• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unsteady flow structures in centrifugal pump under two types of stall conditions *

    2019-01-05 08:08:38PeijianZhou周佩劍JiachengDai戴嘉鋮YafeiLi李亞飛TingChen陳婷JiegangMou牟介剛
    水動力學研究與進展 B輯 2018年6期
    關鍵詞:陳婷佩劍

    Pei-jian Zhou (周佩劍), Jia-cheng Dai(戴嘉鋮), Ya-fei Li(李亞飛), Ting Chen(陳婷),Jie-gang Mou (牟介剛)

    1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310034, China

    2. Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, Hangzhou 310034, China

    3. School of Science, Wuhan Institute of Technology, Wuhan 430205, China

    Abstract: The stall is an unsteady flow phenomenon that always causes instabilities and low efficiency for pumps. This paper focuses on the unsteady flow structures and evolutions under two types of stall conditions in centrifugal pump impellers. Two centrifugal pump impellers, one with 6 and another with 5 blades, are considered and a developed large-eddy simulation method is adopted. The results show that the alternative stall occurs in the impeller with 6 blades, while, the rotating stall is observed in that with 5 blades. The flow structure and the pressure fluctuation characteristics are further analyzed. For the alternative stall, the stall cells are fixed relative to the impeller, but a large vortex in the stalled passage is always swaying. The outlet vortex is generated from it, and then develops and sheds periodically. For the rotating stall, the stall cells first occur in the suction side of the blade. With the growth of the stall cells, the block area gradually increases until the inlet region is almost blocked, then moves to the pressure side with a continuous decay. When the rotating stall occurs, the amplitude of the pressure fluctuation is much larger than that under the alternative stall condition. The propagation of the stall cells has a significant effect on the pressure fluctuations in the impeller.

    Key words: Centrifugal pump, flow structures, rotating stall, alternative stall, large-eddy simulation

    Introduction

    The stall is an unsteady flow phenomenon that always causes instabilities and low efficiency for pumps[1-4]. Under the stall condition, the periodic generation and shedding of the stall cells always induce significant low frequency pressure fluctuations and vibrations, with a severe influence on the safety and stability of pumps. It is necessary to study the stall phenomenon to improve the safety and the stability of the pump operation. This study focuses on the unsteady flow structures and evolutions under two types of stall conditions in the centrifugal pump impellers.

    The stall, as an unsteady flow phenomenon,occurs in pumps due to the flow separation along the flow-guiding parts[5]. The large region of the separated flow is considered as the stall cell, which plays an important role in pumps, and can induce vibrations,noises, and even severe damages to the machine[6-7].Therefore the characteristics of the stall cells are important factors in improving not only the efficiency but also the operating safety and stability of pumps.

    So far, only a few experimental studies are found in literature for the stall phenomenon in centrifugal pumps. Pedersen et al.[8]used the particle image velocimetry (PIV) to show the internal flow through a centrifugal pump impeller, and identified the alternative stall for the first time. Further investigations were followed, including the study performed by Johnson et al.[9], which showed that these stall patterns also existed in the volute pump. Feng et al.[10], Ullum et al.[11]found similar stall cells in the vaned centrifugal pumps. Krause et al.[12]adopted the time-resolved PIV to find another type of stall called the rotating stall, where the instabilities occurred at a low flow rate. However, the PIV has some limitations,such as in the time resolution and the measurement area. Thanks to the development of the computational fluid dynamics (CFD), the stalled flows in the centrifugal pumps were numerically studied. Feng et al.[13]applied different turbulence models for unsteady flow simulations of a radial diffuser pump, and the results showed that the RANS models often failed to predict the stall phenomenon. The SST -kω model could capture the stall cells, but with a large deviation when the stall occurred[14]. The large-eddy simulation(LES) shows a promising advance for complex turbulent flows. A series of validation simulations are performed for the stall phenomenon, and the results are in an excellent agreement with the available experimental data[5,15].

    In the above studies, the stall phenomena were identified in centrifugal pumps. However, the structures and the motion of the stall cells are not yet fully understood. This study focuses on the stall cell characteristics in a centrifugal pump impeller by analyzing two types of stall phenomenon. The flow field and the stall cell structures are represented based on a developed large-eddy simulation with the dynamic mixed nonlinear model (DMNM).

    1. The investigated pump and simulation details

    The investigated pump impeller is a shrouded,low specific-speed centrifugal impeller with 6 blades,as shown in Fig. 1. Under the design condition, the pump flow rate is=3. 0 6 L/ s and the head is=1.75 m. More detailed geometric and experimental data can be found in Ref. [8]. In order to study two types of stall phenomenon, another one with 5 blades is considered in the study, with the otherwise same geometry. The large-eddy simulation is performed under the initial stall condition, the developed stall conditionand the deep stall condition

    Fig. 1 Geometry of the impeller with 6 blades

    The entire flow passages of the impeller is modelled and simulated. In order to reduce the boundary influence, extensions are made at the outlet and the inlet of the flow passage, respectively. Owing to the complexity of the computational domain, the unstructured hexahedron mesh is employed because of its fine adaptability. In the near-wall region the mesh is refined according to the requirement of the LES. In view of the Ref. [16] the grid stretching factor is chosen to allow the wall-adjacent cells to be located 0.02 mm off the wall, whilst also refining the grids in the streamwise and spanwise directions. A mesh of a total 3.2×106cells is utilized as the best compromise between the solution accuracy requirements and the available computer resources. Increasing the number of grids does not make a significant difference during the grid independent process. Figure 2 represents the mesh construction of the full passages.

    Fig. 2 Computational domain and mesh

    Fig. 3 The locations of monitor points

    A rotational reference frame is set for the flow passage, with the rotating speed of the reference frame equal to the rotating speed of the impeller. The velocity inlet boundary condition is chosen in the simulation. The inlet velocity is determined by the flow rate, including some fluctuation components,with the velocity normal to the inlet boundary. The Neumann condition, ?φ/?n=0, is considered for the pressure. At the outlet of the passage the pressure is given. The no-slip wall condition is considered, as u =0, v = 0, w = 0.

    The time step is set as 0.00023 s corresponding to a Courant number estimation smaller than 10, with a total 360 time steps per impeller revolution. The residual convergence criterion for each time step is reduced to 10-5, while the maximum number of iterations allowed per time step is limited to 15.

    The arrangement of the recording points is shown in Fig. 3. In view of the prediction for the number and the speed of the stall cells, the monitor points (P1-P6)are uniformly distributed on the shroud of the impeller for recording the pressure fluctuations.

    A developed large-eddy simulation with the dynamic mixed nonlinear model (DMNM) is performed on a full annulus of the impeller. The key to the success of the LES is to accurately represent the subgrid-scale (SGS) stress. The SGS stress can be written as follows[17]

    Fig. 4 (Color online) Evolution of outlet vortices

    In the DMNM, the resolved modified Leonard term and the modelled modified cross term are retained, with the modified Reynolds stress. This model combines the advantages of the dynamic mixed model (DMM) and the dynamic nonlinear model(DNM). The previous work shows that the DMNM,with its inclusion of the turbulent anisotropic properties, is more suitable for high curvature, strong rotational turbulence calculations[18]. The derivation details of this model can be found in the Ref. [19].

    Fig. 5 (Color online) Evolution of main vortices

    2. Alternative stall

    2.1 Flow structures analysis

    The alternative stall occurs in the impeller with 6 blades. As shown in Fig. 4, the stalled and unstalled passages can be observed, as reported by Pedersen et al.[8]. Three stall cells block the entrance of the passage, which does not rotate with respect to the impeller. Besides, one observes another two types of vortex motion in the stalled passage. The passage A is taken as an example to analyze the flow structures. A larger vortex appears downstream, which is more unsteady with characteristics of the wake flow due to the adverse pressure gradient and the centrifugal force.As the flow develops, the large vortex shakes and splits into small vortexes at the passage outlet. Then,the main vortex core gradually moves downstream,induces the shedding of the outlet vortex and disappears.

    Fig. 6 Frequency spectrum analysis

    Figure 5 shows the instantaneous streamline distributions at six equally spaced time steps during one cycle of the main vortex motion obtained by the simulation. The main vortex core starts to move downstream and another small vortex simultaneously appears upstream, to form two counter-rotating vortex pairs with the main vortex. As the small vortex grows larger, the main vortex core is forced to keep moving downstream. Then the main vortex changes dramatically, to be squashed with an increased length. The small vortex is surrounded by exterior streamlines of the main vortex. The two vortexes are emerged together, and a new main vortex is generated. In summary,the main vortex shows its obvious life cycle including decay, split, mergence and growth.

    2.2 Stall characteristics

    A frequency spectrum analysis is carried out for the series of pressure fluctuations to reveal the stall characteristics. Figure 6 shows the frequency domain of the vibration signals obtained at the location P1 at three different flow rates. It can be seen that the lower frequency is obviously the dominant frequency, which is contributed by the main vortex motion. Further, the“broadband” with a high frequency can also be seen,which is caused by the outlet vortex., the low frequency is 2.6 Hz, only 26.5% of the rotational frequency. While atshown in Figs.6(b), 6(c), the low frequencies are 3.13 Hz, 3.6 Hz,respectively. However, as the flow rate increases, the“broadband” with a high frequency keeps almost the same.

    3. Rotating stall

    3.1 Flow structures

    The rotating stall occurs in the impeller with 5 blades. Figure 7 shows instantaneous streamline distributions at six equally spaced time steps during one cycle of the rotating stall obtained by the simulation.The passage A is taken as an example to analyze the rotating stall. At =0t , we can see the stall cell almost blocks the whole entrance. At 1 6/T, the stall cell becomes larger, and no fluid can flow into the passage A. The fluid is forced to flow into the adjacent passages. In the passage E, the inlet attack angle decreases, and the flow becomes smooth.However, in the passage B, the inlet attack angle increases, then the blade suction surface produces a separation vortex, gradually developing into another stall cell, which eases the block in the passage A.Therefore, the stall cell in the passage A becomes smaller gradually. At 5 6/T, the streamline in the passage A is smooth, but the flow field in the passage B is completely blocked. This mechanism of the rotating stall is consistent with what described in Emmons et al.[20].

    3.2 Stall characteristics

    In order to determine the propagation speed and direction of the stall cells, the recorded pressure fluctuations on the monitor points P1-P5 are put in the same coordinate frame by transforming the coordinate system, as shown in Fig. 8, where n represents rotor period. At 0. 25Qd, the pressure signals at the points P1-P5 are seen to be fully periodic. The pressure fluctuations on all points have similar periods and amplitudes. But, they have a phase difference, because the stall cells propagate in a circular direction in the impeller. The numbers of stall cells can be calculated as follow

    From Fig. 8(a), TCR=3TOSC. Consequently, the number of the stall cells is 3. They propagate from P1-P5 through P2, P3 and P4. In the relative coordinate system, the stall cells rotate in the opposite direction of the impeller rotation. When the flow rate is increased to 0. 5 0 Qd, 0. 60Qd, Figs. 8(b), 8(c) show similar pressure fluctuations observed in Fig. 8(a).According to Eq. (2), the number of stall cells is also 3 at 0. 5 0 Qd, 0. 60Qd. The amplitude of the pressure fluctuations at stall point changes little from 0. 25Qd-0. 60Qd, while the periods during the same time are increased.

    A frequency spectrum analysis is carried out for the series of pressure fluctuations to reveal the rotating stall characteristics. Figure 9 shows the frequency domain of the vibration signals obtained at the location P1 at 3 different flow rates. It can be seen that the rotating stall frequency ( fstall) is obviously the dominant frequency, much lower than the rotational frequency. At 0. 2 5 Qd, fstallis 2.4 Hz. While at 0. 5 0 Qd, 0. 6 0Qdshown in Figs. 8(b), 8(c), fstallis 1.73 Hz, 1.4 Hz, respectively.

    The propagation speed of the stall cells (ωS) is determined by the angle of the pressure field rotation(Δθ) and the duration of this angle of the pressure field rotation (Δt). Consequently

    According to Eq. (3), at 0. 25Qd, the propagation speed of the stall cells is 5.03 rad/s, which is 8% of the rotor speed. While at 0. 5 0 Qd, 0. 60Qdshown in Figs. 9(a), 9(c), it is 3.8% (3.62 rad/s), 1.68% (3.11 rad/s),respectively. Therefore, it can be concluded that the rotating stall frequency is different at different flow rates. With the decrease of the flow rate, the amplitude of the pressure fluctuations tends to be larger, the propagation speed and the rotating stall frequency are lower, but the number remains the same.

    Fig. 9 Pressure fluctuation frequencies

    4. Conclusions

    The results show that the alternative stall occurs in the impeller with 6 blades, while the rotating stall is observed in that with 5 blades. The conclusions can be obtained as follows:

    (1) For the alternative stall, the stall cells are fixed relative to the impeller, but a large vortex in the stalled passage is always swaying. The outlet vortex is generated from it, and then develops and sheds periodically. The pressure fluctuation caused by the outlet vortex motion, acting on the blades, appears as a “broadband” with a high frequency. Further, the large vortex shows an obvious life cycle including decay, split, mergence and growth, which results in a low frequency compared with the impeller passing frequency. With the decrease of the flow rate, the amplitude of the low frequency fluctuation tends to be larger, but the “broadband” with a high frequency keeps almost the same.

    (2) For the rotating stall, the stall cells first occur in the suction side of the blade. With the growth of the stall cells, the block area gradually increases until the inlet region is almost blocked, then moves to the pressure side with a continuous decay. When the rotating stall occurs, the amplitude of the pressure fluctuation is much larger than that under the alternative stall condition. The propagation of the stall cells has a significant effect on the pressure fluctuations in the impeller. The dominant frequency of the pressure fluctuation on the blade is the rotating stall frequency. With the decrease of the flow rate, the amplitude of the pressure fluctuations changes little,while the rotating stall frequency decreases.

    猜你喜歡
    陳婷佩劍
    我國女子佩劍技戰(zhàn)術打法特征及發(fā)展趨勢探究
    當代體育(2021年37期)2021-11-27 13:19:42
    Germs May Make Us Ill
    一個非終止7F6-級數(shù)求和公式的q-模擬
    駐村隊里的手搟面
    黃河之聲(2019年1期)2019-03-30 03:36:16
    Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions *
    Investigation of rotating stall for a centrifugal pump impeller using various SGS models*
    全國首對肺移植戀人:以愛的刺青銘記你
    How to improve the oral English communication level of rural students
    我國男子佩劍運動員比賽中進攻技術統(tǒng)計分析
    擊劍體驗課
    51午夜福利影视在线观看| 亚洲在线自拍视频| 大陆偷拍与自拍| 日韩国内少妇激情av| 国产区一区二久久| 人成视频在线观看免费观看| 国产精品影院久久| 国产免费男女视频| 中出人妻视频一区二区| av超薄肉色丝袜交足视频| 国产精品二区激情视频| 97碰自拍视频| 国产亚洲精品av在线| 熟女少妇亚洲综合色aaa.| 午夜福利免费观看在线| 久久欧美精品欧美久久欧美| 国产精品99久久99久久久不卡| 啦啦啦观看免费观看视频高清 | 久久精品亚洲精品国产色婷小说| 国产成人一区二区三区免费视频网站| 国产一区在线观看成人免费| av片东京热男人的天堂| 国产亚洲精品久久久久5区| 黑人巨大精品欧美一区二区蜜桃| 国内精品久久久久精免费| 国产高清有码在线观看视频 | 亚洲黑人精品在线| 日韩欧美国产一区二区入口| 久久午夜综合久久蜜桃| 淫秽高清视频在线观看| 亚洲伊人色综图| 亚洲va日本ⅴa欧美va伊人久久| 这个男人来自地球电影免费观看| 国产一区二区三区综合在线观看| 老司机在亚洲福利影院| 人妻丰满熟妇av一区二区三区| 亚洲国产欧美网| 久久久久国产精品人妻aⅴ院| 999精品在线视频| av在线播放免费不卡| 麻豆成人av在线观看| 国产人伦9x9x在线观看| 中文字幕高清在线视频| 免费一级毛片在线播放高清视频 | 一二三四社区在线视频社区8| 97人妻天天添夜夜摸| 久久久久精品国产欧美久久久| 女警被强在线播放| 视频在线观看一区二区三区| 国产一区二区三区综合在线观看| 国产一区在线观看成人免费| 纯流量卡能插随身wifi吗| 国产精品国产高清国产av| 在线播放国产精品三级| 免费在线观看黄色视频的| 国产精华一区二区三区| 精品国产乱码久久久久久男人| 欧美午夜高清在线| 色综合欧美亚洲国产小说| а√天堂www在线а√下载| 十八禁网站免费在线| 日本欧美视频一区| 纯流量卡能插随身wifi吗| 曰老女人黄片| 亚洲国产中文字幕在线视频| 国产极品粉嫩免费观看在线| 免费搜索国产男女视频| 露出奶头的视频| 亚洲视频免费观看视频| 久久人人精品亚洲av| 亚洲 欧美 日韩 在线 免费| 9热在线视频观看99| 91九色精品人成在线观看| 精品国内亚洲2022精品成人| 日本三级黄在线观看| 桃色一区二区三区在线观看| 99香蕉大伊视频| 丝袜人妻中文字幕| 狠狠狠狠99中文字幕| av有码第一页| 欧美一区二区精品小视频在线| 精品国产乱子伦一区二区三区| 久久久久九九精品影院| 中文字幕人妻丝袜一区二区| 亚洲av成人不卡在线观看播放网| 久久久久久久久中文| 精品日产1卡2卡| 一区在线观看完整版| 国产伦人伦偷精品视频| 久久中文看片网| 午夜福利18| 一区二区三区激情视频| 窝窝影院91人妻| 免费久久久久久久精品成人欧美视频| 香蕉国产在线看| 狠狠狠狠99中文字幕| 99国产综合亚洲精品| 啦啦啦 在线观看视频| 国产精品免费一区二区三区在线| 久久精品aⅴ一区二区三区四区| 男女午夜视频在线观看| 男女下面进入的视频免费午夜 | 12—13女人毛片做爰片一| 香蕉久久夜色| 久久国产精品人妻蜜桃| 亚洲一区高清亚洲精品| e午夜精品久久久久久久| 无人区码免费观看不卡| 99精品久久久久人妻精品| 香蕉国产在线看| 在线观看免费日韩欧美大片| a在线观看视频网站| 久久久久久久久久久久大奶| 免费高清视频大片| 啦啦啦免费观看视频1| 亚洲专区中文字幕在线| 老司机在亚洲福利影院| 高清在线国产一区| bbb黄色大片| 久久亚洲真实| 长腿黑丝高跟| 国产不卡一卡二| 又黄又爽又免费观看的视频| 精品久久久久久久人妻蜜臀av | 国产在线精品亚洲第一网站| 人人妻人人澡人人看| 成在线人永久免费视频| 99国产精品免费福利视频| 丁香欧美五月| 亚洲国产欧美日韩在线播放| 午夜成年电影在线免费观看| 在线观看日韩欧美| 午夜免费激情av| 精品久久久久久久毛片微露脸| 一级a爱片免费观看的视频| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲av高清不卡| 香蕉久久夜色| 91精品国产国语对白视频| 欧美另类亚洲清纯唯美| 国产精品美女特级片免费视频播放器 | 亚洲精品在线观看二区| 9热在线视频观看99| 男男h啪啪无遮挡| av天堂久久9| 91麻豆av在线| 国产区一区二久久| 精品熟女少妇八av免费久了| 在线观看免费日韩欧美大片| 人成视频在线观看免费观看| 大陆偷拍与自拍| 欧美黑人欧美精品刺激| 亚洲成av片中文字幕在线观看| 国产免费av片在线观看野外av| 亚洲精品一区av在线观看| 午夜福利高清视频| 咕卡用的链子| xxx96com| 成人18禁在线播放| 欧美中文日本在线观看视频| 国产精品美女特级片免费视频播放器 | 夜夜爽天天搞| 变态另类丝袜制服| 国产又爽黄色视频| 精品一品国产午夜福利视频| av欧美777| 国产av一区二区精品久久| 亚洲激情在线av| 中文字幕人妻丝袜一区二区| 国产一区二区激情短视频| 久久久久久久午夜电影| 久久中文字幕一级| 国产精品,欧美在线| 国产三级在线视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲中文字幕一区二区三区有码在线看 | 亚洲av电影不卡..在线观看| 非洲黑人性xxxx精品又粗又长| 免费搜索国产男女视频| 欧美成人免费av一区二区三区| 国产欧美日韩一区二区精品| 日本vs欧美在线观看视频| 婷婷丁香在线五月| 久久久久精品国产欧美久久久| www.精华液| 午夜福利成人在线免费观看| 日本vs欧美在线观看视频| 精品国产乱子伦一区二区三区| 精品少妇一区二区三区视频日本电影| 又黄又爽又免费观看的视频| 免费看十八禁软件| 欧美色视频一区免费| 美女扒开内裤让男人捅视频| 美国免费a级毛片| 国产亚洲精品第一综合不卡| 国产精品一区二区三区四区久久 | 自线自在国产av| 欧美老熟妇乱子伦牲交| 国产高清有码在线观看视频 | 怎么达到女性高潮| 亚洲精品av麻豆狂野| 久久久久国产精品人妻aⅴ院| 最好的美女福利视频网| 日韩视频一区二区在线观看| 后天国语完整版免费观看| 国产在线精品亚洲第一网站| 在线观看免费视频日本深夜| 欧美老熟妇乱子伦牲交| 欧美日韩福利视频一区二区| 成人精品一区二区免费| 婷婷精品国产亚洲av在线| 叶爱在线成人免费视频播放| 久久香蕉激情| 99精品在免费线老司机午夜| 麻豆久久精品国产亚洲av| 久久久国产精品麻豆| 久久久精品国产亚洲av高清涩受| 久久青草综合色| 亚洲成人免费电影在线观看| 国产野战对白在线观看| 日韩欧美一区视频在线观看| 国产一区二区三区综合在线观看| 久久久久国内视频| 国产区一区二久久| 久久人妻av系列| 9191精品国产免费久久| 黑人巨大精品欧美一区二区mp4| 纯流量卡能插随身wifi吗| 搡老岳熟女国产| 国产一卡二卡三卡精品| 午夜福利免费观看在线| 麻豆国产av国片精品| 欧美国产日韩亚洲一区| 老司机深夜福利视频在线观看| 在线观看www视频免费| 午夜福利欧美成人| 制服丝袜大香蕉在线| 在线观看免费日韩欧美大片| 丰满人妻熟妇乱又伦精品不卡| 久久精品亚洲精品国产色婷小说| 91字幕亚洲| 国产精品日韩av在线免费观看 | 国产亚洲精品一区二区www| 久久国产亚洲av麻豆专区| 精品久久久精品久久久| 少妇粗大呻吟视频| 欧美日本亚洲视频在线播放| 美女午夜性视频免费| 啪啪无遮挡十八禁网站| 美女高潮到喷水免费观看| 女警被强在线播放| 亚洲专区字幕在线| 男女下面进入的视频免费午夜 | 在线视频色国产色| 变态另类丝袜制服| 国产欧美日韩综合在线一区二区| 成人三级做爰电影| 国产精品一区二区免费欧美| 国产熟女xx| 亚洲欧美日韩无卡精品| 国产蜜桃级精品一区二区三区| 视频区欧美日本亚洲| 国产欧美日韩综合在线一区二区| 美女扒开内裤让男人捅视频| 丁香六月欧美| 国产精品乱码一区二三区的特点 | 亚洲av第一区精品v没综合| 久久久久国内视频| 可以在线观看的亚洲视频| 很黄的视频免费| 丝袜美足系列| 少妇粗大呻吟视频| 色综合站精品国产| 久久九九热精品免费| 国产精品永久免费网站| 日日夜夜操网爽| 女人爽到高潮嗷嗷叫在线视频| 日韩国内少妇激情av| 夜夜看夜夜爽夜夜摸| 99国产极品粉嫩在线观看| 国产一卡二卡三卡精品| 老鸭窝网址在线观看| 99久久精品国产亚洲精品| 啦啦啦韩国在线观看视频| 97人妻天天添夜夜摸| 日本 av在线| 免费观看人在逋| 国产成人一区二区三区免费视频网站| 真人做人爱边吃奶动态| 久久国产精品男人的天堂亚洲| 午夜亚洲福利在线播放| 很黄的视频免费| 可以免费在线观看a视频的电影网站| 校园春色视频在线观看| 日日夜夜操网爽| 亚洲精品一卡2卡三卡4卡5卡| 午夜影院日韩av| 久久中文看片网| 高清毛片免费观看视频网站| 日韩大尺度精品在线看网址 | 国产一卡二卡三卡精品| 制服诱惑二区| 精品国产乱子伦一区二区三区| 亚洲伊人色综图| 一夜夜www| 国内久久婷婷六月综合欲色啪| 老司机靠b影院| 亚洲精品中文字幕一二三四区| 多毛熟女@视频| 午夜视频精品福利| 18禁美女被吸乳视频| 国产亚洲欧美精品永久| 国产一区二区三区视频了| 少妇被粗大的猛进出69影院| 国产成年人精品一区二区| 成人亚洲精品一区在线观看| 99riav亚洲国产免费| av片东京热男人的天堂| 中文字幕最新亚洲高清| 午夜日韩欧美国产| 精品不卡国产一区二区三区| 国产三级在线视频| 99热只有精品国产| 久久久久久国产a免费观看| 男女床上黄色一级片免费看| 嫩草影院精品99| 久久久久国内视频| 亚洲成a人片在线一区二区| svipshipincom国产片| 一本综合久久免费| 999精品在线视频| 久久国产精品男人的天堂亚洲| 女生性感内裤真人,穿戴方法视频| 亚洲欧美一区二区三区黑人| 日韩有码中文字幕| 人妻久久中文字幕网| 国产成人免费无遮挡视频| 国产区一区二久久| √禁漫天堂资源中文www| 国产精品野战在线观看| 国语自产精品视频在线第100页| 亚洲精品一区av在线观看| 欧美老熟妇乱子伦牲交| 欧美日韩乱码在线| 欧美另类亚洲清纯唯美| 欧美乱色亚洲激情| 亚洲av五月六月丁香网| 久久久久久人人人人人| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久久毛片微露脸| 久久久久国内视频| 99久久国产精品久久久| 精品久久久久久成人av| netflix在线观看网站| 美女免费视频网站| 国产成人精品无人区| 欧美国产日韩亚洲一区| 亚洲av五月六月丁香网| 国产主播在线观看一区二区| 国产成人精品久久二区二区91| 免费一级毛片在线播放高清视频 | 黄色视频不卡| 大香蕉久久成人网| 香蕉久久夜色| 97碰自拍视频| 久久精品人人爽人人爽视色| 亚洲人成电影免费在线| 久久人妻av系列| 亚洲一区二区三区色噜噜| 在线永久观看黄色视频| 午夜福利在线观看吧| 最近最新中文字幕大全电影3 | av免费在线观看网站| 国产男靠女视频免费网站| 欧美日韩乱码在线| 日本撒尿小便嘘嘘汇集6| 女性被躁到高潮视频| 国产精品影院久久| 国产三级黄色录像| 国产成人精品无人区| 精品欧美一区二区三区在线| 精品福利观看| 欧美日本亚洲视频在线播放| 十八禁网站免费在线| 99国产综合亚洲精品| 久久香蕉激情| 国产1区2区3区精品| 国产男靠女视频免费网站| 在线免费观看的www视频| 大陆偷拍与自拍| 一进一出抽搐动态| 欧美中文日本在线观看视频| 91在线观看av| ponron亚洲| 午夜免费观看网址| 国产精品一区二区精品视频观看| 国产日韩一区二区三区精品不卡| 熟妇人妻久久中文字幕3abv| 一区二区三区高清视频在线| 国产欧美日韩一区二区三区在线| 亚洲 国产 在线| 国产精品,欧美在线| 性色av乱码一区二区三区2| 久99久视频精品免费| 黄片播放在线免费| 国产高清视频在线播放一区| 欧美日韩乱码在线| 免费在线观看亚洲国产| 曰老女人黄片| 午夜福利,免费看| 久99久视频精品免费| 99国产精品99久久久久| 日韩中文字幕欧美一区二区| 欧美黄色片欧美黄色片| 最近最新免费中文字幕在线| 免费在线观看亚洲国产| 伦理电影免费视频| 最新美女视频免费是黄的| 一进一出抽搐gif免费好疼| 天天添夜夜摸| 亚洲天堂国产精品一区在线| 757午夜福利合集在线观看| 自线自在国产av| 大陆偷拍与自拍| 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区mp4| 国产精品,欧美在线| 欧洲精品卡2卡3卡4卡5卡区| 神马国产精品三级电影在线观看 | 别揉我奶头~嗯~啊~动态视频| 欧美一级毛片孕妇| 一级毛片精品| 亚洲精品一区av在线观看| 国产亚洲精品久久久久5区| 少妇的丰满在线观看| 久久精品国产综合久久久| 亚洲欧美日韩无卡精品| 大陆偷拍与自拍| 亚洲欧美激情综合另类| 99国产精品一区二区三区| 国产男靠女视频免费网站| 久久狼人影院| a在线观看视频网站| www.999成人在线观看| 成人特级黄色片久久久久久久| 纯流量卡能插随身wifi吗| 长腿黑丝高跟| 国产单亲对白刺激| 国产精品综合久久久久久久免费 | 色综合亚洲欧美另类图片| 欧美成狂野欧美在线观看| 黄片播放在线免费| 村上凉子中文字幕在线| 久久人妻熟女aⅴ| 桃色一区二区三区在线观看| 免费无遮挡裸体视频| 国产一卡二卡三卡精品| 黄色片一级片一级黄色片| 欧美精品啪啪一区二区三区| 在线天堂中文资源库| 性欧美人与动物交配| 久久 成人 亚洲| 韩国精品一区二区三区| av在线天堂中文字幕| 久久国产精品人妻蜜桃| 亚洲五月色婷婷综合| 啦啦啦 在线观看视频| 久久久久国内视频| 啦啦啦韩国在线观看视频| 搡老岳熟女国产| 久久久久九九精品影院| www.熟女人妻精品国产| 亚洲一区二区三区色噜噜| 亚洲av日韩精品久久久久久密| 法律面前人人平等表现在哪些方面| 美国免费a级毛片| 亚洲少妇的诱惑av| 久久亚洲真实| www.精华液| 午夜精品国产一区二区电影| 90打野战视频偷拍视频| 制服丝袜大香蕉在线| 亚洲成国产人片在线观看| 丁香六月欧美| 欧美日本亚洲视频在线播放| 亚洲性夜色夜夜综合| 桃红色精品国产亚洲av| 可以在线观看毛片的网站| 老熟妇仑乱视频hdxx| 欧美日本中文国产一区发布| 国产熟女午夜一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 久久婷婷成人综合色麻豆| 99在线人妻在线中文字幕| 国产av又大| 国产99久久九九免费精品| 巨乳人妻的诱惑在线观看| 日日干狠狠操夜夜爽| 久久国产精品影院| av在线播放免费不卡| 香蕉国产在线看| 亚洲国产中文字幕在线视频| 日日摸夜夜添夜夜添小说| 亚洲欧美精品综合一区二区三区| 在线永久观看黄色视频| 国产精品秋霞免费鲁丝片| 久久国产精品影院| 久久精品人人爽人人爽视色| 国产亚洲欧美98| 亚洲av片天天在线观看| 久久狼人影院| 一边摸一边抽搐一进一小说| 免费在线观看日本一区| 国产精品香港三级国产av潘金莲| 99精品久久久久人妻精品| 在线观看66精品国产| 99热只有精品国产| 波多野结衣一区麻豆| 亚洲专区国产一区二区| 十八禁网站免费在线| 大码成人一级视频| 久久国产亚洲av麻豆专区| 久久久久久人人人人人| 亚洲中文av在线| 久久久久精品国产欧美久久久| 999精品在线视频| 国产精品久久久久久精品电影 | 日韩欧美一区视频在线观看| 国产精品久久久久久人妻精品电影| 91老司机精品| 日韩 欧美 亚洲 中文字幕| 午夜精品久久久久久毛片777| 99久久99久久久精品蜜桃| 国产精品,欧美在线| 很黄的视频免费| 亚洲全国av大片| 亚洲国产精品成人综合色| 免费一级毛片在线播放高清视频 | 波多野结衣一区麻豆| 老熟妇乱子伦视频在线观看| 亚洲激情在线av| 狂野欧美激情性xxxx| 成人av一区二区三区在线看| 嫁个100分男人电影在线观看| 久久精品国产综合久久久| 国产精品一区二区三区四区久久 | 好男人电影高清在线观看| 99国产精品一区二区蜜桃av| 久久青草综合色| 国产精品一区二区三区四区久久 | 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放 | 国产乱人伦免费视频| 人人妻人人爽人人添夜夜欢视频| 亚洲男人的天堂狠狠| 国产精品影院久久| 99香蕉大伊视频| 色老头精品视频在线观看| 亚洲精品美女久久久久99蜜臀| 久久香蕉激情| 久久婷婷成人综合色麻豆| 免费看美女性在线毛片视频| 欧美最黄视频在线播放免费| 日韩欧美一区视频在线观看| 国内精品久久久久久久电影| 欧美亚洲日本最大视频资源| 91av网站免费观看| 国产99久久九九免费精品| 日韩成人在线观看一区二区三区| 香蕉丝袜av| 一本综合久久免费| 欧美黄色片欧美黄色片| 老司机福利观看| 少妇熟女aⅴ在线视频| 日韩欧美免费精品| 亚洲欧美日韩高清在线视频| 国产私拍福利视频在线观看| 久久精品国产99精品国产亚洲性色 | 在线天堂中文资源库| 国产日韩一区二区三区精品不卡| 久久国产乱子伦精品免费另类| 免费久久久久久久精品成人欧美视频| 一进一出抽搐gif免费好疼| 免费看十八禁软件| 两个人看的免费小视频| 中文亚洲av片在线观看爽| 国产精品爽爽va在线观看网站 | 手机成人av网站| av在线播放免费不卡| 精品国产乱码久久久久久男人| 大码成人一级视频| 在线观看www视频免费| 男女下面进入的视频免费午夜 | 精品久久蜜臀av无| 国产精品亚洲一级av第二区| 在线观看一区二区三区| 性欧美人与动物交配| 亚洲五月色婷婷综合| 两个人视频免费观看高清| 国产激情欧美一区二区| 婷婷六月久久综合丁香| 免费在线观看黄色视频的| 黄网站色视频无遮挡免费观看| 午夜福利免费观看在线| 欧美国产日韩亚洲一区| 村上凉子中文字幕在线| 午夜精品在线福利| 妹子高潮喷水视频| 两个人视频免费观看高清| 熟妇人妻久久中文字幕3abv| 亚洲熟妇熟女久久| 精品久久久久久成人av| 亚洲第一青青草原| 亚洲情色 制服丝袜| 欧美激情极品国产一区二区三区|