• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      水翼吸力面布置凹槽抑制空化研究

      2019-02-25 02:05:04盧盛鵬焦建雄張慶典王曉放
      關(guān)鍵詞:水翼空泡邊界層

      王 巍,唐 滔,盧盛鵬,焦建雄,張慶典,王曉放

      ?

      水翼吸力面布置凹槽抑制空化研究

      王 巍,唐 滔,盧盛鵬,焦建雄,張慶典,王曉放

      (大連理工大學(xué)海洋能源利用與節(jié)能教育部重點(diǎn)實(shí)驗(yàn)室,大連 116024)

      空化引起不同程度振動(dòng)、沖擊和噪聲,加劇物體表面空蝕,使結(jié)構(gòu)提早發(fā)生疲勞。為有效抑制和延緩空化發(fā)生和空泡脫落,該文提出了在水翼吸力面布置凹槽的方法,旨在通過(guò)水翼表面結(jié)構(gòu)的改變來(lái)實(shí)現(xiàn)空化流動(dòng)的調(diào)節(jié)。在數(shù)值模擬研究中,采用Realizable湍流模型和Schnerr-Sauer空化模型,圍繞8°攻角下NACA66 (MOD)水翼,開(kāi)展不同空化數(shù)、凹槽尺度和凹槽位置對(duì)二維水翼空化流場(chǎng)的動(dòng)力學(xué)特性研究,并進(jìn)一步分析了水翼表面特殊結(jié)構(gòu)抑制空化的機(jī)理。結(jié)果表明:當(dāng)片空化發(fā)生時(shí),凹槽布置在距水翼前緣0.32弦長(zhǎng)位置時(shí),能降低空泡振蕩頻率,提高水翼水動(dòng)力性能;當(dāng)云空化發(fā)生時(shí),適當(dāng)?shù)陌疾郾砻鏄?gòu)型能夠使水翼吸力面邊界層變薄,邊界層分離點(diǎn)滯后,水翼尾緣回流區(qū)減薄,吸力面低壓區(qū)減小,證明了凹槽表面構(gòu)型對(duì)空化抑制的適用性。然而,在水翼吸力面布置凹槽,雖然可以降低水翼表面邊界層的厚度,增強(qiáng)抗逆壓能力,但卻觸發(fā)了凹槽附近區(qū)域回射流的加速。因此,只有當(dāng)抗逆壓梯度能力大于回射流沖擊時(shí),才可以實(shí)現(xiàn)對(duì)空化流動(dòng)的抑制。該研究成果擴(kuò)大了空化流動(dòng)的被動(dòng)控制方法研究范圍,為水力機(jī)械空化抑制技術(shù)提供了參考。

      空化;計(jì)算機(jī)仿真;模型;水翼;吸力面凹槽;空化抑制;水動(dòng)力性能

      0 引 言

      局部空化和脫落的非穩(wěn)態(tài)特征在高可靠性的核主泵、水力透平葉片和船用螺旋槳中受到極大關(guān)注。特別是伴隨大尺度空泡脫落的云空化的發(fā)生,嚴(yán)重影響著水力性能,引起水力機(jī)械不同程度的振動(dòng)、沖擊和噪聲,空泡流的低頻振蕩和大規(guī)模的空泡云脫落會(huì)加劇物體表面的空蝕,使結(jié)構(gòu)提早發(fā)生疲勞破壞,對(duì)于高速運(yùn)動(dòng)物體會(huì)影響其控制穩(wěn)定性,甚至導(dǎo)致災(zāi)難性的顫振和動(dòng)力學(xué)失穩(wěn)[1-3]。

      延緩空泡的發(fā)生和抑制空泡的脫落一直以來(lái)是水力機(jī)械研究的重點(diǎn)和難點(diǎn)課題。國(guó)內(nèi)外眾多學(xué)者從空化發(fā)展和空化導(dǎo)致非穩(wěn)態(tài)機(jī)理方面做了大量的科學(xué)研究,認(rèn)為反向壓力梯度形成的回射流是造成片空化脫落、云空化產(chǎn)生的主要原因[4-10]。王巍等[11]研究還發(fā)現(xiàn)回射流及其強(qiáng)度是空化體形態(tài)改變的重要因素,并定義了描述回射流強(qiáng)度的特征數(shù),用其來(lái)判斷空泡體的類(lèi)型。因此,控制回射流在一定程度上可以實(shí)現(xiàn)對(duì)云空化的控制。

      按照有無(wú)外界能量的輸入,把控制空化流動(dòng)的方法分為主動(dòng)控制與被動(dòng)控制[12-14]。對(duì)于主動(dòng)控制技術(shù), Mikhail等[15]通過(guò)試驗(yàn)研究壁面切向噴射對(duì)空化的影響,發(fā)現(xiàn)低速噴射可以有效減輕空化效應(yīng),而高速噴射可以減少能量損失,提高流動(dòng)的水動(dòng)力學(xué)品質(zhì),其試驗(yàn)研究還證明實(shí)施流量控制在某些條件下能夠很好的調(diào)節(jié)空化流場(chǎng)。Wang等[16-17]研究發(fā)現(xiàn)在水翼表面射流可以有效阻擋回射流從水翼尾部向水翼頭部的運(yùn)動(dòng),使得空泡發(fā)展和脫落現(xiàn)象明顯減弱,有效抑制了片空化發(fā)展、片空化向云空化的轉(zhuǎn)變以及云空化的發(fā)展。對(duì)于被動(dòng)控制技術(shù),其通過(guò)無(wú)外部能量注入的裝置來(lái)改變流體的壓力和速度分布以控制流動(dòng)。Zhang等[18]研究了平板水翼布置障礙物對(duì)于云空化的影響。Kadivar等[19]提出在水翼表面布置汽泡發(fā)生器,能夠顯著減小吸力面低壓區(qū)面,有效抑制空化的發(fā)展。鄔偉等[20]通過(guò)在水翼吸力面上設(shè)置微小方形凸起,并提出設(shè)置拱弧的新方案來(lái)抑制空化。

      在延緩和抑制云空化的研究中,無(wú)論采用主動(dòng)控制還是被動(dòng)控制,在一定程度上都起到了抑制空化的目的。然而,當(dāng)表面射流水翼或葉片處于旋轉(zhuǎn)狀態(tài)時(shí),由于空心葉片內(nèi)部流體的復(fù)雜流動(dòng),空心葉片強(qiáng)度的下降等原因,會(huì)給整個(gè)轉(zhuǎn)子系統(tǒng)的穩(wěn)定運(yùn)行帶來(lái)不確定性因素。而采用水翼表面布置障礙物,抑制空化的效果并不能隨著空化條件的變化而進(jìn)行相應(yīng)的調(diào)控,且在無(wú)空化時(shí),障礙物的增加又改變了水翼的動(dòng)力學(xué)特性。為此,本文提出水翼表面凹槽的設(shè)計(jì)結(jié)構(gòu),旨在保持水動(dòng)力性能的同時(shí),研究水翼表面特殊構(gòu)型抑制空化的機(jī)理,提出抑制空化新方法。

      1 物理模型與數(shù)值計(jì)算方法

      1.1 計(jì)算參數(shù)與網(wǎng)格劃分

      針對(duì)弦長(zhǎng)=70 mm的二維NACA66 (MOD)水翼開(kāi)展水翼表面開(kāi)槽對(duì)空化流動(dòng)的研究。來(lái)流速度為7.832 m/s,入流角為8°,流場(chǎng)溫度為300 K,飽和蒸汽壓3 540 Pa,動(dòng)力黏度=8.53×10-4kg/(m·s),計(jì)算空化數(shù)為1.23和0.81的工況。

      凹槽形狀分別為矩形,三角形和半圓形,2種不同開(kāi)槽位置,即凹槽中心距水翼前緣距離分別為0.20和0.32。為了方便后續(xù)分析,對(duì)特殊構(gòu)型水翼進(jìn)行命名規(guī)則的制定:

      凹槽形狀 凹槽深度 - 凹槽中心距前緣距離

      例:TR1 - 0.20中TR代表凹槽為三角形,1代表凹槽深度為水翼弦長(zhǎng)的1%,0.20代表凹槽中心距水翼前緣為0.20。除此之外,OR代表矩形凹槽,RO代表圓形凹槽。

      計(jì)算區(qū)域劃分如圖1a,進(jìn)口距水翼前緣為5,出口距水翼尾緣為10,上下邊界距水翼前緣點(diǎn)為6。水翼表面進(jìn)行加密處理,近壁網(wǎng)格如圖1b所示,最終網(wǎng)格數(shù)約為73 000。

      注:c為弦長(zhǎng),mm。

      1.2 控制方程

      普遍認(rèn)為非穩(wěn)態(tài)RANS方程足以模擬簡(jiǎn)單的水翼空化流動(dòng)[21]。以下給出非穩(wěn)態(tài)情況下,在笛卡爾坐標(biāo)中的流體控制方程,為了簡(jiǎn)化方程,在氣/液兩相混合物模型中,假設(shè)多相流體組分具有相同的速度和壓力。值得注意的是,這里所表述的控制方程是沒(méi)有考慮體積力和傳熱現(xiàn)象的牛頓流體質(zhì)量輸運(yùn)方程式(1)~(5)[21]所示。

      使用表示水翼吸力側(cè)汽相體積分?jǐn)?shù)積分,該值可以定性的表示空泡長(zhǎng)度的相對(duì)大小,有如下關(guān)系式

      式中為二維水翼吸力側(cè)曲線長(zhǎng)度,m;v1為汽相體積分?jǐn)?shù)。

      1.3 數(shù)值方法

      使用Fluent16.0數(shù)值求解,計(jì)算區(qū)域入口為速度入口邊界條件,出口為壓力出口邊界條件,上下壁面和水翼壁面為無(wú)滑移邊界條件[22]。使用基于壓力的求解器搭配SIMPLEC算法進(jìn)行求解,湍流模型[23-25]為Realizable模型,空化模型為Schnerr-Sauer 空化模型[26]。動(dòng)量對(duì)流項(xiàng)采用二階迎風(fēng)格式,其他對(duì)流項(xiàng)采用一階迎風(fēng)格式,壓力項(xiàng)采用PRESTO格式[27]。瞬態(tài)求解格式為一階隱式,據(jù)CFL穩(wěn)定條件取時(shí)間步長(zhǎng)為0.000 5 s。

      基于所建立的物理和數(shù)學(xué)模型,分析了NACA66 (MOD)原始水翼在空化數(shù)為0.81時(shí),水翼吸力面的空泡形態(tài)及流動(dòng)特性,圖2a給出了繞水翼空化流動(dòng)過(guò)程中汽相體積分?jǐn)?shù)的分布。為了驗(yàn)證數(shù)值模型的準(zhǔn)確性,針對(duì)相同的NACA66 (MOD)原始水翼,在如圖3所示的空化水洞中開(kāi)展了全流場(chǎng)的流動(dòng)測(cè)試[28-29],水翼吸力面空泡形態(tài)如圖2b所示。對(duì)比水翼空化流動(dòng)的數(shù)值分析和試驗(yàn)結(jié)果,發(fā)現(xiàn)在空泡形態(tài)上預(yù)測(cè)結(jié)果與試驗(yàn)吻合較好,說(shuō)明所選用的模型能夠較好的預(yù)測(cè)此工況下的空化流動(dòng)。

      圖2 水翼吸力側(cè)空化形態(tài)數(shù)值計(jì)算與試驗(yàn)結(jié)果的對(duì)比

      圖3 空化水洞示意圖

      2 計(jì)算結(jié)果與分析

      對(duì)無(wú)空化流進(jìn)行研究,發(fā)現(xiàn)表面開(kāi)槽造成水翼升阻比下降,水動(dòng)力性能下降。但由于空泡和回射流的存在,凹槽對(duì)水翼性能的影響可能與無(wú)空化流場(chǎng)有較大的區(qū)別[30]。本節(jié)將對(duì)特殊構(gòu)型水翼抑制空化的性能進(jìn)行研究。

      2.1 水動(dòng)力性能分析

      在所選用的模型下,2種不同的空化數(shù),求解出的空化形態(tài)有較大的區(qū)別??栈瘮?shù)為1.23和0.81時(shí),分別呈現(xiàn)為典型的片空化和云空化。

      對(duì)不同構(gòu)型模擬得到的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,結(jié)果如表1所示,max表示在流場(chǎng)計(jì)算穩(wěn)定后,多個(gè)周期內(nèi)的最大值。片空化時(shí),凹槽對(duì)于水動(dòng)力性能沒(méi)有很大的影響,這符合片空化的特征。在片空化發(fā)生后容易有一片穩(wěn)定的空化體附著在水翼表面上,只有水翼尾部的空化體不穩(wěn)定容易脫落,所以,片空化的時(shí)候空泡閉合區(qū)始終包裹凹槽或者輕輕掠過(guò)凹槽,使得升阻比與正常翼型并沒(méi)有很大的區(qū)別。

      如圖4所示,在凹槽距水翼前緣為0.32的流動(dòng)中,空泡尾緣距凹槽位置非常接近,凹槽的存在使得回射流速度方向受到干擾,并且凹槽處有嚴(yán)重動(dòng)能的耗散,導(dǎo)致回射流順利進(jìn)入空化體內(nèi)受阻,故此時(shí)的空化體脫落頻率下降。

      表1 凹槽對(duì)水翼動(dòng)力特性及空化特性的影響

      圖4 凹槽周?chē)黧w汽相分布與速度矢量圖(空化數(shù)σ=1.23)

      對(duì)OR2-0.32、OR2-0.20和原始水翼的片空泡形態(tài)進(jìn)行對(duì)比,分析結(jié)果與表1所統(tǒng)計(jì)的結(jié)果相符。如圖5所示,OR2-0.32水翼因凹槽布置在空泡尾部之后,在凹槽處造成局部低壓區(qū),使得空泡發(fā)展的尺度更長(zhǎng)。與原始水翼對(duì)比,OR2-0.20水翼不僅空泡長(zhǎng)度有一定的縮短,即將脫落的空泡也較原始水翼的更小。

      綜上分析可以說(shuō)明,凹槽布置在空泡尾部之后時(shí),片空泡的震蕩頻率下降,但是片空泡的尺度和脫落的空泡都增大,不能達(dá)到抑制空化的效果。而凹槽布置在片空泡的內(nèi)部時(shí),空泡的震蕩頻率上升,空泡長(zhǎng)度也一般不能縮短,但OR2-0.20水翼空泡長(zhǎng)度較原始水翼縮短了近3%。片空化時(shí),在水翼上布置凹槽對(duì)水翼的升阻比幾乎沒(méi)有影響。

      云空化時(shí),當(dāng)凹槽布置在距前緣0.20處,水翼的升阻比提高。凹槽后移時(shí),升阻比也進(jìn)一步上升,但此時(shí)空泡脫落頻率也同時(shí)提高,導(dǎo)致水翼的振動(dòng)加劇。凹槽布置在距前緣0.20處,水翼的空泡脫落頻率有了一定程度上的減弱,此時(shí)從最大空泡長(zhǎng)度可以看出,空化抑制效果與凹槽的尺度成正相關(guān)。綜上,凹槽對(duì)于空化的抑制具有不確定性,綜合考慮TR2-0.20和OR2-0.202種水翼既抑制了空化,又提升其水動(dòng)力性能。

      圖5 片空化時(shí)的空泡形態(tài)(空化數(shù)σ=1.23)

      本文中有(),即空化數(shù)是壓力和速度的函數(shù)。文中首先分析了同一入口速度、不同流體壓力的工況,目的在于避免不同速度導(dǎo)致雷諾數(shù)變化對(duì)結(jié)果造成的復(fù)雜影響。表2為相同空化數(shù)下,不同雷諾數(shù)對(duì)于水翼水動(dòng)力特性的影響。

      從結(jié)果來(lái)看,針對(duì)現(xiàn)有的凹槽結(jié)構(gòu),雷諾數(shù)對(duì)于水翼升阻比影響的規(guī)律性不強(qiáng),但空泡脫落頻率的增加顯示出雷諾數(shù)對(duì)于空化流動(dòng)的影響較大。由于雷諾數(shù)和凹槽結(jié)構(gòu)的改變同時(shí)影響著空化流動(dòng),使得流場(chǎng)更加復(fù)雜,研究需要更加深入。因此,這部分工作成果將在后續(xù)的文章中體現(xiàn)。

      為了進(jìn)一步探索凹槽對(duì)水翼空化的影響,改變凹槽深度和將凹槽位置滯后,新設(shè)計(jì)出OR5-0.32和OR2-0.55水翼。對(duì)它們進(jìn)行空化流動(dòng)的瞬態(tài)分析,并和原始水翼進(jìn)行對(duì)比,圖6顯示其壓力分布與空泡輪廓,白色線條即為汽相體積分?jǐn)?shù)為10%的等值線,用它來(lái)代表空泡的輪廓。

      表2 不同雷諾數(shù)下凹槽對(duì)空化特性的影響(空化數(shù)σ=0.81)

      注:白色線條為汽相體積分?jǐn)?shù)為10%的等值線,代表空泡的輪廓。T為空泡發(fā)展階段。

      凹槽在空泡的發(fā)展階段影響不大,由圖6可知,出在空泡達(dá)到最大長(zhǎng)度之后,即在5/8之后,凹槽明顯有抑制空化的作用,為空泡發(fā)展階段。特構(gòu)水翼脫落空泡的尺度明顯小于原始水翼,尾緣的低壓分布也明顯小于原始水翼,這也使得特構(gòu)水翼的尾緣渦空泡得以抑制。為進(jìn)一步分析凹槽対水翼的水動(dòng)力學(xué)參數(shù)的,分析特構(gòu)水翼和原始水翼的區(qū)別,升阻力系數(shù)如圖7a所示,升力系數(shù)始終大于阻力系數(shù),并對(duì)升力系數(shù)進(jìn)行了頻譜分析,如圖7b所示。由圖7可知,凹槽的存在對(duì)于水動(dòng)力學(xué)性能的影響不是很明顯。圖7b的第一特征頻率與云空泡脫落的頻率相同,第二特征頻率與渦流的生成和脫落的頻率相同[31]。原始水翼、OR5-0.32水翼和OR2-0.55水翼的主頻率振幅分別為72.97、68.76和71.77,即凹槽存在使云空泡脫落所引起的水翼振動(dòng)減弱。

      2.2 空化抑制機(jī)理研究

      由表1的最大空泡長(zhǎng)度統(tǒng)計(jì)可知,OR2-0.20水翼和TR2-0.32水翼在云空化時(shí),有很好的抑制空化的作用。在圖8中給出空化數(shù)為0.81時(shí),OR2-0.20水翼、TR2-0.32水翼和原始水翼的邊界層內(nèi)的時(shí)均速度分布。

      圖7 表面不同構(gòu)型水翼的水動(dòng)力性能分析(空化數(shù)σ=0.81)

      注:Vin為來(lái)流速度,m·s-1;V為監(jiān)測(cè)點(diǎn)速度,m·s-1;yn為監(jiān)測(cè)點(diǎn)距水翼距離,m。

      由圖8可以看出凹槽的存在使邊界層的厚度明顯減薄,即近壁處的的速度梯度增大,液體的動(dòng)能增大,抗逆壓梯度能力更強(qiáng)。但是在=0.4處也可以看出由于凹槽的存在使得此處的邊界層厚度增大,但沒(méi)有超過(guò)原始水翼最大邊界層厚度,所以并沒(méi)有導(dǎo)致整體流場(chǎng)的惡化。然而,此處回射流速度大于原始水翼,引起流動(dòng)不穩(wěn)定,=0.5處,凹槽結(jié)構(gòu)造成水翼的回射流達(dá)到最大速度,而原始水翼的回射流最大速度發(fā)生在=0.6處。在水翼的尾緣部分,回射流速度較為穩(wěn)定,且在原始水翼回射流速度的30%~46%之間變化。圖9水翼尾緣流場(chǎng)壓力分布情況也說(shuō)明帶有凹槽結(jié)構(gòu)的水翼尾緣處逆向壓力梯度的減小降低了回射流速度,以及水翼吸力面的時(shí)均回射流厚度。而OR2-0.20水翼、TR2-0.32水翼的邊界層分布只在=0.3處略有不同,但差別不大,主要是凹槽深度不大,并沒(méi)有引起流場(chǎng)的劇烈變化。由此可見(jiàn),凹槽雖然可以降低水翼表面邊界層的厚度,增強(qiáng)抗逆壓能力,但卻觸發(fā)了凹槽附近區(qū)域回射流的加速。因此,只有當(dāng)抗逆壓梯度能力大于回射流沖擊時(shí),才可以對(duì)空化進(jìn)行抑制。

      圖9 水翼尾緣壓力分布與回射流速度分布(空化數(shù)σ=0.81)

      利用二維定常邊界層分離的判據(jù),即普朗特分離判據(jù),對(duì)水翼吸力面邊界層分離點(diǎn)作近似的計(jì)算。吸力面上(d/d)=0=0的點(diǎn)即為邊界層分離點(diǎn),數(shù)值計(jì)算統(tǒng)計(jì)結(jié)果見(jiàn)表3。

      由表3可以看出,水翼吸力面布置的這2種凹槽使得邊界層分離的位置較原始水翼有所滯后,即水翼吸力面邊界層的黏性底層更長(zhǎng),前緣流動(dòng)更加有序。

      表3 水翼吸力側(cè)邊界層時(shí)均分離點(diǎn)(空化數(shù)σ=0.81)

      上述分析表明,在水翼特定的位置布置凹槽可以使水翼吸力面壓力提高,使流動(dòng)的邊界層分離滯后,邊界層的厚度減小。此外,水翼升阻比的提高對(duì)于水翼性能的提高十分有利。

      3 結(jié) 論

      本文對(duì)水翼吸力面進(jìn)行凹槽設(shè)計(jì)以求達(dá)到抑制空化的目的,采用Realizable模型和 Schnerr-Sauer空化模型,開(kāi)展了特殊構(gòu)型對(duì)水翼空化流場(chǎng)的抑制和水動(dòng)力學(xué)特性的研究,結(jié)果顯示:

      1)凹槽降低了水翼表面邊界層的厚度,增強(qiáng)了抗逆壓能力,但卻觸發(fā)了凹槽附近區(qū)域回射流的加速。只有當(dāng)抗逆壓梯度能力大于回射流沖擊時(shí),才可以對(duì)空化進(jìn)行抑制。2)在云空化發(fā)生時(shí),適當(dāng)?shù)谋砻鏄?gòu)型能夠使水翼吸力面邊界層變薄,邊界層分離點(diǎn)滯后,水翼尾緣回流區(qū)減薄,吸力面低壓區(qū)減小,證明了表面構(gòu)型對(duì)空化抑制的適用性。

      致謝:衷心感謝遼寧重大裝備制造協(xié)同創(chuàng)新中心對(duì)文中研究工作的支持!

      [1] 司喬瑞,袁壽其,李曉俊,等. 空化條件下離心泵泵腔內(nèi)不穩(wěn)定流動(dòng)數(shù)值分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(5):84-90.

      Si Qiaorui, Yuan Shouqi, Li Xiaojun, et al. Numerical simulation of unsteady cavitation flow in the casing of a centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 84-90. (in Chinese with English abstract).

      [2] 李根生,沈曉明,施立德,等. 空化和空蝕機(jī)理及其影響因素[J]. 石油大學(xué)學(xué)報(bào),1997,21(1):97-102.

      Li Gensheng, Shen Xiaoming, Shi Lide, et al. Review of studies on cavitation and cavitation erosion[J]. Journal of the University of Petroleum, 1997, 21(1): 97-102. (in Chinese with English abstract)

      [3] 顧巍,何友聲. 空泡流非穩(wěn)態(tài)現(xiàn)象的流動(dòng)控制[J]. 力學(xué)學(xué)報(bào),2001,33(1):19-27.

      Gu Wei, He Yousheng. Flow control on unstable cavitation phenomena[J]. Acta Mechanica Sinica, 2001, 33(1): 19-27. (in Chinese with English abstract)

      [4] 王獻(xiàn)孚. 空化泡和超空化泡流動(dòng)理論及應(yīng)用[M]. 北京:國(guó)防工業(yè)出版社, 2009.

      [5] Stanley C, Barber T, Rosengarten G. Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice[J]. International Journal of Heat and Fluid Flow, 2014, 50:169-176.

      [6] Chen Weiqi. A theoretical study for three-dimensional cavity re-entrant jets[J]. Journal of Ship Mechanics, 2017, 21(9): 1055-1061.

      [7] Wu Qin, Wang Yana, Wang Guoyu. Experimental investigation of cavitating flow-induced vibration of hydrofoils[J]. Ocean Engineering, 2017, 144: 50-60.

      [8] 王一偉,黃晨光,方新,等. 水下回轉(zhuǎn)航行體的云狀空化回射流運(yùn)動(dòng)特征研究[J]. 水動(dòng)力學(xué)研究與進(jìn)展,2013,28(1):23-29.

      Wang Yiwei, Huang Chenguang, Fang Xin, et al. Characteristics of the re-entry jet in the cloud cavitating flow over a submerged axisymmetric projectile[J].Chinese Journal of Hydrodynamics, 2013, 28(1): 23-29.

      [9] Zhang Yuning, Qian Zhongdong, Ji Bin. A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 303-318.

      [10] Ji B, Luo X W, Wu Y, et al. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[J]. International Journal of Multiphase Flow, 2013, 51: 33-43.

      [11] 王巍,徐瑞鐸,羿琦,等. 回射流強(qiáng)度對(duì)水翼表面空化形態(tài)的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(11):921-926,940.

      Wang Wei, Xu Ruiduo, Yi Qi, et al. Influence of re-entrant jet strength on cavitation characteristics of hydrofoil[J]. Journal of Drainage and Irrigation Machiney, 2016, 34(11): 921-926,940. (in Chinese with English abstract)

      [12] 戴月進(jìn),張媛媛,黃典貴. 水翼表面粗糙帶對(duì)空化抑制效果的數(shù)值研究[J]. 工程熱物理學(xué)報(bào),2012,33(5):770-773.

      Dai Yuejin, Zhang Yuanyuan, Huang Diangui. Numerical study of the impact of hudrofoil surface roughness on cavitation suppression[J]. Journal of Engineering Thermophysics, 2012, 33(5): 770-773. (in Chinese with English abstract)

      [13] 羿琦. 水翼表面微結(jié)構(gòu)設(shè)計(jì)及其對(duì)空化流場(chǎng)影響研究[D]. 大連:大連理工大學(xué),2017.

      Yi Qi. Microstructure Design of Hydrofoil Surface and Its Influence on Cavitation Flow Field[D]. Dalian: Dalian University of Technology, 2017. (in Chinese with English abstract)

      [14] 趙偉國(guó). 水翼云空化及其控制機(jī)理研究[D]. 杭州:浙江大學(xué),2012.

      Zhao Weiguo. Research on the Cloud Cavitation of Hydrofoil and Control Mechanism[D].Hangzhou: Zhejiang University, 2012. (in Chinese with English abstract)

      [15] Mikhail V T, Ivan I Z, Konstantin S P, et al. Manipulating cavitation by a wall jet: Experiments on a 2D hydrofoil[J]. International Journal of Multiphase Flow, 2018, 99: 312-328.

      [16] Wang Wei, Yi Qi, Wang Yayun, et al. The adaptability research of hydrofoil surface water injection on cavitation suppression[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(6): 461-466.

      [17] 王巍,羿琦,林茵,等. 水翼表面布置射流水孔抑制空化[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(10):865-870.

      Wang Wei, Yi Qi, Lin Yin, et al. Impact of hydrofoil surface water injection on cavitation suppression[J]. Journal of Drainage and Irrigation Machiney, 2016, 34(10): 865-870. (in Chinese with English abstract)

      [18] Zhang Lingxin, Chen Ming, Shao Xueming. Inhibition of cloud cavitation on a flat hydrofoil through the placement of an obstacle[J]. Ocean Engineering, 2018, 155: 1-9.

      [19] Kadivar E, Moctar O E, Javadi K. Investigation of the effect of cavitation passive control on the dynamics of unsteady cloud cavitation[J]. Applied Mathematical Modelling, 2018, 64: 333-356.

      [20] 鄔偉,熊鷹,齊萬(wàn)江. 基于翼剖面改型的空化抑制[J]. 中國(guó)艦船研究,2012,7(3):36-40.

      Wu Wei, Xiong Ying, Qi Wanjiang, et al. Cavitation control of a 2-D hydrofoil under section reshaping[J]. Chinese Journal of Ship Research, 2012, 7(3): 36-40. (in Chinese with English abstract)

      [21] Capurso T, Lopez M, Lorusso M, et al. Numerical investigation of cavitation on a NACA0015 hydrofoil by means of OpenFOAM[J]. Energy Procedia, 2017, 126: 794-801.

      [22] Ji Bin, Luo Xianwu, Arndt R E A, et al. Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil[J]. International Journal of Multiphase Flow, 2015, 68: 121-134.

      [23] 張德勝,吳蘇青,施衛(wèi)東,等. 不同湍流模型在軸流泵葉頂泄漏渦模擬中的應(yīng)用與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(13):46-53.

      Zhang Desheng, Wu Suqing, Shi Weidong, et al. Application and experiment of different turbulence models for simulating tip leakage vortex in axial flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(13):46-53. (in Chinese with English abstract)

      [24] 叢國(guó)輝,王福軍. 湍流模型在泵站進(jìn)水池漩渦模擬中的適用性研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(6):31-35.

      Cong Guohui, Wang Fujun.Applicability of turbulence models in numerical simulation of vortex flow in pump sump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 31-35. (in Chinese with English abstract)

      [25] 張德勝,施衛(wèi)東,張華,等. 不同湍流模型在軸流泵性能預(yù)測(cè)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(1):66-71.

      Zhang Desheng, Shi Weidong, Zhang Hua, et al. Application of different turbulence models for predicting performance of axial flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(1): 66-71. (in Chinese with English abstract)

      [26] 劉厚林,劉東喜,王勇,等. 三種空化模型在離心泵空化流計(jì)算中的應(yīng)用評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(16):54-59.

      Liu Houlin, Liu Dongxi, Wang Yong, et al. Applicative evaluation of three cavitation models on cavitation flow calculation in centrifugal pump[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 54-59. (in Chinese with English abstract)

      [27] 王智勇. 基于FLUENT 軟件的水力空化數(shù)值模擬[D]. 大連:大連理工大學(xué),2006.

      Wang Zhiyong. Numerical Simulation of Hydrodynamic Cavitation Based on FLUENT[D]. Dalian: Dalian University of Technology, 2006. (in Chinese with English abstract)

      [28] 黃旭. 表面特性對(duì)繞水翼空化流動(dòng)影響的研究[D]. 北京:北京理工大學(xué),2015.

      Huang Xu. The Study on Effect of Surface Characteristics on Cavitating Flow over Hydrofoils[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese with Englishabstract)

      [29] Lu Shengpeng, Wang Wei, Hou Tengfei, et al. Experiment research on cavitation control by active injection[C]//Th10th International Symposium on Cavitation (CAV2018), Baltimore, Maryland, USA. 2018.

      [30] Kawanami Y. Mechanism and control of cloud cavitation[J]. Journal of Fluids Engineering, 1997, 236(4): 788-794.

      [31] Chen Y, Chen X, Gong Z, et al. Numerical investigation on the dynamic behavior of sheet/cloud cavitation regimes around hydrofoil[J]. Applied Mathematical Modelling, 2016, 40(11/12): 5835-5857.

      Investigation of cavitation suppression by arranging pits on hydrofoil suction side

      Wang Wei, Tang Tao, Lu Shengpeng, Jiao Jianxiong, Zhang Qingdian, Wang Xiaofang

      (,,116024,)

      The existence of cavitation will lead to different intensity of vibration, shocks as well as acoustic noise and worsen the cavitation erosions which results in structural fatigue failure. In order to suppress the evolution and detachment of bubbles efficiently,based on the existing experimental phenomena, a new idea is proposed to achieve cavitation flow control by setting pits on the suction side of the hydrofoil. To study the impact of this new structure on cavitation flow field, in this paper, the unsteady cavitation flow around the NACA66 (MOD) hydrofoil at 8° angle of attack was simulated by Realizableturbulence model combined with Schnerr-Sauer cavitation model for different cavitation numbers, pits size and pits location. The results indicate that the simulated cavity shapes around foil were well fitted with the experimental high speed images, and showed that the selected models can better predict the cavitation flow. The results also showed that for the study of the non-cavitation flow, the suction side pits led to the decrease of the hydrofoil lift-to-drag ratio and impair the hydrodynamic performance. However, this was very different from that in cavitation condition. In addition, the analysis of the dynamic characteristics of the 2D hydrofoil cavitation flow field and the effect of hydrofoil surface structure factors on cavitation suppression showed that the tail position of cavitation closure region was very close to that of the pits which located at 0.32 chord (0.32) distance from leading edge for the sheet cavitation (Cavitation number=1.23). The presence of the pits changed the direction of the re-entrant jet and caused the severe dissipation of the kinetic energy of the re-entrant jet. As a result, the re-entrant jet was blocked to enter the cavity body, and therefore, the cavitation shedding and vibration frequency decreased. However, the evolution of cavity had not been suppressed along with the increased cavity length because local low pressure region formed at the position of pits (0.32) celebrated the development of cavitation flow. But when the pits were placed at 0.2distance from leading edge, the maximum cavity length was shortened 3% compared with that for normal hydrofoil without any changes of lift-to-drag ratio. The structure of pits played a positive role in controlling cavitation flow when the sheet cavitation occurred. Moreover, for cloud cavitation (Cavitation number=0.81), when the pits were placed at 0.2, the lift-to-drag ratio increased and shedding frequency decreased which showed a good hydrodynamic performance. The effect analysis of pits structure size and position on cavitation flow revealed the pits had an obvious effect of suppressing cavitation after the cavity length reach maximum. The size of the detached vapor cloud and the low pressure distribution zone of the trailing edge were significantly smaller than that of the normal hydrofoil, therefore the vortex at the trailing edge were suppressed. Through the spectrum analysis of the lift coefficients of different hydrofoils, it is found that the presence of the pits weakened the hydrofoil vibration caused by the detachment of cloud cavity. That meant that with the proper design of pits, the hydrodynamic efficiency was increased and the unsteady behavior of the cavitation could be suppressed. Finally, the study of the boundary layer velocity and pressure distribution of the hydrofoil suction side revealed that arranging the pits on the suction side of the hydrofoil could reduce the thickness of the boundary layer of the hydrofoil surface and enhance the anti-reverse pressure capability, but it accelerated the re-entrant jet near the pits. Therefore, cavitation could be suppressed only when the anti-reverse pressure gradient capability was greater than the impact of the re-entrant jet. The conclusions obtained in the numerical calculations showed that the proper suction side pits can suppress cavitation, broaden the scope of passive control technology research, and also stimulate the subsequent research of cavitation suppression methods.

      cavitation; computer simulation; models; hydrofoil; suction-side pit; cavitation suppression; hydrodynamic performance

      10.11975/j.issn.1002-6819.2019.02.006

      TV131.3+2

      A

      1002-6819(2019)-02-0040-08

      2018-07-15

      2018-12-15

      國(guó)家自然科學(xué)基金(51876022);國(guó)家973計(jì)劃項(xiàng)目(2015CB057301)

      王 巍,副教授,主要從事先進(jìn)動(dòng)力裝置及流體機(jī)械設(shè)計(jì)和優(yōu)化研究。Email:wangw@dlut.edu.cn

      王 巍,唐 滔,盧盛鵬,焦建雄,張慶典,王曉放. 水翼吸力面布置凹槽抑制空化研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):40-47. doi:10.11975/j.issn.1002-6819.2019.02.006 http://www.tcsae.org

      Wang Wei, Tang Tao, Lu Shengpeng, Jiao Jianxiong, Zhang Qingdian, Wang Xiaofang. Investigation of cavitation suppression by arranging pits on hydrofoil suction side[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 40-47. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.02.006 http://www.tcsae.org

      猜你喜歡
      水翼空泡邊界層
      波浪滑翔機(jī)橢圓形后緣水翼動(dòng)力特性研究
      水下航行體雙空泡相互作用數(shù)值模擬研究
      袖珍水翼突防潛艇的設(shè)計(jì)構(gòu)想及運(yùn)用研究
      基于HIFiRE-2超燃發(fā)動(dòng)機(jī)內(nèi)流道的激波邊界層干擾分析
      三維扭曲水翼空化現(xiàn)象CFD模擬
      基于LPV的超空泡航行體H∞抗飽和控制
      基于CFD的對(duì)轉(zhuǎn)槳無(wú)空泡噪聲的仿真預(yù)報(bào)
      船海工程(2015年4期)2016-01-05 15:53:28
      一類(lèi)具有邊界層性質(zhì)的二次奇攝動(dòng)邊值問(wèn)題
      湍流進(jìn)流誘發(fā)的二維水翼振動(dòng)噪聲特性研究
      非特征邊界的MHD方程的邊界層
      成武县| 建平县| 龙井市| 阿拉尔市| 南澳县| 大方县| 永靖县| 萨嘎县| 汨罗市| 康保县| 唐河县| 杭锦旗| 无锡市| 即墨市| 元朗区| 合江县| 青岛市| 永昌县| 阳曲县| 来宾市| 竹溪县| 昌图县| 迭部县| 沭阳县| 九寨沟县| 应用必备| 吉安县| 黄陵县| 顺昌县| 峨山| 汉寿县| 泰和县| 自治县| 桃江县| 灌南县| 蕲春县| 永川市| 宽城| 淮阳县| 宜川县| 涟水县|