• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于分散化神經(jīng)魯棒控制的軌跡跟蹤算法研究

      2019-02-19 02:29:02胡海兵楊建德張結(jié)文金施群
      現(xiàn)代電子技術(shù) 2019年3期
      關(guān)鍵詞:機(jī)械臂

      胡海兵 楊建德 張結(jié)文 金施群

      關(guān)鍵詞: 神經(jīng)魯棒控制器; 軌跡跟蹤; 遞歸神經(jīng)網(wǎng)絡(luò); 濾錯(cuò)訓(xùn)練算法; 魯棒項(xiàng); 機(jī)械臂

      中圖分類號(hào): TN911.1?34; TP241.2 ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼: A ? ? ? ? ? ? ? ? ?文章編號(hào): 1004?373X(2019)03?0111?05

      Abstract: In order to eliminate the influence of external disturbance and modeling error on manipulator′s trajectory tracking accuracy, the recurrent neural network is used to design the decentralized neural robust controller, and the subsystem of each joint state equation of the manipulator is used to represent the whole system. The error?filtered training algorithm is adopted to estimate the unknown weight coefficients of the neural network. The robust item is introduced to suppress the mutual influence and modeling error between the joint neural controllers. The stability of the neural network is proved by Lyapunov function. In comparison with the simulation results without robust item, the decentralized neural robust controller has more precise trajectory tracking accuracy, better error convergence, and higher stability.

      Keywords: neural robust controller; trajectory tracking; recurrent neural network; error?filtered training algorithm; robust item; mechanical arm

      0 ?引 ?言

      隨著機(jī)器人制造業(yè)的迅速發(fā)展,未來社會(huì)必將是“人工智能”的時(shí)代,如今機(jī)器人已被廣泛地應(yīng)用于工業(yè)、軍事以及日常生活當(dāng)中。在機(jī)器人領(lǐng)域中,也已經(jīng)提出了各種方案保障閉環(huán)系統(tǒng)的穩(wěn)定性,提高軌跡跟蹤的精度。文獻(xiàn)[1]設(shè)計(jì)了魯棒自適應(yīng)控制器用于空間繩系機(jī)器人的目標(biāo)抓捕,仿真結(jié)果表明魯棒控制方法可以有效地補(bǔ)償系統(tǒng)的不確定性,提高系統(tǒng)的精度;神經(jīng)網(wǎng)絡(luò)和模糊控制能夠很好地逼近非線性系統(tǒng),實(shí)現(xiàn)對(duì)不確定系統(tǒng)未知部分的在線精確逼近,文獻(xiàn)[2]對(duì)具有外部擾動(dòng)的雙臂機(jī)器人使用在線自學(xué)習(xí)補(bǔ)償?shù)纳窠?jīng)網(wǎng)絡(luò)控制,有效地補(bǔ)償了外部擾動(dòng)對(duì)軌跡跟蹤精度的影響。

      人工神經(jīng)網(wǎng)絡(luò)(ANN)的研究證實(shí)了其對(duì)非線性系統(tǒng)逼近能力的優(yōu)越性,文獻(xiàn)[3]使用多層神經(jīng)網(wǎng)絡(luò)結(jié)合濾錯(cuò)算法實(shí)現(xiàn)對(duì)串聯(lián)鏈?zhǔn)綑C(jī)器人手臂的軌跡跟蹤控制。神經(jīng)網(wǎng)絡(luò)控制技術(shù)的快速發(fā)展提供了新的途徑來實(shí)現(xiàn)神經(jīng)控制算法的集中式控制,然而對(duì)于高度復(fù)雜的非線性系統(tǒng),由于系統(tǒng)參數(shù)存在強(qiáng)互聯(lián)性,要想準(zhǔn)確逼近其數(shù)學(xué)模型很困難,往往需要進(jìn)行大量的數(shù)學(xué)運(yùn)算,這樣就大大降低了效率。因此,文獻(xiàn)[4]提出一種高階循環(huán)神經(jīng)網(wǎng)絡(luò)分散化控制方案,考慮到整體系統(tǒng)是由各個(gè)相互關(guān)聯(lián)的子系統(tǒng)構(gòu)成,所以可以設(shè)計(jì)獨(dú)立子系統(tǒng)的神經(jīng)控制器,每個(gè)子系統(tǒng)只有局部變量,這樣便可以大大簡(jiǎn)化傳統(tǒng)神經(jīng)網(wǎng)絡(luò)訓(xùn)練的復(fù)雜度,提高了系統(tǒng)的實(shí)時(shí)性。文獻(xiàn)[4]設(shè)計(jì)的分散化神經(jīng)控制器運(yùn)用到二自由度機(jī)器人手臂的控制中,在假設(shè)系統(tǒng)模型理想化,關(guān)節(jié)之間沒有任何干擾的前提下,設(shè)計(jì)每個(gè)關(guān)節(jié)獨(dú)立的狀態(tài)方程。

      本文在文獻(xiàn)[4]研究的基礎(chǔ)上考慮系統(tǒng)模型存在誤差,以及各關(guān)節(jié)之間存在相互擾動(dòng)的情況,設(shè)計(jì)了一種分散化神經(jīng)魯棒控制器,通過離散化高階神經(jīng)網(wǎng)絡(luò)模型結(jié)合濾錯(cuò)訓(xùn)練算法構(gòu)造子系統(tǒng)狀態(tài)方程,在控制律中增加魯棒項(xiàng)抵消外部擾動(dòng)對(duì)控制器產(chǎn)生的干擾,然后構(gòu)造Lyapunov函數(shù)證明控制器的穩(wěn)定性,在以二自由度機(jī)器人手臂為控制對(duì)象的前提下仿真驗(yàn)證了其軌跡跟蹤的精度,同時(shí)對(duì)比了在無魯棒控制項(xiàng)下,外部擾動(dòng)對(duì)分散神經(jīng)控制器的影響。

      從圖2,圖3可以看出,軌跡跟蹤的誤差存在波動(dòng),說明外部擾動(dòng)對(duì)跟蹤精度產(chǎn)生一定影響。為了抵消外部擾動(dòng),使得軌跡跟蹤的結(jié)果更為精確,添加魯棒項(xiàng)的分散神經(jīng)控制器的仿真結(jié)果如圖4,圖5所示。

      對(duì)比兩種方法的仿真結(jié)果可以看出,分散化神經(jīng)魯棒控制器的誤差趨近于零,而且穩(wěn)定性更高,能夠有效抑制干擾信號(hào),沒有添加魯棒項(xiàng)的神經(jīng)控制器軌跡跟蹤的精度受外部干擾的影響較大,誤差波動(dòng)較大,收斂性較差。因此,添加魯棒項(xiàng)的分散神經(jīng)控制器相對(duì)于沒有魯棒項(xiàng)的神經(jīng)控制器軌跡跟蹤的精度更高,魯棒性更強(qiáng)。

      4 ?結(jié) ?語

      針對(duì)分散化神經(jīng)控制器關(guān)節(jié)之間的相互影響以及建模誤差對(duì)機(jī)械臂軌跡跟蹤精度產(chǎn)生的影響,設(shè)計(jì)了神經(jīng)魯棒控制器,通過魯棒項(xiàng)抑制干擾和誤差,仿真結(jié)果表明設(shè)計(jì)的控制器可以有效跟蹤設(shè)定的期望軌跡,誤差波動(dòng)較小,穩(wěn)定性和軌跡跟蹤精度比較高。對(duì)于關(guān)節(jié)之間的干擾以及建模誤差的擾動(dòng)信號(hào)假設(shè)是有界的,如果擾動(dòng)信號(hào)是無界的情況需要進(jìn)一步探討,這也是后續(xù)研究的方向。

      參考文獻(xiàn)

      [1] 黃攀峰,胡永新,王東科,等.空間繩系機(jī)器人目標(biāo)抓捕魯棒自適應(yīng)控制器設(shè)計(jì)[J].自動(dòng)化學(xué)報(bào),2017,43(4):538?547.

      HUANG P F, HU Y X, WANG D K, et al. Capturing the target for a tethered space robot using robust adaptive controller [J]. Acta automatic Sinica, 2017, 43(4): 538?547.

      [2] 陳志勇,陳力.具有外部擾動(dòng)雙臂空間機(jī)器人的神經(jīng)網(wǎng)絡(luò)在線自學(xué)習(xí)補(bǔ)償控制[J].中國機(jī)械工程,2010(17):2114?2118.

      CHEN Z Y, CHEN L. On?line self?learning compensation control for dual?arm space robot with external disturbances via neural network [J]. China mechanical engineering, 2010(17): 2114?2118.

      [3] LEWIS F L, YEGILDIREK A, LIU K. Multilayer neural?net robot controller with guaranteed tracking performance [J]. IEEE transactions on neural networks, 1996, 7(2): 388?399.

      [4] VAZQUEZ L A, JURADO F, CASTAENDA C E, et al. Real?time decentralized neural control via backstepping for a robotic arm powered by industrial servomotors [J]. IEEE transactions on neural networks & learning systems, 2016, 29(2): 419?426.

      [5] GUO D, LI K, YAN L, et al. The application of Li?function activated RNN to acceleration?level robots′ kinematic control via time?varying matrix inversion [C]// 2016 Chinese Control and Decision Conference. Yinchuan: IEEE, 2016: 3455?3460.

      [6] MALINOWSKI M T. Fuzzy and set?valued stochastic differential equations with local Lipschitz condition [J]. IEEE transactions on fuzzy systems, 2015, 23(5): 1891?1898.

      [7] EKRAMAIN M, HOSSEINNIA S, SHEIKHOLESLAM F. Observer design for non?linear systems based on a generalised Lipschitz condition [J]. Control theory & applications, 2011, 5(16): 1813?1818.

      [8] KOSMATOPOULOS E B, POLYCARPOU M M, CHRISTODOULOU M A, et al. High?order neural network structures for identification of dynamical systems [J]. IEEE transactions on neural networks, 1995, 6(2): 422?431.

      [9] RASTOGI E, PRASAD L B. Comparative performance analysis of PD/PID computed torque control, filtered error approximation based control and NN control for a robot manipulator [C]// 2015 IEEE UP Section Conference on Electrical Computer and Electronics. Allahabad: IEEE, 2016: 1?6.

      [10] JIN Y, FU J, ZHANG L, et al. Filtered?error?based control of a class of nonlinear systems with nonsmooth nonlinearities [C]// 2012 IEEE the 51st Cnference on Decision and Control. Maui: IEEE, 2012: 3463?3468.

      [11] 方一鳴,李葉紅,石勝利,等.液壓伺服位置系統(tǒng)的神經(jīng)網(wǎng)絡(luò)backstepping控制[J].電機(jī)與控制學(xué)報(bào),2014,18(6):108?115.

      FANG Y M, LI Y H, SHI S L, et al. Neural network backstepping control of hydraulic servo position system [J]. Electric machines and control, 2014, 18(6): 108?115.

      [12] ATHALYE C D. Necessary condition on Lyapunov functions corresponding to the globally asymptotically stable equilibrium point [C]// 2015 IEEE the 54th Conference on Decision and Control. Osaka: IEEE, 2015: 1168?1173.

      猜你喜歡
      機(jī)械臂
      一種六自由度機(jī)械臂的控制系統(tǒng)設(shè)計(jì)
      碼頭集裝箱機(jī)械臂的研究與設(shè)計(jì)
      書畫手臂的模型設(shè)計(jì)
      六自由度機(jī)械臂控制系統(tǒng)設(shè)計(jì)
      基于無人機(jī)平臺(tái)的垃圾搜索及拾取系統(tǒng)設(shè)計(jì)
      基于智能車技術(shù)的圖書館書籍整理機(jī)器人
      機(jī)械臂平面運(yùn)動(dòng)控制與分析
      機(jī)械臂工作空間全局相對(duì)可操作度圖的構(gòu)建方法
      人機(jī)交互課程創(chuàng)新實(shí)驗(yàn)
      定點(diǎn)巡視與帶電清理平臺(tái)的研究與設(shè)計(jì)
      筠连县| 宁安市| 繁昌县| 涞水县| 禹城市| 闸北区| 时尚| 高陵县| 泸溪县| 徐水县| 定安县| 石渠县| 项城市| 德昌县| 偏关县| 缙云县| 雅安市| 凤台县| 永德县| 临朐县| 嘉禾县| 江西省| 温宿县| 兴化市| 阳泉市| 边坝县| 桃源县| 芮城县| 开阳县| 杭州市| 梓潼县| 通化市| 大埔县| 永顺县| 定陶县| 定日县| 宾川县| 永顺县| 即墨市| 柯坪县| 望城县|