape and size of the defect play an important role in determining the dynamics of interaction while it has not been studied so far.In this paper,we examine the evolution and transition of the PWTs propagating through several kinds of defects in an excitable medium.We chose circle, triangle, and rectangle defects with different sizes.The PWTs breaks into two parts when it collides with a defect.Subsequently,the two broken ends of the wave front show interesting behavior,which depends on the frequency of the excitation wave as well as the shape and size of the defects.The underlying mechanism about transition of patterns will be discussed.

    2 Model and Method

    The simulation of an excitable medium is performed in terms of a modified FitzHugh-Nagumo model (the B¨ar model).[26]This simplified mono-domain model is given by

    whereuis the fast variable corresponding to membrane potential, andvis a slow variable corresponding to a recovery process.In this modelf(u,v)= (1/ε)u(1?u)[u ?(v+b)/a], andg(u,v)describes a delayed production of inhibitor withg(u,v)=?vfor 0≤u <1/3,g(u,v)= 1?6.75u(u ?1)2?vfor 1/3≤u <1, andg(u,v)= 1?v, foru >1.Numerical simulations are carried out on 256×256 2D grid points by employing the explicit Euler method.The space and time steps are△x=△y= 0.390 625 and△t= 0.02, respectively.Noflux condition is imposed on the boundaries.εis the ratio of their temporal scales which characterizing the excitability of the medium.In our simulation, we fix parametersε= 0.02,a= 0.84,b= 0.07.An unexcitable area by means of no-flux condition was defined in the middle of the system as the defect.

    Three types of defects are considered,i.e.circular,triangular (up and down triangles), and rectangular defects.Periodic local pacing is utilized on the bottom boundary by applying a signal Γ=Acosωton a line containing gridsu(1?256,1)whereAandωare the amplitude and the angular frequency of the periodic pacing, respectively.PWTs are stimulated from the boundary of the system to mimic the waves from a pacemaker.The frequency of the PWTs is equal to that of the local pacing.When the pacing frequency increases a critical value, it is shown that the output wave train can no longer follow each excitation pulse of the pacing, namely, the system output cannot keep 1:1 frequency relation with the input, rather it can generate only 1:n(nis larger than or equal to 2)frequency response.We record the critical frequency asω0.

    3 Results and Discussion

    The first examination is the propagation of PWTs through a circular defect.When we increase the value of pacing angular frequencyω, three different parameter regimes can be distinguished by the pattern of the excitation wave.When the frequency of the local pacing is not very high, such asω=0.81ω0in Fig.1(a), the PWTs break when they encounter the front of the defect and form two broken ends.Upon circumnavigating the defect, the two broken ends of the wave front come together and fuse with small pits.Subsequently, the wave front thus recovers its previous shape and moves on.Now if we continue to increase the frequencyω, the system would experience an interesting evolution.Wave chains of “V” configuration withω= 0.90ω0appear in Fig.1(b).It is obvious that the wavelength of the“V”wave trains is greatly increased.Ifωis increased further,two counter-rotating spirals withω=0.93ω0in Fig.1(c)are observed in the behind of the defect, respectively.

    Fig.1 (Color online)Dynamical patterns of the planar wave trains propagating through a circular defect(radius R=15△x with three different pacing frequencies ω,i.e.,ω= 0.81ω0 in (a), ω= 0.9ω0 in (b), and ω= 0.93ω0 in(c), at t= 300.The arrow shows the direction of the propagating wave trains.

    To understand the propagation of PWTs and observed patterns in Fig.1,we present the dynamics evolution withω=0.93ω0in Fig.2.After initial process of fusion beforet=80 in Fig.2(a),it is shown that many broken ends cannot touch each other again after they propagate through the circular defect as that in Fig.2(b)att=86.That is because the wave trains with high velocity(sinceω=0.93ω0approachesω0)are drag down by the defect and the two ends collide with considerable overlap (one can find this point by comparing Fig.1(a)with Fig.2(b)), which gives rise to a refractory region resulting from the dispersion relation at the back of the defect.[27]The two broken ends depart each other when they propagate around the refractory region and then fuse again when they pass through it, as shown in Fig.2(b)att=86 and Fig.2(c)att=100.In the behind of the defect, a region with sparse waves appears, which can be seen in Figs.2(c)and 2(d).This region grows up and two counter-rotating tips are formed in Figs.2(d)and 2(e).Ultimately, two counter-rotating spiral waves are observed in Fig.2(e).Note that the region that initial wave trains cannot enter into has fan-shaped configuration, which is consistent with the simulation in Ref.[28] where the train waves cannot propagate into the the fan-shaped region in the behind of the defect to suppress the turbulence.

    Now, we consider the propagation of PWTs through a rectangle defect.The phenomenon is similar with that through the circular defect: when the frequency of pacing is increased, three different dynamical regimes are observed, as shown in Figs.3(a)–3(c).The area of the fanshaped region can be characterized by the central angleθwhich is illustrated in Fig.3(b).Interestingly, it is shown that the increase ofωmakes the increase of fan-shape region.Comparing Fig.3(b)with Fig.3(c), one can see this point.We calculate the dependence ofθonω/ω0.The curves in Fig.3(d)shows that the values ofθincrease quickly asω/ω0.Simulation finds that the transition from“V”waves to spiral waves occurs whenθis aboutπ/2.Asω/ω0gradually reaches 1.0, theθapproaches an asymptotic value 2π/3.

    Fig.2 (Color online)The time evolution shows the wave breakup and formation of a pair of counter-clock rotating spirals on a circular defect at t= 80 (a), t= 86 (b),t= 100 (c), t= 120 (d), t= 140 (e), and t= 300 (f).Other parameters: R=15 △x and ω=0.93ω0.

    Fig.3 (Color online)Patterns of PWTs interacting with a rectangle defect with height (H= 30 △x)and width(L= 30 △x)at t= 300.The pacing frequencies are ω= 0.81ω0 in (a), ω= 0.83ω0 in (b), and ω= 0.88ω0 in (c), respectively.(d)The dependence of the central angle θ of the fan region on the ω/ω0.The definition of the θ is shown in (b).

    On an up-triangle defect, the wave trains also experience three dynamical regimes when the pacing frequency is increased, which is illustrated in Figs.4(a)–4(c).Once a planar wave encounters the defects, it is split into two parts.Subsequently, the two ends move along the edge of the triangle with decreased width.On the vertex of the triangle,the two ends touch each other and then leave the triangle, as that in Fig.4(a).In Fig.4(b), one can see the “V” trains initiate from the vertex of the triangle.If we fix the height of the triangle (H), while increase the width of the base of the triangle (L), the two ends will experience more pronounced change when they propagate on the defect, from splitting to fusion, which gives rise to the breakup of wave trains.This point is confirmed in Fig.4(d)where the minimal frequency for the formation of“V”wave trains decreases when theLis increased.Thus, the increase of the width of a triangle defect may result in breakup of wave trains easier.In Fig.4(e), we present the phase diagram in the H-L plane with fixedω/ω0.With small width, i.e.L= 5, the wave trains always fuse in the behind the defect, even the height of the defect is increased much.With the increase of width, i.e.L= 10, the PWTs can form “V” wave in the behind of the defect.In this case,increase of the height may quickly lead to the fusion of the wave train on the defect.WhenLis large, three different regimes appear in turn in the phase diagram if the values ofHare increased.For fixedH, increase ofLwill give rise to the formation of “V”wave and counter rotating spiral waves.From the phase diagram, one can get a conclusion that increase ofHmay contribute to the propagation of PWTs by preventing the formation of “V” wave and spiral waves, while increase ofLleads to the breakup of PWTs and formation of “V”wave and spiral waves.

    To study the influences of defect shape on the propagation of PWTs further, we present four types of defects in Fig.5.For comparison, we set their widths and heights same.It is shown that different shapes of defect result in different minimal frequencies.The value ofωmin(= 0.082ω0)is smallest in the down triangle, that means this type of defect is the most dangerous shape for breakup of wave trains when the facing frequency is increased.Theωminof a rectangle is slight bigger.For the circular defect,the value ofωminis greatly increased to 0.93ω0.The up triangle defect has the biggestωmin(=0.96ω0), which indicates this shape is much safer than other shapes.From the comparison, it seems that the narrowing of a defect may contribute to the persistence of waves train with high frequency.The phenomena can be qualitatively discussed in terms of the linear Eikonal relations

    whereCpandCare the velocities of a propagating wave(K≠0)and a planar wave (K=0), respectively,Dis the diffusion coefficient, andKis the local curvature of the propagating wave.[29]When the wave trains reach the position on obstacles with maximal length,the situations are different in four cases.In Figs.5(a)and 5(b),the two broken waves depart from the obstacle suddenly while they gradually leave the narrowing defects in Figs.5(c)and 5(d).In Figs.5(a)and 5(b), besides the initial propagating velocity, the broken ends show rapid growing tangential velocities that decrease their propagating velocities.Subsequently, the ends become bend with increased curvatureK.Then,CPis decreased, which leads to increased refractory time in the behind of the obstacle.[30]Consequently,the waves trains break with lower frequencyωmin.As to the case in Fig.5(c), especially the case in Fig.5(d), the narrowing of defect is slow.The effect is not obvious, which results in biggerωmin.

    On the other hand, the area of the fan-shaped region in the behind of the defect is increased from Fig.5(a)to 5(d).The fan-shaped region in Fig.5(a)is similar with that in Fig.5(b).It is interesting that the area is increased dramatically when the defects become narrower along the propagation of the wave train.Note that if turbulence exists in this fan-shaped region, local pacing is difficult to suppress they.

    Fig.4 (Color online)Patterns of PTWs interacting with an up-triangle defect with height (H= 20 △x)and width(H= 30 △x)at t= 300.The pacing frequencies are ω= 0.81ω0 in (a), ω= 0.93ω0 in (b), and ω= 0.964ω0 in (c),respectively.(d)The dependence of ωmin/ω0 on the defect width L.The PWTs fuse after colliding with the defect when ω <ωmin while they break as ω >ωmin.The height of the triangle H is fixed to be H=10 △x.(e)The phase diagram in the H-L plane describes three dynamical regimes with ω=0.94ω0.The square, triangle, and circle mean the states of fusion, breakup to “V” pattern, and two counter-rotating spirals, respectively.

    Fig.5 (Color online)Patterns of wave trains interacting on defects with different shapes.The pacing frequencies are ω/ωmin= 0.82 in (a), ω/ωmin= 0.83 in (b), ω/ωmin= 0.93 in (c), and ω/ωmin= 0.96 in (d), respectively.The size is H=L=R=30 △x.

    4 Conclusion

    In conclusion, we have studied the evolution and transition of planar wave trains propagating through four kinds of defects in an excitable medium.Based on the frequency of a local pacing, three dynamical regimes are distinguished in terms of the pattern formation in the behind of the defects: fusion, “V” pattern, and two counter-rotating spirals.The dynamical process is discussed.For a rectangle defect, the area of fan-shaped region decreases with the increase of local pacing.For a triangle defect, the increase ofLmakes the wave train easier to breakup at lowerωmin.Also, we present a phase diagram to illustrate the influences of height (H)and width (L)of the triangle defect.The increase of width gives rise to the breakup of wave trains to form “V” pattern and spirals, while the increase of width is beneficial for the fusion of the wave trains.The narrowed defect along the propagation of the wave results in two effects: the minimal frequency for breakup of wave trains and the area of the fan-shaped region are both increased.Although the shapes of defects in cardiac tissue are complex, we hope the results studied here may contribute to the understanding of interaction between the wave trains from the pacemaker and defects.

    猜你喜歡
    馬軍李鵬
    Enhance sensitivity to illumination and synchronization in light-dependent neurons?
    Control of firing activities in thermosensitive neuron by activating excitatory autapse?
    Estimation of biophysical properties of cell exposed to electric field
    請您來給小李解疑惑
    中國儲運(2019年9期)2019-09-16 08:42:52
    人工智能的困惑
    中國儲運(2019年2期)2019-04-29 03:56:06
    cute pandas
    Dynamics of Spiral Waves Induced by Periodic Mechanical Deformation with Phase Di ff erence?
    Synergy and Redundancy in a Signaling Cascade with Different Feedback Mechanisms?
    Talk about music content and emotion of music movie "The Legend of 1900"
    東方教育(2017年12期)2017-08-23 05:49:54
    “賭”還是不“賭”?
    中國儲運(2017年2期)2017-02-24 08:27:41
    天天躁夜夜躁狠狠久久av| 午夜激情欧美在线| 国产成人精品一,二区 | 国产精品日韩av在线免费观看| 91在线精品国自产拍蜜月| 亚洲国产精品成人久久小说 | 丰满人妻一区二区三区视频av| 中文字幕熟女人妻在线| 国产成人aa在线观看| 亚洲第一电影网av| 婷婷亚洲欧美| 色噜噜av男人的天堂激情| 美女xxoo啪啪120秒动态图| 国产亚洲精品久久久com| 国产91av在线免费观看| 国产黄片美女视频| 国产成人91sexporn| 亚洲欧美日韩卡通动漫| 国产精品蜜桃在线观看 | 26uuu在线亚洲综合色| 免费看美女性在线毛片视频| 麻豆乱淫一区二区| 中文字幕av在线有码专区| 成人毛片60女人毛片免费| 亚洲av.av天堂| 六月丁香七月| 天堂影院成人在线观看| 国产白丝娇喘喷水9色精品| 哪个播放器可以免费观看大片| 成人特级av手机在线观看| 亚洲国产色片| 亚洲成av人片在线播放无| 日韩人妻高清精品专区| 舔av片在线| 亚洲人与动物交配视频| 18+在线观看网站| 中国美白少妇内射xxxbb| 麻豆久久精品国产亚洲av| av.在线天堂| 黄片wwwwww| 午夜亚洲福利在线播放| 久久久国产成人精品二区| 小蜜桃在线观看免费完整版高清| 日本免费一区二区三区高清不卡| 九色成人免费人妻av| 国产片特级美女逼逼视频| 精品久久久噜噜| 小说图片视频综合网站| 久久久久久久久久黄片| 成人性生交大片免费视频hd| 中国美白少妇内射xxxbb| 免费看a级黄色片| 精品久久久久久久久av| 韩国av在线不卡| 免费人成在线观看视频色| 国产免费一级a男人的天堂| 久久久久久久久久黄片| 一进一出抽搐动态| 国产伦一二天堂av在线观看| 哪个播放器可以免费观看大片| 成人漫画全彩无遮挡| 日本撒尿小便嘘嘘汇集6| 国产成人一区二区在线| 最好的美女福利视频网| 久久久久久久午夜电影| 少妇熟女欧美另类| 久久久久国产网址| 久久亚洲精品不卡| 69av精品久久久久久| 可以在线观看的亚洲视频| 黄色欧美视频在线观看| 欧美又色又爽又黄视频| 国产高清有码在线观看视频| 乱码一卡2卡4卡精品| 在线观看免费视频日本深夜| 国产高清视频在线观看网站| 美女 人体艺术 gogo| 啦啦啦韩国在线观看视频| 午夜福利在线观看免费完整高清在 | 亚洲va在线va天堂va国产| 中文在线观看免费www的网站| 天天一区二区日本电影三级| 99热网站在线观看| 亚洲精品国产av成人精品| 观看免费一级毛片| 亚洲精品亚洲一区二区| 我要搜黄色片| 晚上一个人看的免费电影| 欧美人与善性xxx| 国产真实伦视频高清在线观看| 国产精品一及| 麻豆国产av国片精品| 国产伦精品一区二区三区四那| .国产精品久久| 国产成人91sexporn| 国产亚洲av嫩草精品影院| 久久精品国产鲁丝片午夜精品| 成年版毛片免费区| 亚洲av免费在线观看| 亚洲最大成人手机在线| kizo精华| 精品久久久久久久久亚洲| 99久久无色码亚洲精品果冻| 啦啦啦观看免费观看视频高清| 亚洲成人av在线免费| 免费电影在线观看免费观看| 少妇人妻精品综合一区二区 | 国产不卡一卡二| 中文字幕熟女人妻在线| 亚洲国产精品久久男人天堂| 国产午夜福利久久久久久| 黑人高潮一二区| 老司机影院成人| 日韩一区二区视频免费看| 男女啪啪激烈高潮av片| 女人十人毛片免费观看3o分钟| 国产精品蜜桃在线观看 | a级毛片免费高清观看在线播放| 国产精品美女特级片免费视频播放器| 尾随美女入室| 国产成人91sexporn| 日本欧美国产在线视频| 日韩在线高清观看一区二区三区| 黄片无遮挡物在线观看| 毛片一级片免费看久久久久| 亚洲人成网站高清观看| 国产精品无大码| 嫩草影院入口| 午夜免费男女啪啪视频观看| 亚洲精品日韩av片在线观看| 国产亚洲精品久久久com| 看片在线看免费视频| 国产午夜福利久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 18禁黄网站禁片免费观看直播| 在线免费观看的www视频| 97热精品久久久久久| 黄色欧美视频在线观看| 日产精品乱码卡一卡2卡三| av在线播放精品| 国产在视频线在精品| 日韩欧美 国产精品| 国产一区二区三区在线臀色熟女| 亚洲av不卡在线观看| 欧美日韩综合久久久久久| 亚洲熟妇中文字幕五十中出| 午夜激情欧美在线| 九九在线视频观看精品| 中国国产av一级| 精品日产1卡2卡| 久久久久久久久久久免费av| 亚洲av成人av| 成人av在线播放网站| 国产伦在线观看视频一区| 亚洲美女视频黄频| 麻豆成人午夜福利视频| 看免费成人av毛片| 久久中文看片网| 精品人妻熟女av久视频| 国语自产精品视频在线第100页| 亚洲av男天堂| 啦啦啦啦在线视频资源| 欧美三级亚洲精品| 国产黄片视频在线免费观看| 精品久久久久久久久久久久久| 人人妻人人澡人人爽人人夜夜 | 伦精品一区二区三区| 久久亚洲精品不卡| 日韩一区二区三区影片| 中文亚洲av片在线观看爽| 亚洲国产欧美在线一区| 亚洲欧美精品综合久久99| 成年版毛片免费区| 国产精品日韩av在线免费观看| 麻豆av噜噜一区二区三区| 国产精品一区二区在线观看99 | 国产熟女欧美一区二区| 久久综合国产亚洲精品| 国产探花在线观看一区二区| 婷婷六月久久综合丁香| 在线免费观看不下载黄p国产| 不卡视频在线观看欧美| 久久久久久国产a免费观看| 国产69精品久久久久777片| 小说图片视频综合网站| 天美传媒精品一区二区| 免费一级毛片在线播放高清视频| 国产不卡一卡二| 午夜福利视频1000在线观看| 亚洲无线观看免费| 国产精品一区二区三区四区久久| 一级av片app| 亚洲电影在线观看av| 国产精品日韩av在线免费观看| 干丝袜人妻中文字幕| 小说图片视频综合网站| 嫩草影院新地址| 国产高清三级在线| 精华霜和精华液先用哪个| 国产亚洲av嫩草精品影院| 午夜精品一区二区三区免费看| 午夜福利在线在线| 亚洲av免费高清在线观看| 久久久久免费精品人妻一区二区| 久久久久久久久久成人| av又黄又爽大尺度在线免费看 | 国产精品蜜桃在线观看 | 天美传媒精品一区二区| 亚洲av中文字字幕乱码综合| 国产私拍福利视频在线观看| 简卡轻食公司| 成人综合一区亚洲| 看黄色毛片网站| 欧美zozozo另类| 午夜福利视频1000在线观看| 九九爱精品视频在线观看| 人人妻人人看人人澡| 不卡一级毛片| 久久精品国产亚洲av香蕉五月| 欧美性猛交黑人性爽| 亚洲国产精品成人久久小说 | 只有这里有精品99| 波多野结衣高清作品| 午夜福利在线观看吧| 午夜福利成人在线免费观看| 精品国内亚洲2022精品成人| 国产精品1区2区在线观看.| 91av网一区二区| 亚洲av一区综合| 久久久国产成人精品二区| 精品久久久久久久人妻蜜臀av| 精品一区二区三区人妻视频| 热99在线观看视频| 亚洲欧美日韩卡通动漫| 特大巨黑吊av在线直播| 此物有八面人人有两片| 高清毛片免费观看视频网站| 人妻制服诱惑在线中文字幕| 国产视频首页在线观看| 欧美潮喷喷水| 美女黄网站色视频| 久久久久久久久久久丰满| 欧美精品一区二区大全| 男插女下体视频免费在线播放| 91精品一卡2卡3卡4卡| av免费在线看不卡| 免费黄网站久久成人精品| 亚洲精品自拍成人| 国产精品一区www在线观看| 黄色日韩在线| 国产高清有码在线观看视频| 国产伦在线观看视频一区| 亚洲国产欧洲综合997久久,| 中文字幕人妻熟人妻熟丝袜美| 此物有八面人人有两片| 日本欧美国产在线视频| 国产老妇女一区| 综合色丁香网| 在线播放无遮挡| 亚洲国产欧美在线一区| 国产又黄又爽又无遮挡在线| 亚洲成人中文字幕在线播放| 夜夜夜夜夜久久久久| 全区人妻精品视频| 欧美成人a在线观看| 91狼人影院| 国产精品人妻久久久影院| 亚洲av不卡在线观看| 午夜福利在线在线| 热99re8久久精品国产| 美女脱内裤让男人舔精品视频 | 精品久久久久久久久久免费视频| 97人妻精品一区二区三区麻豆| 在现免费观看毛片| 熟女电影av网| 亚洲欧洲日产国产| 国产单亲对白刺激| 精品久久久久久久人妻蜜臀av| .国产精品久久| 久久久a久久爽久久v久久| 久久久久久久久久久免费av| 亚洲欧美成人综合另类久久久 | 亚洲最大成人手机在线| 欧美不卡视频在线免费观看| 欧美激情在线99| 日日摸夜夜添夜夜添av毛片| 综合色av麻豆| 国产在线男女| 一级毛片电影观看 | 国产精品野战在线观看| 亚洲精品色激情综合| 中文字幕免费在线视频6| 国产极品天堂在线| 中文字幕精品亚洲无线码一区| 欧美日韩一区二区视频在线观看视频在线 | 1024手机看黄色片| 久久久久久久久久久免费av| 69av精品久久久久久| 精品久久久久久久人妻蜜臀av| 日日撸夜夜添| av黄色大香蕉| 久久久久久久久大av| 欧美另类亚洲清纯唯美| 婷婷色综合大香蕉| 中文字幕制服av| 村上凉子中文字幕在线| 久久久国产成人免费| 国产熟女欧美一区二区| 一级毛片我不卡| 婷婷亚洲欧美| 99久久无色码亚洲精品果冻| 网址你懂的国产日韩在线| 最近中文字幕高清免费大全6| 国产欧美日韩精品一区二区| 久久精品影院6| 欧洲精品卡2卡3卡4卡5卡区| 国产一级毛片七仙女欲春2| 午夜福利在线观看吧| 亚洲国产精品合色在线| 一级毛片久久久久久久久女| 亚洲国产日韩欧美精品在线观看| 成人三级黄色视频| 久久久久久大精品| 日本免费一区二区三区高清不卡| 草草在线视频免费看| 18禁在线无遮挡免费观看视频| 国产91av在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利在线在线| 亚洲七黄色美女视频| 国产 一区 欧美 日韩| 99久久久亚洲精品蜜臀av| 国产精品久久久久久精品电影| 最近手机中文字幕大全| 国产在线男女| 少妇人妻一区二区三区视频| 性插视频无遮挡在线免费观看| 校园春色视频在线观看| 高清午夜精品一区二区三区 | 久久99热6这里只有精品| 在线a可以看的网站| 国产一区二区亚洲精品在线观看| 春色校园在线视频观看| 人妻制服诱惑在线中文字幕| 69av精品久久久久久| 国产午夜精品论理片| a级毛片a级免费在线| 99精品在免费线老司机午夜| 亚洲国产欧洲综合997久久,| 亚洲丝袜综合中文字幕| 久久精品综合一区二区三区| 日韩欧美在线乱码| 欧美性猛交╳xxx乱大交人| 免费av观看视频| 欧美性猛交黑人性爽| 午夜视频国产福利| 舔av片在线| 国产精品不卡视频一区二区| 国产精品爽爽va在线观看网站| 大又大粗又爽又黄少妇毛片口| 免费电影在线观看免费观看| 天堂网av新在线| av又黄又爽大尺度在线免费看 | 欧美高清成人免费视频www| 97在线视频观看| 久久这里有精品视频免费| 国产成人精品婷婷| 精品久久久久久久人妻蜜臀av| 波多野结衣高清作品| 成人美女网站在线观看视频| 一边亲一边摸免费视频| 国产伦精品一区二区三区四那| 国产蜜桃级精品一区二区三区| 女的被弄到高潮叫床怎么办| 日韩欧美精品v在线| 少妇熟女欧美另类| 亚洲av中文av极速乱| 51国产日韩欧美| 22中文网久久字幕| 99热6这里只有精品| 午夜福利在线在线| 一级av片app| eeuss影院久久| 午夜福利成人在线免费观看| 五月伊人婷婷丁香| 99久久人妻综合| 午夜a级毛片| 国产精品蜜桃在线观看 | 国产精品久久久久久精品电影小说 | 悠悠久久av| 午夜爱爱视频在线播放| 2022亚洲国产成人精品| 国产精品久久久久久久久免| 国产高清激情床上av| 蜜桃久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 中出人妻视频一区二区| 欧美bdsm另类| 级片在线观看| 爱豆传媒免费全集在线观看| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 小蜜桃在线观看免费完整版高清| 久久久精品欧美日韩精品| 人人妻人人看人人澡| 一级二级三级毛片免费看| 内射极品少妇av片p| 亚洲欧美日韩卡通动漫| 插逼视频在线观看| 久久久久网色| av在线观看视频网站免费| 国产一级毛片在线| 菩萨蛮人人尽说江南好唐韦庄 | 国产欧美日韩精品一区二区| av在线天堂中文字幕| 国产伦精品一区二区三区四那| 久久人人爽人人爽人人片va| 中文字幕av在线有码专区| 美女xxoo啪啪120秒动态图| 国产精品乱码一区二三区的特点| 国产黄色小视频在线观看| 日本熟妇午夜| 一个人观看的视频www高清免费观看| 国产成人freesex在线| 国产成人a∨麻豆精品| 国产高清不卡午夜福利| av女优亚洲男人天堂| 欧美+亚洲+日韩+国产| 啦啦啦啦在线视频资源| 99久久精品热视频| 国产探花在线观看一区二区| 欧美性猛交╳xxx乱大交人| 天天一区二区日本电影三级| 午夜老司机福利剧场| 人妻夜夜爽99麻豆av| 国产片特级美女逼逼视频| 波多野结衣高清无吗| 99热全是精品| 久久精品国产自在天天线| 精品人妻一区二区三区麻豆| 久久人人爽人人爽人人片va| 久久久久免费精品人妻一区二区| 五月玫瑰六月丁香| 成人午夜精彩视频在线观看| 乱人视频在线观看| 国语自产精品视频在线第100页| 18禁在线无遮挡免费观看视频| 成人亚洲欧美一区二区av| 老司机影院成人| 久久久午夜欧美精品| 晚上一个人看的免费电影| 免费av毛片视频| 老女人水多毛片| 国产成人精品婷婷| 亚洲性久久影院| 男女视频在线观看网站免费| av.在线天堂| 51国产日韩欧美| 97人妻精品一区二区三区麻豆| 成年免费大片在线观看| 亚洲精品自拍成人| 在线免费十八禁| 国产极品精品免费视频能看的| 国产高清有码在线观看视频| 夫妻性生交免费视频一级片| 毛片女人毛片| 久久久午夜欧美精品| 成熟少妇高潮喷水视频| 亚洲欧美成人综合另类久久久 | 亚洲第一区二区三区不卡| 可以在线观看的亚洲视频| 亚洲真实伦在线观看| 精品日产1卡2卡| 日韩欧美一区二区三区在线观看| 午夜久久久久精精品| 国产精品人妻久久久影院| 免费av观看视频| 少妇猛男粗大的猛烈进出视频 | 人妻少妇偷人精品九色| 深夜a级毛片| 天堂影院成人在线观看| 亚洲内射少妇av| 久久精品国产亚洲av涩爱 | 国产成人精品久久久久久| 日韩一区二区三区影片| 久久久成人免费电影| 大又大粗又爽又黄少妇毛片口| 亚洲无线在线观看| 日韩,欧美,国产一区二区三区 | 天堂影院成人在线观看| 精品久久久久久久久av| 日本熟妇午夜| 日韩亚洲欧美综合| 成人三级黄色视频| 亚洲天堂国产精品一区在线| 一边亲一边摸免费视频| 欧美人与善性xxx| 99riav亚洲国产免费| 悠悠久久av| 久久草成人影院| 国产精品久久久久久精品电影| 国产色婷婷99| 亚洲七黄色美女视频| 欧美三级亚洲精品| 久久久国产成人精品二区| 亚洲美女视频黄频| 天堂av国产一区二区熟女人妻| 青青草视频在线视频观看| av天堂中文字幕网| 韩国av在线不卡| 精品一区二区免费观看| 成人午夜精彩视频在线观看| 欧美在线一区亚洲| 国内少妇人妻偷人精品xxx网站| 欧美丝袜亚洲另类| 国产精品久久久久久精品电影| 国产精品蜜桃在线观看 | 蜜桃亚洲精品一区二区三区| 99久久精品热视频| 国产精品人妻久久久久久| 国产精品久久久久久av不卡| 日本免费一区二区三区高清不卡| 免费看日本二区| avwww免费| 久久这里有精品视频免费| 69av精品久久久久久| 99视频精品全部免费 在线| 三级毛片av免费| 日韩精品有码人妻一区| 国产精品电影一区二区三区| 日本免费a在线| 人体艺术视频欧美日本| 桃色一区二区三区在线观看| 日韩制服骚丝袜av| 免费av观看视频| 午夜老司机福利剧场| 欧美又色又爽又黄视频| 日韩欧美国产在线观看| 淫秽高清视频在线观看| 一个人看的www免费观看视频| 精品欧美国产一区二区三| 国产极品天堂在线| 久久人妻av系列| 淫秽高清视频在线观看| 一个人看的www免费观看视频| 久久久久网色| 久久精品夜夜夜夜夜久久蜜豆| 啦啦啦观看免费观看视频高清| 一级毛片久久久久久久久女| 天堂中文最新版在线下载 | 色哟哟哟哟哟哟| 欧美丝袜亚洲另类| 在线免费观看的www视频| 在线播放无遮挡| 春色校园在线视频观看| 成人三级黄色视频| 国产日韩欧美在线精品| 搡老妇女老女人老熟妇| 亚洲欧美精品自产自拍| 免费看av在线观看网站| 久久精品影院6| 国产探花极品一区二区| 久久久色成人| eeuss影院久久| 天堂av国产一区二区熟女人妻| 亚洲aⅴ乱码一区二区在线播放| 欧美三级亚洲精品| 女的被弄到高潮叫床怎么办| 国产精品三级大全| 变态另类成人亚洲欧美熟女| 桃色一区二区三区在线观看| av免费在线看不卡| 精品少妇黑人巨大在线播放 | 老女人水多毛片| 日本av手机在线免费观看| 啦啦啦韩国在线观看视频| 综合色丁香网| 日韩欧美 国产精品| 欧美高清性xxxxhd video| 噜噜噜噜噜久久久久久91| 夜夜看夜夜爽夜夜摸| 成年免费大片在线观看| 中文精品一卡2卡3卡4更新| 老熟妇乱子伦视频在线观看| 精品人妻熟女av久视频| 国产成人91sexporn| 特级一级黄色大片| 成人av在线播放网站| 丰满的人妻完整版| 午夜免费男女啪啪视频观看| 国产亚洲av嫩草精品影院| 国产真实伦视频高清在线观看| 99热这里只有是精品50| 两个人视频免费观看高清| 一进一出抽搐gif免费好疼| 国产91av在线免费观看| 最近视频中文字幕2019在线8| 国产高清不卡午夜福利| 免费看日本二区| 97在线视频观看| 亚洲中文字幕日韩| 成人亚洲精品av一区二区| 麻豆国产97在线/欧美| 三级男女做爰猛烈吃奶摸视频| 在线免费观看不下载黄p国产| 国产成人91sexporn| 免费看光身美女| 少妇人妻精品综合一区二区 | 久久精品久久久久久久性| 九色成人免费人妻av| 色综合色国产| 亚洲成a人片在线一区二区| 99热网站在线观看| 人妻制服诱惑在线中文字幕| 国产美女午夜福利|