吳 彥,平 巍,王 翔,鐘銀海,王茂清,劉興旺,劉雨歡,夏恒蓉
?
稻殼粉添加劑提高污泥的脫水效果研究
吳 彥,平 巍※,王 翔,鐘銀海,王茂清,劉興旺,劉雨歡,夏恒蓉
(重慶三峽學(xué)院三峽庫區(qū)水環(huán)境演變與污染防治重慶高校市級重點(diǎn)實(shí)驗(yàn)室,萬州 404100)
利用農(nóng)業(yè)廢棄物稻殼粉能有效提高污泥的脫水性能。該文研究了稻殼粉投加量對污泥脫水性能的影響及調(diào)理機(jī)理,同時分析稻殼粉調(diào)理對污泥濾液和脫水后污泥主要性質(zhì)的影響,并進(jìn)行技術(shù)經(jīng)濟(jì)分析。試驗(yàn)結(jié)果表明,稻殼粉的最佳投加量為70%污泥干質(zhì)量(DS);在最佳調(diào)理?xiàng)l件下,與單獨(dú)投加三氯化鐵(FeCl3,138.09 g/kg)相比,污泥比阻降低了59.73%,污泥凈產(chǎn)率提高了45.27%,污泥泥餅的含固率從13.99%提高到23.97%;掃描電鏡結(jié)果表明,稻殼粉調(diào)理后的污泥泥餅具有不可壓縮性和可滲透性,有利于污泥中水分的脫出;同時,稻殼粉的投加可有效降低濾液濁度和溶解性化學(xué)需氧量。因此,利用稻殼粉來調(diào)理污泥具有較大的潛力。
污泥;廢棄物;脫水性能;稻殼粉;不可壓縮性;濾液濁度;溶解性化學(xué)需氧量
水稻是常見的糧食作物,全球年產(chǎn)量達(dá)42 200萬t。稻殼是水稻加工產(chǎn)生的副產(chǎn)物,約占稻米質(zhì)量的1/5。大量廢棄的稻殼若不能得到妥善處理,將會對環(huán)境造成不利影響[1-2]。目前,稻殼大部分作為動物飼料或者墊料,經(jīng)濟(jì)使用價值較低[3-4]。因此,如何提高稻殼的利用價值值得研究和關(guān)注。
與此同時,在中國,隨著污水排放量的快速增長,作為污水處理過程中的副產(chǎn)物剩余污泥的處理與處置已成為迫切需要關(guān)注的問題,如果處理不當(dāng)將造成嚴(yán)重的二次污染。剩余污泥含水率(通常大于97%)很高,流動性較大,因此,污泥脫水成為污泥處理與處置的關(guān)鍵環(huán)節(jié)[5]。但是,污泥脫水性能較差,直接脫水可能效果不佳,通常需要在脫水之前進(jìn)行必要的調(diào)理。目前,污泥調(diào)理的方法有:化學(xué)法、生物法和物理法。常用的化學(xué)絮凝劑如三氯化鐵(FeCl3)、陽離子聚丙烯酰胺等能有效地提高污泥的脫水性能,但高度可壓縮性的污泥泥餅限制了污泥的進(jìn)一步脫水。近年來,研究者將硅藻土、人造纖維、木屑、粉煤灰、石膏等作為骨架顆粒與化學(xué)絮凝劑聯(lián)合調(diào)理污泥,有效改善污泥泥餅的內(nèi)部結(jié)構(gòu),提高污泥泥餅的滲透性,并在機(jī)械脫水過程中保持污泥泥餅的多孔性,從而提高污泥的脫水性能[6-10]。但是,上述研究只注重對污泥脫水性能的影響,并未對污泥濾液水質(zhì)的影響進(jìn)行研究,而污泥濾液水質(zhì)好壞直接影響后續(xù)處理的成本和難度[11]。
稻殼與硅藻土和粉煤灰性質(zhì)類似,具有剛性結(jié)構(gòu)和良好的吸附性能[12],具備作為骨架顆粒的潛力。同時,稻殼具有一定的吸附作用,能一定程度吸附污泥濾液中的污染物,以實(shí)現(xiàn)以廢治廢的目的。目前,骨架顆粒的研究中關(guān)于稻殼粉調(diào)理污泥的研究較少,而關(guān)于調(diào)理劑對調(diào)理后污泥濾液濁度和溶解性化學(xué)需氧量等主要水質(zhì)指標(biāo)的影響研究更不常見[6-10]。
本研究探討了以稻殼粉為骨架顆粒調(diào)理污泥的可行性,通過單因素試驗(yàn)對影響污泥脫水性能的主要因素如稻殼粉顆粒大小及投加量進(jìn)行了優(yōu)化。通過對污泥泥餅的微觀結(jié)構(gòu)進(jìn)行表征,分析稻殼粉調(diào)理污泥脫水的機(jī)理;通過對調(diào)理后污泥濾液濁度和溶解性化學(xué)需氧量(soluble chemical oxygen demand,SCOD)的測定,分析稻殼粉調(diào)理污泥的其他優(yōu)點(diǎn)。
試驗(yàn)所用的剩余污泥取自湖南省長沙市第二污水處理廠的污泥濃縮池,該污水處理廠采用改良氧化溝工藝。污泥保存在塑料桶內(nèi),放入4 ℃的冰箱中[13-14],每次試驗(yàn)前,污泥需溫水浴(20 ℃)處理30 min[15]。原污泥主要性質(zhì)如下:含水率為98.55%~99.06%;固體質(zhì)量濃度為8.69~13.55 g/L;污泥比阻(sludge specific resistance to filtration,SRF)為1.75×1013~2.29×1013m/kg;污泥凈產(chǎn)率(N)為1.17~1.47 kg/(m2·h)。
與稻殼粉聯(lián)合調(diào)理污泥的化學(xué)絮凝劑選用三氯化鐵,將其配置成5 g/L的溶液備用。稻殼粉取自當(dāng)?shù)厥称芳庸S,烘干,用粉磨機(jī)碾磨后,過180m篩。
首先,將稻殼粉和FeCl3溶液依次投加到100 mL污泥中,F(xiàn)eCl3投加量為138.09 g/kg(138.09 g FeCl3投加到1 kg干污泥中)(前期試驗(yàn)得出FeCl3最佳投加量為138.09 g/kg),稻殼粉的投加量為0~100%(0~1000 g稻殼粉投加到1 kg干污泥中)。先以350 r/min的速度快速攪拌30 s,再以40 r/min的速度慢速攪拌3 min,最后將調(diào)理后的污泥放入布氏漏斗中進(jìn)行真空抽濾,以污泥比阻(SRF)和污泥凈產(chǎn)率(N)作為污泥脫水性能的主要評價指標(biāo)。通過測定污泥泥餅的微觀結(jié)構(gòu)和可壓縮性能來分析稻殼粉調(diào)理污泥的機(jī)理。同時,還測定了污泥濾液的溶解性化學(xué)需氧量(soluble chemical oxygen demand,SCOD)、濁度、總懸浮固體(total suspended solids,TSS)、揮發(fā)性懸浮固體(volatile suspended solids,VSS)以及有機(jī)質(zhì)含量和熱值,以探討稻殼粉作為污泥調(diào)理劑在污泥后續(xù)處置過程中的優(yōu)勢。以上試驗(yàn)每組重復(fù)3次。
污泥比阻測定采用標(biāo)準(zhǔn)的布氏漏斗法進(jìn)行測定和計算[16],過濾直徑為9 cm,過濾壓力為0.03 MPa,脫水時間為6 min。污泥凈產(chǎn)率(N)通過污泥比阻(SRF)計算得出,它可用于評價污泥固體明顯增加時的污泥脫水性能[17],在本試驗(yàn)中,由于稻殼粉增加污泥的固體含量,因此污泥脫水性能以添加稻殼粉的污泥凈產(chǎn)率作為主要評價指標(biāo)[18],其計算公式為
式中Y為污泥凈產(chǎn)率,kg/(m2·h);為修正因子;為過濾壓力,N/m2;為濾液的動力黏度系數(shù),N·s/m2;為單位過濾面積的濾液在介質(zhì)上截留的固體總質(zhì)量,kg/m3;為過濾時間,s;SSoriginal為每升原污泥中所含的固體量,g;SSconditioner為每升原污泥中所投加的調(diào)理劑固體量,g;ω為100 g污泥中的干固體質(zhì)量,g;ω為100 g泥餅中的干固體質(zhì)量,g。
污泥泥餅固體含量采用質(zhì)量法測定,污泥濾液SCOD采用重鉻酸鉀法測定,濾液濁度用分光光度法測定。污泥泥餅的微觀結(jié)構(gòu)和稻殼表面元素采用環(huán)境場掃描電鏡(ESEM)(Quanta 200,美國)和能譜儀(EDS)(EDAX genesis xm-2,美國)進(jìn)行測定,稻殼粉物相構(gòu)成用X射線衍射儀(XRD)(XRD-7000,日本)進(jìn)行測定,稻殼粉表面電荷用zeta電位儀(ZEN3000,英國)進(jìn)行測定,污泥泥餅的可壓縮性系數(shù)參考Qi等的方法進(jìn)行測定和計算[9]。其計算公式為:
式中為可壓縮性系數(shù);0為參考壓力,MPa;P為實(shí)際壓力,MPa;SRF0為參考壓力所對應(yīng)測得的比阻值,m/kg;SRF為實(shí)際壓力所對應(yīng)測得的比阻值,m/kg。
稻殼粉聯(lián)合FeCl3對污泥進(jìn)行調(diào)理,F(xiàn)eCl3投加量為138.09 g/kg,以單獨(dú)投加稻殼粉而未投加FeCl3為對照組進(jìn)行對比分析,研究稻殼粉投加量對污泥脫水性能的影響。如圖1所示,稻殼粉投加量對污泥脫水性能具有較大的影響,且根據(jù)表1可知,稻殼粉與FeCl3聯(lián)合調(diào)理后的污泥比阻和污泥凈產(chǎn)率與單獨(dú)投加稻殼粉而未投加三氯化鐵的污泥相比差異性顯著(均值方程中顯著性水平sig都小于0.05),表明稻殼粉必須與三氯化鐵聯(lián)合投加才能更有效地提高污泥的脫水性能。前期研究成果表明,三氯化鐵與骨架顆粒聯(lián)合調(diào)理污泥后,隨著三氯化鐵投加量的升高,污泥泥餅中的鐵離子殘存量逐漸達(dá)到飽和而趨于穩(wěn)定(每100 mL污泥得到的泥餅中只殘留33 mg鐵離子),剩余的鐵離子則隨濾液重新回到污水管道進(jìn)行處理。含有鐵離子的污泥泥餅可制備成污泥生物炭,作為污泥調(diào)理劑能有效地提高污泥的脫水性能,最大限度減少其二次污染的可能性,提高其資源可利用性[11]。
注:試驗(yàn)組為投加FeCl3,對照組為未投加FeCl3,F(xiàn)eCl3投加量為138.09 g·kg-1。
表1 方差分析
當(dāng)FeCl3投加量為138.09 g/kg時(污泥比阻為16.42×1011m/kg,污泥凈產(chǎn)率為11.51 kg/( m2·h),污泥固體質(zhì)量分?jǐn)?shù)為13.99%),隨著稻殼粉投加量的增加,污泥比阻逐步降低;稻殼粉投加量為0~70%時,污泥凈產(chǎn)率隨稻殼粉投加量的提高而增大,當(dāng)?shù)練し弁都恿繛?0%,污泥凈產(chǎn)率達(dá)到最大值,為16.72 kg/( m2·h);當(dāng)?shù)練し弁都恿看笥?0%時,污泥凈產(chǎn)率隨著稻殼粉投加量的增加而減小,這可能是由于稻殼粉本身為固體,當(dāng)?shù)練し弁都恿砍鲆欢ǚ秶?,反而會堆積阻礙污泥中水分的脫除,從而影響污泥的脫水性能,因此,稻殼粉的最佳投加量為70%,此時,與單獨(dú)投加FeCl3相比,污泥比阻降低了59.73%,污泥凈產(chǎn)率增加了45.27%,污泥泥餅含固率從13.99%提高到23.97%。根據(jù)文獻(xiàn)報道,Ning等[18]向污泥中投加150%的污泥焚燒渣以提高污泥的脫水性能,稻殼粉的投加量與其相比較少;同時,含固量為8.69 g/L的污泥,根據(jù)圖1b結(jié)果計算得出,原污泥脫水后泥餅中含水量為165 g,總泥餅質(zhì)量為173.80 g,三氯化鐵單獨(dú)調(diào)理的污泥泥餅含水量為66.19 g,總泥餅質(zhì)量為76.07 g,而70%稻殼粉調(diào)理后的污泥泥餅含水量為50.54 g,總泥餅質(zhì)量為66.54 g,由此得出,投加稻殼粉之后,雖然稻殼粉本身質(zhì)量較高,但是能讓污泥泥餅脫除更多的水分和質(zhì)量,因此,稻殼粉能有效提高污泥的脫水性能,且降低了污泥泥餅的總質(zhì)量。
圖2a、b、c為污泥泥餅的表面微觀結(jié)構(gòu)圖,由圖可知,原污泥泥餅(放大1000倍)表面致密無明顯孔隙,F(xiàn)eCl3(138.09 g/kg)單獨(dú)調(diào)理后的污泥泥餅(放大1 000倍)表面出現(xiàn)一些較小的孔隙,而稻殼粉(70%)和三氯化鐵(138.09 g/kg)調(diào)理后的污泥泥餅表面放大100倍,即可觀察到較大的裂縫,在裂縫中間能明顯看到稻殼粉存在(如圖2d所示)。根據(jù)圖2f所示,稻殼粉大多由二氧化硅構(gòu)成,二氧化硅使得稻殼粉具有一定的硬度,能夠在污泥泥餅內(nèi)部起到骨架支撐作用,有助于污泥泥餅中裂縫的生成,這些裂縫使得污泥泥餅具有更強(qiáng)的滲透性,污泥中的水分在脫水過程中能更順利的通過污泥泥餅脫除出去,從而提高了污泥的脫水性能。骨架顆粒調(diào)理污泥的主要作用就是改善污泥泥餅的微觀結(jié)構(gòu)[19],由此證明稻殼粉在調(diào)理污泥的過程中主要是作為骨架顆粒起作用。
由圖2e可知,原污泥泥餅和FeCl3單獨(dú)調(diào)理后的污泥泥餅可壓縮性系數(shù)分別為1.21和1.08,當(dāng)投加稻殼粉之后,污泥泥餅的可壓縮性系數(shù)降低到0.92,這表明稻殼粉和三氯化鐵調(diào)理后的污泥泥餅具有良好的不可壓縮性和可滲透性,有效防止污泥泥餅在脫水過程中保持一定的骨架結(jié)構(gòu),不容易發(fā)生形變,從而提高污泥的脫水性能[20]。此外,由于稻殼粉表面帶負(fù)電荷(70%稻殼粉表面zeta電位為–25.00 mV),而污泥表面也為負(fù)電荷,因此,稻殼粉對污泥不具有絮凝作用,僅作為骨架顆粒改善污泥泥餅的微觀結(jié)構(gòu)。
根據(jù)圖2f可知,稻殼粉含有Al和Ca等元素,但其并未存在于稻殼粉表面(由圖2e所示表面元素僅以C、O、Si、K 4種元素為主),而是以化合物形式存在于稻殼粉內(nèi)部,在稻殼粉表面不能形成帶有陽離子的活性點(diǎn)位,這可能是稻殼粉不能與污泥顆粒發(fā)生絮凝作用的原因之一。正是由于稻殼粉不具有絮凝作用,在未投加FeCl3時,稻殼粉與污泥互相排斥,無法進(jìn)入污泥絮體內(nèi)部,從而導(dǎo)致稻殼粉對污泥的骨架調(diào)理作用不明顯;當(dāng)?shù)練し叟cFeCl3聯(lián)合投加時,在Fe3+的作用下,稻殼粉與污泥顆粒相互吸引混合,稻殼粉能順利進(jìn)入污泥絮體內(nèi)部,從而促進(jìn)稻殼粉的骨架支撐作用,這可能是造成稻殼粉必須與三氯化鐵聯(lián)合調(diào)理才能更有效地提高污泥脫水性能(2.1節(jié)所得結(jié)果)的主要原因。
表2 EDS測試的稻殼粉表面元素組成
由圖3可知,原污泥濾液濁度為67.51 NTU;FeCl3(138.09 g/kg)單獨(dú)調(diào)理后的污泥濾液濁度減小至11.89 NTU,但是,由于在濾液中存在一定的鐵離子,因此試驗(yàn)過程中此時濾液為淡黃色;當(dāng)投加稻殼粉后,污泥濾液濁度都遠(yuǎn)低于原污泥和單價三氯化鐵調(diào)理后的污泥,當(dāng)?shù)練し弁都恿繛?0%時,濾液濁度(1.23 NTU)達(dá)到最低,隨著稻殼粉投加量的增加,濾液濁度略有增加,當(dāng)?shù)練し弁都恿砍^70%時,濾液濁度又急劇增加,這可能是由于稻殼粉過量導(dǎo)致濾液中固體含量增加所致。圖3同時表明,未投加稻殼粉時,污泥濾液SCOD為664.87 mg/L,投加稻殼粉后,污泥濾液SCOD急劇下降,當(dāng)?shù)練し弁都恿繛?0%時,污泥濾液SCOD降至最低,為67.32 mg/L,這可能是由于稻殼粉具有一定的吸附作用[21-22],當(dāng)?shù)練し弁都恿看笥?0%時,污泥濾液SCOD略有增加。當(dāng)?shù)練し蹫樽罴淹都恿浚?0%)時,污泥濾液濁度和SCOD分別為2.91 NTU和79.93 mg/L。由于污水處理廠污泥脫水后產(chǎn)生的濾液均需返回污水處理系統(tǒng)中進(jìn)行處理,而濁度和SCOD又作為水處理的重要指標(biāo),稻殼粉能有效降低污泥濾液的濁度和SCOD,則有利于降低濾液后續(xù)處理的難度和成本。
注:FeCl3投加量為138.09 g·kg-1。
1)稻殼粉作為一種調(diào)理劑能有效提高污泥的脫水性能。當(dāng)FeCl3的投加量為138.09 g/kg,稻殼粉的投加量為最佳投加量70%時,與單獨(dú)投加FeCl3(138.09 g/kg)的污泥相比,污泥比阻降低了59.73%,污泥凈產(chǎn)率增加了45.27%,污泥泥餅固體質(zhì)量分?jǐn)?shù)由13.99%提高到23.97%。
2)微觀結(jié)構(gòu)觀摩試驗(yàn)證明稻殼粉可以在污泥泥餅內(nèi)部起到骨架支撐的作用,提高了污泥泥餅的不可壓縮性和可滲透性,從而使得污泥中的水分更容易脫除出去。
3)稻殼粉的投加可以降低污泥濾液的濁度和溶解性化學(xué)需氧量,與單獨(dú)投加FeCl3(138.09 g/kg)的污泥相比,濾液濁度從11.89 NTU下降到2.91,溶解性化學(xué)需氧量從664.87 mg/L下降到79.93 mg/L,從而降低污泥濾液處理的難度和成本。
[1] Jung D S, Ryou M H, Sung Y J, et al. Recycling rice husks for high-capacity lithium battery anodes[J]. Procceedings of The National Academy of Sciences of The United States of America, 2013, 110(30): 12229-12234.
[2] 劉斌,顧潔,邱盼,等. 稻殼活性炭對水中染料的吸附特性及其回收利用[J]. 環(huán)境科學(xué)學(xué)報,2014,34(9):2256-2264. Liu Bin, Gu Jie, Qiu Pan, et al. Adsorption characteristics of dye inaqueous solution by activated carbon from rice husks and its recycling[J]. Acta Scientiae Circumstantiae, 2014, 34(9): 2256-2264. (in Chinese with English abstract)
[3] Kalderis D, Bethanis S, Paraskeva P, et al. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times[J]. Bioresource Technology, 2008, 99(15): 6809-6816.
[4] 王秋菊,劉峰,常本超,等. 稻殼深施改良蘇打堿土理化性質(zhì)長期效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(2):147-152.
Wang Qiuju, Liu Feng, Chang Benchao, et al. Long-term effect of deep application of rice husk improving physical and chemical properties of soda alkaline soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 147-152. (in Chinese with English abstract)
[5] Zhang Panyue, Wan Tian, Zhang Guangming. Enhancement of bio-sludge gravitational thickening with weak ultrasound[J]. International Journal of Environmental Science and Technology, 2012, 9(2): 287-296.
[6] 何艷華,蔣志堅,宋聯(lián),等. 粉煤灰替代石灰進(jìn)行污泥深度脫水的中試研究[J]. 環(huán)境工程學(xué)報,2017,11(4):2447-2451. He Yanhua, Jiang Zhijian, Song Lian, et al. Pilot-scale study on deep dewatering process of sewage sludge by fly ash and quicklime[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2447-2451. (in Chinese with English abstract)
[7] 姚尚安,孫同華,瞿贊,等. 污泥深度機(jī)械脫水的優(yōu)化研究[J]. 環(huán)境科學(xué)與技術(shù),2014,37(3):126-131. Yao Shang’an, Sun Tonghua, Qu Zan, et al. Optimization research of mechanical dewatering of sludge with high pressure[J]. Environmental Science & Technology, 2014, 37(3): 126-131. (in Chinese with English abstract)
[8] 莫群青,邵立明,呂凡,等. 纖維調(diào)理對污水廠污泥脫水性能的影響[J]. 四川環(huán)境,2015,34(4):27-31.
Mo Qunqing, Shao Liming, Lv Fan, et al. Effect of fiber conditioning on sewage sludge dewaterability[J]. Sichuan Environment, 2015, 34(4): 27-31. (in Chinese with English abstract)
[9] Qi Ying, Thapa K B, Hoadley A F A. Application of filtration aids for improving sludge dewatering properties: A review[J]. Chemical Engineering Journal, 2011, 171(2): 373-384.
[10] Wu Boran, Su Lianghu, Dai Xiaohu, et al. Development of montmorillonite-supported nano CaO2for enhanced dewatering of waste-activated sludge by synergistic effects of filtration aid and peroxidation[J]. Chemical Engineering Journal, 2017, 3077: 418-426.
[11] Wu Yan, Zhang Panyue, Zeng Guangming, et al. Enhancing sewage sludge dewaterability by a skeleton builder: Biochar produced from sludge cake conditioned with rice husk flour and FeCl3[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5711-5717.
[12] Khalid N, Rahman A, Ahmad S, et al. Adsorption behavior of rice husk for the decontamination of chromium from industrial effluents[J]. Journal of Radioanalytical and Nuclear Chemistry, 1999, 240(3): 775-781.
[13] 王曉萌,王鑫,楊明輝,等. 鋁、鐵、鈦3種金屬鹽基混凝劑調(diào)理污泥的性能比較[J]. 環(huán)境科學(xué),2018,39(5):2274-2282. Wang Xiaomeng, Wang Xin, Yang Minghui, et al. Sludge conditioning performance of polyaluminum, polyferric, and titanium xerogel coagulants[J]. Environmental Science, 2018, 39(5): 2274-2282. (in Chinese with English abstract)
[14] Li Yifu, Yuan Xingzhong, Wu Zhibin, et al. Enhancing the sludge dewaterability by electrolysis/ electrocoagulation combined with zero-valent iron activated persulfate process[J]. Chemical Engineering Journal, 2016, 303: 636-645.
[15] 吳煒,安瑩,唐建國,等. 聚硅硫酸鐵改善活性污泥過濾脫水性能研究[J]. 環(huán)境工程,2018,36(5):68-72. Wu Wei, An Ying, Tang Jianguo, et al. Enhancement of waste activated sludge dewatering performance with polymeric ferric silicate sulfate[J]. Environmental Engineering, 2018, 36(5): 68-72. (in Chinese with English abstract)
[16] 駱麗寧,王麗娟,楊敏,等. 氧化-鐵鹽絮凝聯(lián)合對調(diào)理改善污泥脫水性能的影響[J]. 環(huán)境工程學(xué)報,2018,12(2):630-637. Luo Lining, Wang Lijuan, Yang Min, et al. Combined effects of oxidation and iron coagulation on sludge co-conditioning and dehydration performance[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 630-637. (in Chinese with English abstract)
[17] Rebhun M, Zall J, Galil N. Net sludge solids yield as an expression of filterability for conditioner optimization[J]. Journal (Water Pollution Control Federation), 1989, 61(1): 52-54.
[18] Ning Xunan, Luo Haijian, Liang Xiujuan, et al. Effects of tannery sludge incineration slag pretreatment on sludge dewaterability[J]. Chemical Engineering Journal, 2013, 221: 1-7.
[19] 黃紹松,梁嘉林,張斯瑋,等. Fenton氧化聯(lián)合氧化鈣調(diào)理對污泥脫水的機(jī)理研究[J]. 環(huán)境科學(xué)學(xué)報,2018,38(5):1906-1919. Huang Shaosong, Liang Jialin, Zhang Siwei, et al. A comprehensive mechanism for deeply dewatering sludge using Fenton's reagent with lime[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1906-1919. (in Chinese with English abstract)
[20] Zhang Hao, Yang Jiakuan, Yu Wenbo, et al. Mechanism of red mud combined with Fenton's reagent in sewage sludge conditioning[J]. Water Research, 2014, 59C: 239-247.
[21] 鄧云,陳建國,徐衛(wèi)東. 稻殼粉吸附鉛、鎘離子能力研究[J]. 環(huán)境科學(xué)與技術(shù),2016,39(S2):146-149. Deng Yun, Chen Jianguo, Xu Weidong. Study on adsorptive performance of plumbum, cadmium ions by rice husk[J]. Environmental Science & Technology, 2016, 39(S2): 146-149. (in Chinese with English abstract)
[22] 萬云雷,韓紅霞,高夢祥. 稻谷吸附特性及安全水分研究[J]. 食品科技,2015,40(12):124-127. Wan Yunlei, Han Hongxia, Gao Mengxiang. Moisture adsorption characteristics and safe moisture of rice[J]. Food Science and Technology, 2015, 40(12): 124-127. (in Chinese with English abstract)
Study on dewatering effect of sewage sludge by adding rice husk flour
Wu Yan, Ping Wei※, Wang Xiang, Zhong Yinhai, Wang Maoqing, Liu Xingwang, Liu Yuhuan, Xia Hengrong
(,,404100,)
At present, finding valuable application of rice husk should be targeted for further research, and how to deal with sewage sludge has become an issue that requires urgent attention. In this study, rice husk flour, an agricultural waste material, was used to condition sludge and enhance sludge dewaterability. The effect of rice husk flour dosage on sludge dewaterability was investigated, and the surface element content and main components of rice husk flour and the microstructure of sludge cakes was investigated to analyze conditioning mechanisms. In addition, the effect of adding rice husk flour on turbidity and soluble chemical oxygen demand (SCOD) of sludge filtrate were also investigated, the advantages of adding rice husk flour for future filtrate treatment were evaluated. Results showed that the dewaterability of sludge conditioned with the rice husk flour and FeCl3(138.09 g/kg dry solids, DS) was much superior to the sludge conditioned with rice husk flour, and the optimal dosage of rice husk flour was 70%. With the optimal rice husk dosage, the sludge specific resistance to filtration (SRF) decreased by 59.73%, the net sludge solids yield (Y) increased by 45.27%, and the solid content of sludge cake increased from 13.99% to 23.97%, compared with the sludge conditioned with FeCl3(138.09 g/kg) alone. When the rice husk flour was used to condition sewage sludge combined with FeCl3(138.09 g/kg), the large cracks were found in the sludge cake easily by an environmental scanning electron microscope (ESEM) and the coefficient of compressibility of sludge cake was decreased to 0.92 (the coefficient of compressibility of raw sludge cake and sludge cake conditioned with FeCl3alone were 1.21 and 1.08, respectively). So the sludge cake became more incompressible and permeable and the sludge moisture could easily pass through. Therefore, the rice husk flour was proved to play a supportive role as a skeleton builder in the sludge cake for sludge conditioning and dewatering. Surface element contents and zeta potential of rice husk flour tested by an energy-dispersive spectrometry (EDS) and Zetasizer Nano analyzer showed that the stability of sludge colloidal system was not destroyed by charge neutralization, and the sludge particles could not congregate with each other under the treatment with rice husk flour alone, it might be the main reason why adding rice husk flour and FeCl3was superior to adding rice husk flour alone for sludge conditioning and dewatering. Moreover, adding rice husk flour could reduce turbidity and SCOD of filtrate (the turbidity decreased from 11.89 NTU to 2.91 NTU and SCOD decreased from 664.87 to 79.93 mg/L, respectively) because the rice husk flour addition might adsorb the pollutants in sludge supernatant. As important indices of water quality, the reduction of turbidity and SCOD was benefited to further filtrate treatment because of the possible significant reduction of difficulty and cost, that is to say that adding rice husk flour as a conditioner aid can also improve the quality of filtrate for further filtrate treatment. Therefore, using rice husk flour to condition sludge is economically feasible and promising.
sludge; wastes; dewaterability;rice husk flour; incompressibility; filtrate turbidity; soluble chemical oxygen demand
10.11975/j.issn.1002-6819.2019.02.029
X712
A
1002-6819(2019)-02-0229-06
2018-08-10
2018-12-02
國家自然科學(xué)基金資助項(xiàng)目(31670467,51808089);重慶三峽學(xué)院人才引進(jìn)科研啟動項(xiàng)目(17RC09);重慶三峽學(xué)院校級青年項(xiàng)目(17QN03)
吳 彥,講師,博士,主要從事農(nóng)業(yè)廢物處理與資源化、污泥處理與處置方面的研究。Email:wuyan19850827@hotmail.com
平 巍,講師,主要從事農(nóng)業(yè)廢物處理與資源化、污泥處理與處置方面的研究。Email:1510069 @qq.com
吳 彥,平 巍,王 翔,鐘銀海,王茂清,劉興旺,劉雨歡,夏恒蓉. 稻殼粉添加劑提高污泥的脫水效果研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(2):229-234. doi:10.11975/j.issn.1002-6819.2019.02.029 http://www.tcsae.org
Wu Yan, Ping Wei, Wang Xiang, Zhong Yinhai, Wang Maoqing, Liu Xingwang, Liu Yuhuan, Xia Hengrong. Study on dewatering effect of sewage sludge by adding rice husk flour[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 229-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.02.029 http://www.tcsae.org