王 燕,瞿明凱,陳 劍,楊蘭芳,黃 標(biāo),趙永存
?
基于GWRK的土壤有效磷空間預(yù)測(cè)及其超標(biāo)風(fēng)險(xiǎn)評(píng)估
王 燕1,2,瞿明凱2*,陳 劍2,楊蘭芳1,黃 標(biāo)2,趙永存2
(1.湖北大學(xué)資源環(huán)境學(xué)院,湖北 武漢 430062;2.中國(guó)科學(xué)院南京土壤研究所土壤環(huán)境與污染修復(fù)重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210008)
以江蘇省金壇區(qū)土壤有效磷的空間預(yù)測(cè)為例,構(gòu)建地理加權(quán)回歸克里格(GWRK)模型,即采用地理加權(quán)回歸(GWR)來(lái)量化土壤有效磷與主要土壤因子(即:土壤全磷、土壤pH值和土壤有機(jī)質(zhì))之間的局部空間關(guān)系,并結(jié)合局部回歸殘差的插值結(jié)果來(lái)預(yù)測(cè)土壤有效磷的空間分布狀況.GWR結(jié)果顯示主要土壤因子對(duì)土壤有效磷含量的影響程度隨空間位置的變化而變化.同時(shí),采用獨(dú)立驗(yàn)證樣本對(duì)比GWRK模型和普通克里格(OK)模型的空間預(yù)測(cè)精度.結(jié)果顯示,GWRK預(yù)測(cè)結(jié)果具有更低的平均絕對(duì)誤差(MAE)、均方根誤差(RMSE)和更高的Pearson相關(guān)系數(shù)(),且較OK預(yù)測(cè)結(jié)果的相對(duì)提高指數(shù)(RI)為19.61%.此外,根據(jù)GWRK預(yù)測(cè)結(jié)果,對(duì)金壇區(qū)土壤有效磷含量的超標(biāo)風(fēng)險(xiǎn)進(jìn)行了評(píng)估.結(jié)果表明土壤有效磷含量超過(guò)其環(huán)境安全閾值(40mg/kg)的區(qū)域集中分布在金壇區(qū)北部,其面積為175.58km2,約占金壇區(qū)總面積的18%.因此,GWRK模型能有效評(píng)估區(qū)域土壤元素有效量空間分布狀況,且GWR局部空間回歸系數(shù)能為區(qū)域土壤元素有效量的調(diào)控提供更精確空間決策支持.
土壤有效磷;空間變異性;地理加權(quán)回歸克里格;空間非平穩(wěn)性;超標(biāo)風(fēng)險(xiǎn)
磷是植物生長(zhǎng)所必需的營(yíng)養(yǎng)元素,也是導(dǎo)致農(nóng)業(yè)面源污染發(fā)生的關(guān)鍵限制因子[1-3].精確評(píng)估土壤有效磷的空間分布格局,是準(zhǔn)確掌握區(qū)域農(nóng)業(yè)面源污染狀況的關(guān)鍵.目前,地統(tǒng)計(jì)學(xué)方法,如普通克里格(OK)常被用于區(qū)域土壤屬性的空間預(yù)測(cè)[4].該方法利用樣本數(shù)據(jù)及其空間自相關(guān)性來(lái)預(yù)測(cè)未知點(diǎn)的屬性值[5],其預(yù)測(cè)結(jié)果具有線性、無(wú)偏和最優(yōu)的特點(diǎn)[6-7].而與土壤元素全量不同的是,土壤元素有效量通常受到多種土壤因子的影響,如土壤元素全量、土壤pH值和土壤有機(jī)質(zhì)等.因此,土壤元素有效量往往較對(duì)應(yīng)元素全量具有更強(qiáng)的空間變異性[8].這些因素的影響同時(shí)也增加了對(duì)土壤元素有效量精確空間預(yù)測(cè)的難度.為提高土壤屬性的空間預(yù)測(cè)精度,調(diào)查者通常采用的方法是增加土壤樣本密度.然而,這種方法會(huì)極大增加土壤調(diào)查和分析測(cè)試的成本[9].近年來(lái)出現(xiàn)的地理加權(quán)回歸克里格(GWRK)模型結(jié)合了地理加權(quán)回歸(GWR)和普通克里格(OK)2種空間預(yù)測(cè)模型[10],已經(jīng)在遙感[11]、農(nóng)業(yè)[12]和氣象[13]等領(lǐng)域有較好的應(yīng)用.其中,GWR模型常用于探索主要土壤因子對(duì)土壤元素有效量的空間非平穩(wěn)影響[14-15].由于次要因子通常并未納入到GWR模型中,因此其局部回歸殘差往往不具有完全的隨機(jī)性. GWRK模型通常采用OK對(duì)其回歸殘差進(jìn)行預(yù)測(cè)來(lái)反映這部分次要因子的影響[10].
在農(nóng)業(yè)土壤中,除了土壤全磷,還有多個(gè)環(huán)境因子影響土壤有效磷的累積[16-17].土壤pH值是影響土壤磷素生物有效性的最重要因子之一,在不同的pH值條件下,土壤磷的存在形態(tài)各異,其生物有效性差異較大[18].土壤有機(jī)質(zhì)的礦化可為土壤提供部分磷素,且有機(jī)質(zhì)對(duì)土壤磷的吸附解析過(guò)程有著復(fù)雜的影響,進(jìn)而影響土壤磷素的生物有效性[19].因此,本研究選取土壤全磷、土壤pH值和土壤有機(jī)質(zhì)三個(gè)主要影響因子來(lái)建立與土壤有效磷的GWR局部空間回歸模型,并結(jié)合GWR產(chǎn)生的確定性趨勢(shì)項(xiàng)與其局部回歸殘差的插值結(jié)果來(lái)預(yù)測(cè)土壤有效磷的空間分布狀況.本研究的最終目的是揭示主要影響因子對(duì)土壤元素有效量的空間非平穩(wěn)影響,并將這種局部影響納入到土壤元素有效量的空間預(yù)測(cè)之中,進(jìn)而構(gòu)建一種適用于區(qū)域土壤元素有效量的精確空間預(yù)測(cè)方法,為區(qū)域土壤元素有效量的調(diào)控及超標(biāo)風(fēng)險(xiǎn)區(qū)域的劃定提供更精確的空間決策信息.
研究區(qū)域位于江蘇省常州市金壇區(qū)(北緯31°33′~31°53′,東經(jīng)119°17′~119°44′)(圖1).該區(qū)域地勢(shì)西高東低.西部為丘陵山區(qū),屬茅山山脈的一部分.中東部為低圩洼地和高亢平原,地勢(shì)平坦,是太湖平原的一部分.境內(nèi)河流縱橫,湖蕩水面廣闊,東南部的洮湖是江蘇省十大淡水湖之一.金壇區(qū)屬亞熱帶季風(fēng)氣候區(qū),年平均氣溫為15.3℃,年平均降水量為1063.5mm,光照充足,無(wú)霜期長(zhǎng).水田為該區(qū)域主要的土地利用類型;旱地與林地占少部分,主要分布在西部低山丘陵區(qū).主要糧食作物為水稻,該區(qū)域也是太湖地區(qū)重要的糧食生產(chǎn)基地之一.
采集土壤樣點(diǎn)259個(gè)(圖1).采樣時(shí)間為2016年5月底,即小麥?zhǔn)崭詈蟮剿驹苑N前的未施肥時(shí)間段,以最大程度避免當(dāng)季施肥對(duì)土壤有效磷含量的影響.每個(gè)樣本點(diǎn)采用GPS定位并詳細(xì)記錄其周圍景觀信息.在各采樣點(diǎn)周圍100m2范圍內(nèi)采集4~5處表層(0~20cm)土樣,均勻混合后縮分至1~2kg裝袋.樣品在實(shí)驗(yàn)室常溫風(fēng)干后去除雜質(zhì)及碎石,磨細(xì),選取部分用瑪瑙研體研磨后過(guò)100目篩,用于土壤理化性質(zhì)的測(cè)定.
本研究測(cè)定的土壤指標(biāo)為土壤pH值、土壤有機(jī)質(zhì)、土壤全磷和土壤有效磷.土壤有機(jī)質(zhì)的測(cè)定采用重鉻酸鉀比色法;土壤pH值采用玻璃電極法測(cè)定;土壤全磷的測(cè)定采用HClO4–H2SO4法;土壤有效磷采用碳酸氫鈉浸提-鉬銻抗比色法測(cè)定.具體測(cè)定方法參見(jiàn)文獻(xiàn)[20].
圖1 金壇區(qū)及土壤樣本點(diǎn)的空間位置
1.3.1 地理加權(quán)回歸克里格(GWRK) GWRK法是GWR與OK這2種模型的結(jié)合,即GWR確定性趨勢(shì)項(xiàng)與其局部回歸殘差項(xiàng)的OK預(yù)測(cè)結(jié)果之和.本研究中,GWRK模型可表示為:
其中:
GWR的核心是空間權(quán)重矩陣[21],它通過(guò)選取不同的空間權(quán)重函數(shù)來(lái)量化樣本數(shù)據(jù)之間的空間關(guān)系.由于本研究的樣本點(diǎn)密度并非均勻(圖1),因此選擇自適應(yīng)高斯函數(shù)作為空間權(quán)重函數(shù),它能根據(jù)校準(zhǔn)位置周圍的樣本密度來(lái)調(diào)整帶寬參數(shù),其公式可表示為:
式中:d為第個(gè)樣本點(diǎn)到預(yù)測(cè)點(diǎn)的距離;w為樣本位置相對(duì)于預(yù)測(cè)位置的權(quán)重;為帶寬參數(shù),控制觀測(cè)點(diǎn)空間自相關(guān)性的范圍及衰減模式.本研究采用Akaike信息標(biāo)準(zhǔn)來(lái)確定最優(yōu)帶寬和權(quán)重函數(shù),進(jìn)而計(jì)算得到其空間局部回歸系數(shù).具體的GWR和OK方法參考[4,22].
1.3.2 評(píng)價(jià)方法 在259個(gè)樣本點(diǎn)中隨機(jī)抽取20%樣本(52個(gè))作為獨(dú)立驗(yàn)證點(diǎn)(圖1).計(jì)算驗(yàn)證點(diǎn)處實(shí)測(cè)值與預(yù)測(cè)值之間的平均絕對(duì)誤差(MAE)、均方根誤差(RMSE)及Pearson相關(guān)系數(shù)(),進(jìn)一步計(jì)算其相對(duì)提高指數(shù)(RI)來(lái)檢驗(yàn)2種方法的預(yù)測(cè)精度.其中MAE和RMSE計(jì)算方法如下:
GWRK預(yù)測(cè)結(jié)果相對(duì)于OK預(yù)測(cè)結(jié)果的相對(duì)提高指數(shù)(RI)為:
本研究土壤有效磷的等級(jí)劃分參照國(guó)家第二次土壤普查養(yǎng)分分級(jí)標(biāo)準(zhǔn)[24],其環(huán)境安全閾值設(shè)為40mg/kg[25].常規(guī)統(tǒng)計(jì)分析在SPSS 19.0中完成;地理加權(quán)回歸分析采用GWR 4.0;地統(tǒng)計(jì)分析在GS+ 9.0中完成;空間出圖采用ArcGIS 9.2.
研究區(qū)土壤pH值、土壤有機(jī)質(zhì)、土壤全磷及有效磷的描述性統(tǒng)計(jì)量見(jiàn)表1.該區(qū)域土壤樣本點(diǎn)有效磷含量在1.71~174.74mg/kg之間,平均值為30.52mg/kg,總體上呈富磷狀態(tài)[25],說(shuō)明金壇區(qū)土壤有效磷在地表已產(chǎn)生一定程度的累積.土壤有效磷的變異系數(shù)為97.84%,屬?gòu)?qiáng)變異程度,這與前人研究結(jié)果一致[26].而土壤全磷、土壤pH值及SOM均處于中等程度的變異水平.
表1 土壤有效磷與主要土壤因子的描述性統(tǒng)計(jì)量(N = 259)
由GWR得到的土壤有效磷與主要土壤因子(即:土壤全磷、土壤pH值和土壤有機(jī)質(zhì))之間的局部空間回歸關(guān)系如圖2所示.GWR回歸系數(shù)隨著空間位置的變化而變化,即主要土壤因子對(duì)土壤有效磷含量的影響程度存在空間非平穩(wěn)性.回歸系數(shù)可以解釋這3個(gè)主要土壤因子對(duì)土壤有效磷含量的局部空間影響.正的回歸系數(shù)代表正相關(guān),負(fù)的回歸系數(shù)代表負(fù)相關(guān).回歸系數(shù)絕對(duì)值的大小反映該因子對(duì)土壤有效磷影響的強(qiáng)烈程度[14].本研究中,土壤全磷對(duì)土壤有效磷的影響呈正相關(guān)(圖2b),即土壤全磷含量越高,土壤中磷的有效性越大[18].而土壤pH值對(duì)土壤有效磷的影響呈負(fù)相關(guān),且在研究區(qū)東部和西部影響更為強(qiáng)烈(圖2c).土壤有機(jī)質(zhì)對(duì)土壤有效磷的影響較為復(fù)雜,在研究區(qū)西部,有機(jī)質(zhì)與土壤有效磷表現(xiàn)為負(fù)的相關(guān)性,而在北部、中部及南部則表現(xiàn)為正的相關(guān)性(圖2d).
土壤中的磷按其存在形態(tài)可分為有機(jī)態(tài)磷和無(wú)機(jī)態(tài)磷,而能被植物吸收利用的磷為無(wú)機(jī)態(tài)磷[27].大量研究表明,無(wú)機(jī)磷在土壤中有多種存在形態(tài),不同形態(tài)之間的轉(zhuǎn)化及其生物有效性受土壤全磷、土壤pH值及土壤有機(jī)質(zhì)等多種因素的影響[28-29].土壤pH值影響磷在土壤中的存在形態(tài)[30].在酸性土壤中,無(wú)機(jī)磷酸鹽與鐵鋁結(jié)合,形成各種鐵鋁磷化合物;而在堿性條件下,土壤磷受到鈣的固定,主要以Ca-P的形式存在[31].不同形態(tài)的無(wú)機(jī)磷有效性差異很大,以Fe-P、Al-P及Ca2-P的生物有效性最高[32].有機(jī)質(zhì)是影響土壤磷素生物有效性的一個(gè)重要因子,一方面,土壤有機(jī)質(zhì)在分解過(guò)程中產(chǎn)生的有機(jī)酸、腐殖酸等物質(zhì)與磷酸根競(jìng)爭(zhēng)表面吸附位點(diǎn),從而減少礦物對(duì)磷的吸附沉淀[33].但在另一方面,土壤有機(jī)質(zhì)在形成過(guò)程中螯合的鐵鋁可形成穩(wěn)定的“Al-有機(jī)質(zhì)-P”絡(luò)合物及“Fe-有機(jī)質(zhì)”絡(luò)合物,增加土壤對(duì)磷的吸附[34],從而降低土壤磷素的有效性.因此,有機(jī)質(zhì)可提高或降低土壤磷素的生物有效性[35],這與本研究的結(jié)果一致(圖2d).這些主要土壤因子(即:土壤全磷、土壤pH值和土壤有機(jī)質(zhì))空間變異性影響土壤無(wú)機(jī)磷不同形態(tài)之間的轉(zhuǎn)化及生物有效性,同時(shí)也是導(dǎo)致土壤有效磷含量產(chǎn)生強(qiáng)烈空間變異性的重要原因.
圖2 土壤有效磷與主要土壤因子之間的GWR回歸系數(shù)分布
半方差函數(shù)提供了一個(gè)描述研究變量空間自相關(guān)結(jié)構(gòu)的工具[36].金壇區(qū)土壤有效磷及GWR殘差的半方差函數(shù)模型參數(shù)如表2所示.土壤有效磷及GWR殘差的半方差函數(shù)分別用指數(shù)及高斯模型能夠較好的擬合.參數(shù)0/(0+)常被用于定義變量空間自相關(guān)程度的一個(gè)標(biāo)準(zhǔn),低于25%和高于75%分別對(duì)應(yīng)于強(qiáng)的空間自相關(guān)性和弱的空間自相關(guān)性[37].表2顯示,金壇區(qū)土壤有效磷的0/(0+)值為75.58%,其空間自相關(guān)性較弱.GWR殘差的0/(0+)值為28.69%,表明該殘差存在中等程度的空間自相關(guān)性.同時(shí),GWR殘差的Moran's值(0.14)(圖3)也顯示其殘差具有一定程度的空間聚集性.這些均表明,其他因子對(duì)土壤有效磷含量存在一定程度的影響,這些影響體現(xiàn)在GWR殘差的空間自相關(guān)性中.且值得注意的是,GWR殘差值較高的區(qū)域主要位于金壇區(qū)北部(圖3),可能的原因在于在該部分子區(qū)域中,除了納入GWR分析的3主要影響因子外,可能還存在其它未知因子也對(duì)土壤有效磷含量存在較強(qiáng)影響.因此,有必要采用OK來(lái)對(duì)其回歸殘差的空間分布進(jìn)行預(yù)測(cè).
圖3 樣本點(diǎn)處土壤有效磷與主要土壤因子之間的GWR殘差
表2 土壤有效磷與主要土壤因子之間GWR殘差值的半方差模型參數(shù)
OK及GWRK預(yù)測(cè)的土壤有效磷空間分布如圖4所示.2種方法預(yù)測(cè)得到的土壤有效磷總體上具有類似的空間分布格局,主要表現(xiàn)為西部低山丘陵區(qū)土壤有效磷含量較低,而中東部及北部平原區(qū)土壤有效磷含量較高.但從預(yù)測(cè)效果來(lái)看,GWRK方法產(chǎn)生的預(yù)測(cè)圖斑更加細(xì)碎化,而OK方法產(chǎn)生的預(yù)測(cè)圖明顯比GWRK預(yù)測(cè)圖平滑.平滑效應(yīng)是克里格插值中的一個(gè)顯著特性,導(dǎo)致實(shí)際的高低值區(qū)域被低估或者高估[38].從空間預(yù)測(cè)范圍來(lái)看,GWRK方法預(yù)測(cè)的土壤有效磷含量在研究區(qū)北部出現(xiàn)明顯的高值區(qū),與實(shí)測(cè)值的空間變化范圍(1.71~174.74mg/kg)更為接近.
圖4 OK和GWRK 2模型預(yù)測(cè)的土壤有效磷空間分布
驗(yàn)證點(diǎn)處實(shí)測(cè)值與預(yù)測(cè)值之間的平均絕對(duì)誤差(MAE)、均方根誤差(RMSE)及Pearson相關(guān)系數(shù)()如表3所示.GWRK預(yù)測(cè)結(jié)果較OK預(yù)測(cè)結(jié)果具有更低的MAE、RMSE和更高的,且GWRK相對(duì)于OK預(yù)測(cè)結(jié)果的相對(duì)提高指數(shù)(RI)為19.61%.說(shuō)明采用GWRK模型能顯著提高金壇區(qū)土壤有效磷的空間預(yù)測(cè)精度.
由于土壤元素有效量受到的影響因素較全量更多,因此其空間變異程度也較全量更為劇烈.傳統(tǒng)的地統(tǒng)計(jì)學(xué)方法,如OK,通過(guò)半方差函數(shù)來(lái)量化土壤屬性的空間自相關(guān)程度,以此來(lái)對(duì)其空間分布進(jìn)行預(yù)測(cè).然而,在空間變異劇烈的情況下,采用單一的半方差函數(shù)往往難以對(duì)土壤元素有效量與主要影響因子之間的空間相關(guān)關(guān)系進(jìn)行有效描述.同時(shí),這也降低了傳統(tǒng)克里格地統(tǒng)計(jì)學(xué)方法對(duì)土壤元素有效量空間預(yù)測(cè)的精度.本研究構(gòu)建GWRK模型用于區(qū)域土壤元素有效量的空間預(yù)測(cè),即選取主要影響因子來(lái)建立與土壤元素有效量的GWR局部空間回歸模型,并結(jié)合局部回歸殘差的空間自相關(guān)性來(lái)對(duì)土壤元素有效量進(jìn)行更精確的空間預(yù)測(cè).本研究選取的這些輔助因子(即:土壤全磷、土壤pH值和土壤有機(jī)質(zhì))需要有現(xiàn)成數(shù)據(jù).然而,這些因子也是土壤調(diào)查中的基本指標(biāo)項(xiàng),有效利用這些屬性信息,采用GWRK模型即可獲得較常用的OK方法更高的空間預(yù)測(cè)精度.傳統(tǒng)的協(xié)同克里格方法也可以利用輔助樣本信息來(lái)提高目標(biāo)屬性的空間預(yù)測(cè)精度.然而,協(xié)同克里格需要大量的異位樣本,這也極大的增加了土壤調(diào)查和分析測(cè)試的成本.從這個(gè)意義上來(lái)說(shuō),GWRK模型對(duì)區(qū)域土壤元素有效量的空間預(yù)測(cè)具有一定的實(shí)用性,為區(qū)域土壤元素有效量的調(diào)查評(píng)估提供了一個(gè)有效的空間預(yù)測(cè)制圖方法.且GWR局部回歸系數(shù)的可視化為區(qū)域土壤元素有效量的精確調(diào)控提供了一個(gè)有效的空間參考依據(jù).如在本研究中,土壤pH值對(duì)土壤有效磷的影響在金壇區(qū)東、西部較其它子區(qū)域更為強(qiáng)烈(圖2c),因而在東、西部適當(dāng)提高土壤pH值可能會(huì)較其它子區(qū)域更容易減小土壤有效磷的累積;在金壇區(qū)北部及中部,土壤有機(jī)質(zhì)與土壤有效磷含量存在較為顯著的正相關(guān)關(guān)系(圖2d),因此,相對(duì)于其它子區(qū)域,在金壇區(qū)北部及中部減少土壤有機(jī)肥的施用能更有效的降低土壤有效磷的累積量.
表3 OK和GWRK2種模型的精度評(píng)價(jià)指標(biāo)對(duì)比
土壤有效磷水平的高低在一定程度上反映土壤磷素向水體淋失的風(fēng)險(xiǎn)程度.金壇區(qū)土壤有效磷超標(biāo)風(fēng)險(xiǎn)評(píng)價(jià)如圖5所示.該區(qū)域土壤有效磷含量由西南向東北呈梯級(jí)遞增趨勢(shì),在西部的低山丘陵區(qū),土壤有效磷含量總體上低于20mg/kg,土壤磷素淋失風(fēng)險(xiǎn)較低.而土壤有效磷含量超過(guò)其環(huán)境安全閾值(40mg/kg)的區(qū)域主要位于金壇區(qū)北部及東北部,其面積為175.58km2,約占金壇區(qū)總面積的18%.由于該子區(qū)域距離金壇區(qū)主城區(qū)較近,菜地為主要的土地利用類型,土壤人為干擾強(qiáng)烈,施肥量大,從而導(dǎo)致土壤磷素在地表的大量累積.該子區(qū)域土壤磷素具有較高的淋失風(fēng)險(xiǎn),應(yīng)對(duì)其重點(diǎn)調(diào)控.另外,在洮湖北部,土壤有效磷含量超過(guò)其環(huán)境安全閾值(40mg/kg)的區(qū)域也有小面積的分布,對(duì)洮湖水環(huán)境的安全構(gòu)成了一定程度的威脅,應(yīng)引起足夠的重視.
圖5 金壇區(qū)土壤有效磷空間分布等級(jí)
3.1 本研究構(gòu)建GWRK模型用于金壇區(qū)土壤有效磷與主要土壤因子(即:土壤全磷、土壤pH值和土壤有機(jī)質(zhì))之間的空間非平穩(wěn)關(guān)系評(píng)估及其含量的空間預(yù)測(cè).地理加權(quán)回歸(GWR)分析表明,主要土壤因子對(duì)金壇區(qū)土壤有效磷含量的影響程度隨著空間位置的變化而變化.
3.2 GWRK和OK 2模型精度對(duì)比顯示,GWRK模型預(yù)測(cè)的土壤有效磷具有更低的平均絕對(duì)誤差(MAE)、均方根誤差(RMSE)和更高的Pearson相關(guān)系數(shù)(),且較OK預(yù)測(cè)結(jié)果的相對(duì)提高指數(shù)(RI)為19.61%.
3.3 金壇區(qū)土壤有效磷含量超過(guò)其環(huán)境安全閾值(40mg/kg)的區(qū)域集中分布在金壇區(qū)北部及東北部,其面積為175.58km2,約占金壇區(qū)總面積的18%.該子區(qū)域土壤有效磷具有較高的淋失風(fēng)險(xiǎn),應(yīng)予以重點(diǎn)調(diào)控.
[1] Lin C, Ma R H, Xiong J F. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties? A new insight of different soil P states [J]. Science of the Total Environment, 2018,628– 629:870–881.
[2] Chien S H, Sikora F J, Gilkes R J, et al. Comparing of the difference and balance methods to calculate percent recovery of fertilizer phosphorus applied to soils: a critical discussion [J]. Nutrient Cycling in Agroecosystems, 2012,92(1):1–8.
[3] 劉建玲,廖文華,張作新,等.磷肥和有機(jī)肥的產(chǎn)量效應(yīng)與土壤累積磷的環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2007,40(5):959–965. Liu J L, Liao W H, Zhang Z X, et al. The response of vegetable yield to phosphate fertilizer and organic manure and environmental risk assessment of phosphorus accumulated in soil [J]. Scientia Agricultura Sinica, 2007,40(5):959–965.
[4] Goovaerts P. Geostatistics for natural resources evaluation [M]. New York: Oxford Univ. Press, 1997:437–438.
[5] Zhang X Y, Sui Y Y, Zhang X D, et al. Spatial variability of nutrient properties in black soil of northeast China [J]. Pedosphere, 2007,17(1): 19–29.
[6] Webster R, Oliver M A. Statistical methods in soil and land resource survey [M]. London: Oxford University Press, 1990:497–498.
[7] Saito H, Mckenna A, Zimmerman D A, et al. Geostatistical interpolation of object counts collected from multiple strip transects: Ordinary Kriging versus finite domain Kriging. Stochastic Environmental Research and Risk Assessment, 2005,19(1):71–85.
[8] Berndtsson R, Bahri A, Jinno K. Spatial dependence of geochemical elements in a semiarid agricultural field: Geostatistical properties [J]. Soil Science Society of America Journal, 1993,57(5):1323–1329.
[9] Sun W X, Zhao Y C, Huang B, et al. Effect of sampling density on regional soil organic carbon estimation for cultivated soils [J]. Journal Plant Nutrition and Soil Science. 2012,175:671–680.
[10] Harris P, Fotheringham A S, Crespo R, et al. The use of geographically weighted regression for spatial prediction: An evaluation of models using simulated data sets [J]. Mathematical Geosciences, 2010,42(6): 657–680.
[11] Pereira R, Melfi A, Montes C, et al. Downscaling of ASTER Thermal Images Based on Geographically Weighted Regression Kriging [J]. Remote Sensing, 2018,10(4):633.
[12] Muhammad I, Alfred S, Zurita-Milla R. Using geographically weighted regression kriging for crop yield mapping in West Africa [J]. International Journal of Geographical Information Science, 2015,29(2): 234–257.
[13] Szymanowski M, Kryza M, Spallek W. Regression based air temperature spatial prediction models: An example from Poland [J]. Meteorologische Zeitschrift, 2013,22(5):577–585.
[14] Qu M K, Li W D, Zhang C R, et al. Spatial assessment of soil nitrogen availability and varying effects of related main soil factors on soil available nitrogen [J]. Environmental Science: Processes and Impacts, 2016,18(11):1449–1457.
[15] 楊順華,張海濤,陳家贏,等.平原丘陵過(guò)渡帶土壤有機(jī)碳空間分布及環(huán)境影響[J]. 中國(guó)環(huán)境科學(xué), 2015,35(12):3728–3736. Yang S H, Zhang H T, Chen J Y, et al. The spatial variability of soil organic carbon in plain-hills transition belt and its environmental impact [J]. China Environmental Science, 2015,35(12):3728–3736.
[16] Cao N, Chen X, Cui Z, et al. Change in soil available phosphorus in relation to the phosphorus budget in China [J]. Nutrient Cycling in Agroecosystems, 2012,94(2/3):161–170.
[17] Meng C, Liu H, Wang Y, et al. Response of regional agricultural soil phosphorus status to net anthropogenic phosphorus input (NAPI) determined by soil pH value and organic matter content in subtropical China [J]. Chemosphere, 2018,200:487–494.
[18] 王永壯,陳 欣,史 奕.農(nóng)田土壤中磷素有效性及影響因素[J]. 應(yīng)運(yùn)生態(tài)學(xué)報(bào), 2013,24(1):260–268. Wang Y Z, Chen X, Shi Y. Phosphorus availability in cropland soils of China and related affecting factors [J]. Chinese Journal of Applied Ecology, 2013,24(1):260–268.
[19] 展曉瑩,任 意,張淑香,等.中國(guó)主要土壤有效磷演變及其與磷平衡的響應(yīng)關(guān)系[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2015,48(23):4728–4737. Zhan X Y, Ren Y, Zhang S X, et al. Changes in olsen phosphorus concentration and its response to phosphorus balance in the main types of soil in China [J]. Scientia Agricultura Sinica, 2015,48(23):4728– 4737.
[20] 魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國(guó)農(nóng)業(yè)科技出版社, 2000. Lu R K. Analytical method of soil and agronomic chemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000. (In Chinese)
[21] Páez A, Uchida T, Miyamoto K. A general framework for estimation and inference of geographically weighted regression models: 1. location-specific kernel bandwidths and a test for locational heterogeneity [J]. Environment and Planning A, 2002,34(5):883–904.
[22] Fotheringham A S,Brunsdon C,Charlton M. Geographically Weighted Regression: The analysis of spatially varying relationships [M]. UK: John Wiley and Sons, Chichester, 2002.
[23] Zhang R, Warrick A W, Myers D E. Improvement of the prediction of soil particle size fractions using spectral properties [J]. Geoderma, 1992,52(3/4):223–234.
[24] 全國(guó)農(nóng)業(yè)技術(shù)推廣總站.農(nóng)業(yè)技術(shù)推廣工作手冊(cè)[M]. 北京:中國(guó)農(nóng)業(yè)出版社, 1990:177. National agricultural technology extension station. 1990. Handbook on agricultural technology extension [M]. Beijing: China Agricultural Press, 1990:177. (In Chinese)
[25] 魯如坤.土壤磷素水平和水體環(huán)境保護(hù)[J]. 磷肥與復(fù)肥, 2003,18(1):4–6. Lu R K. The phosphorus level of soil and environmental protection of water body [J]. Phosphate and Com pound Fertilizer, 2003,18(1):4–6.
[26] 王淑英,胡克林,路 蘋,等.北京平谷區(qū)土壤有效磷的空間變異特征及其環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2009,42(4):1290–1298. Wang S Y, Hu K L, Lu P, et al. Spatial variability of soil available phosphorus and environmental risk analysis of soil phosphorus in Pinggu County of Beijing [J]. Scientia Agricultura Sinica, 2009,42(4): 1290–1298.
[27] 孫桂芳,金繼運(yùn),石元亮.土壤磷素形態(tài)及其生物有效性研究進(jìn)展[J]. 中國(guó)土壤與肥料, 2011,2:1–9. Sun G F, Jin J Y, Shi Y L. Research advance on soil phosphorus forms and their availability to crops in soil [J]. Soil and Fertilizer Sciences in China, 2011,2:1–9.
[28] Bezerra R P M, Loss A, Pereira M G, et al. Phosphorus fractions and correlation with soil attributes under no-tillage and crop-livestock integration systems in Cerrado of Goias [J]. Semina Ciências Agrárias, 2015,36(3):1287–1306.
[29] Olson B M, Bremer E, Mckenzie R H, et al. Phosphorus accumulation and leaching in two irrigated soils with incremental rates of cattle manure [J]. Canadian journal of science, 2010,90(2):355–362.
[30] Devau N, Cadre E L, Hinsinger P, et al. Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches [J]. Applied Geochemistry, 2009, 24(11):2163–2174.
[31] Devau N, Hinsinger P, Cadre E L, et al. Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorous in soils [J]. Geochimica Et Cosmochimica Acta, 2011, 75(10):2980–2996.
[32] Xiang C Y, Ma Y M, Tian X P, et al. Effects of long term culture and fertilization on the contents of forms of phosphorus and their availability in albic soil [J]. Acta Agronomica Sinica, 2005,31(1): 48–52.
[33] Braschi I, Ciavatta C, Giovannini C, et al. Combined effect of water andorganic matter on phosphorus availability in calcareous soils [J]. Nutrient Cycling in Agroecosystems, 2003,67(1):67–74.
[34] 王艷玲,章永輝,何園球.紅壤基質(zhì)組分對(duì)磷吸持指數(shù)的影響[J]. 土壤學(xué)報(bào), 2012,49(3):552–559. Wang Y L, Zhang Y H, He Y Q. Effect of soil matrix components on phosphate sorption index in red soil[J]. Acta Pedologica Sinica, 2012,49(3):552–559.
[35] Zhang H, Schroder J L, Fuhrman J K, et al. Path and multiple regression analyses of phosphorus sorption capacity [J]. Soil Science Society of America Journal, 2005,69(1):96–106.
[36] Paz-Gonzaez A, Taboada Castro M T, Vieira S R. Geostatistical analysis of heavy metals in a one-hectare plot under natural vegetation in a Serpentine Area [J]. Canadian Journal of Soil Science, 2001, 81(4):469–479.
[37] Cambardella C A, Moorman T B, Parkin T B, et al. Field-Scale Variability of Soil Properties in Central Iowa Soil [J]. Soil Science Society of America Journal, 1994,58(5):1501–1511.
[38] Lark R M, Webster R. Geostatistical mapping of geomorphic variables in the presence of trend [J]. Earth Surface Processes and Landforms, 2010,31(7):862–874.
Spatial prediction and standard-exceeding risk assessment of soil available phosphorus based on geographically weighted regression kriging.
WANG Yan1,2, QU Ming-kai2*, CHEN Jian2, YANG Lan-fang1, HUANG Biao2, ZHAO Yong-cun2
(1.Faculty of Resource and Environmental Science, Hubei University, Wuhan 430062, China;2.Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China)., 2019,39(1):249~256
In this study, geographically weighted regression kriging (GWRK) model was established to predict the spatial distribution pattern of soil available phosphorus in Jintan County, Jiangsu Province. Geographically weighted regression (GWR) was first used to quantify the local spatial regression relationships between soil available phosphorus and its three main influencing factors (i.e., soil total phosphorus, soil pH, and soil organic matter). And then the final prediction value of GWRK is the sum of the GWR prediction value and the regression residuals value interpolated by ordinary kriging (OK). In this study 52 independent verification samples were used to compare the prediction accuracy of the GWRK model and the traditional OK model. Finally, the standard-exceeding risk of the soil available phosphorus was assessed based on the results generated by the GWRK model. The GWR analysis showed that the relationships between soil available phosphorus and its three main influencing factors (i.e., soil total phosphorus, soil pH, and soil organic matter) were spatial non-stationary, with local regression coefficient changing with spatial position. Model comparison showed that the GWRK prediction result had lower mean absolute error (MAE), root mean square error (RMSE) and higher Pearson correlation coefficient (). In addition, the relative improvement index (RI) of GWRK over OK was 19.61%. The risk assessment results showed that the 175.58km2areas was divided into the risk area of the soil available phosphorus content exceeded the Environmental safety threshold (40mg/kg), which accounted for about 18% of the whole area. Therefore, the GWRK model could effectively assess the spatial distribution pattern of available content of the soil elements. And the local regression coefficient of GWR could provide more accurate spatial decision support for the regulation of soil elements available content at a regional scale.
soil available phosphorus;spatial variability;geographically weighted regression kriging;spatial non-stationarity;standard-exceeding risk
X825,X144
A
1000–6923(2019)01-0249-08
王 燕(1992–)女,甘肅隴西人,碩士研究生,主要研究方向?yàn)閰^(qū)域土壤及環(huán)境風(fēng)險(xiǎn)評(píng)估.
2018–05–21
國(guó)家科技支撐計(jì)劃課題(2015BAD06B02-2)
* 責(zé)任作者, 副研究員, qumingkai@issas.ac.cn