• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An integral calculation approach for numerical simulation of cavitating flow around a marine propeller behind the ship hull *

    2019-01-05 08:09:08ChengzaoHan韓承灶YunLong龍?jiān)?/span>BinJi季斌XinpingLong龍新平ZhirongZhang張志榮
    關(guān)鍵詞:龍?jiān)?/a>新平

    Cheng-zao Han (韓承灶), Yun Long (龍?jiān)疲? Bin Ji (季斌), Xin-ping Long (龍新平),Zhi-rong Zhang (張志榮)

    1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

    2. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

    3. National Key Laboratory on Ship Vibration and Noise, China Ship Scientif i c Research Center, Wuxi 214082,China

    Abstract: In this paper, the unsteady cavitating turbulent flow around a marine propeller is simulated based on the unsteady Reynolds averaged Navier-Stokes (URANS) with emphasis on the hull-propeller interaction by an integral calculation approach, which means the propeller and hull are treated as a whole when the cavitating flow is calculated. The whole calculational domain is split to an inner rotating domain containing a propeller and an outer domain containing a hull. And the two split sections are connected together in ANSYS CFX by using the GGI interfaces and the transient rotor stator frame change/mixing model. The alternate rotation model is employed for the advection term in the momentum equations in order to reduce the numerical error. Comparison of predictions with measurements shows that the propeller thrust coefficient can be predicted satisfactorily. The unsteady cavitating flow around the propeller behind the ship hull wake shows quasi-periodic features including cavity inception, growth and shrinking. These features are effectively reproduced in the simulations which compare well to available experimental data. In addition, significant pressure fluctuations on the ship hull surface induced by the unsteady propeller cavitation are compared with experimental data at monitoring points on the hull surface. The predicted amplitudes of the first components corresponding to the first blade passing frequencies match well with the experimental data. The maximum error between the predictions and the experimental data for the pressure pulsations is around 8%, which is acceptable in most engineering applications.

    Key words: Integral calculation approach, cavitating flow, hull-propeller interactions, pressure fluctuations

    Cavitation is a major concern that influences propeller performance due to abrasion, vibrations, and noise as a complex unsteady phenomenon. The increasing requirement to improve ship propulsion efficiency and safety is limited by the cavitation effects. The cavitation around the propeller is mainly characterized by sheet cavitation at the leading edge of the blade and by intense tip vortex cavitation. There is, thus, a need both for better cavitation prediction and for improved analytical tools.

    Experimental observations can show numerous visual phenomena but suffer from restrictions on measurement flexibility. Thus, the whole flow field CFD models can be a useful supplement to experimental data. There have been numerous numerical simulations of cavitation to obtain deeper understandings of transient cavitating turbulent flow effects.Cheng et al.[1]used a filter-based density correction turbulence model to reveal the interaction between cavitation and vortices. Wu et al.[2]used the -kω SST turbulence model and the Zwart cavitation model to simulate unsteady cavitating flows around a single marine propeller. The periodic cavitation development was well captured and the periodic pressure fluctuations were analyzed. They pointed out that the high sound pressures were focused on the lower-order blade passing frequencies for the non-cavitating case,but in cavitating flows, the sound pressures induced by cavitation was higher in the high frequency stage.The Roe scheme was split into five parts by Li and Li[3]and they investigated the role of these parts in the turbulence at a low Mach number. They then presented a modified all-speed Roe scheme for the LES method that calculated well even with a coarse grid.Long et al.[4]used the LES method to model an unsteady cavitating flow with the Euler–Lagrangian coupling investigation to analyze the relationship between the cavitation and the vortices. Their results indicated that cavitation promoted the vortex generation and flow instabilities. Lu et al.[5]simulated cavitating flow around two propellers mounted on the end of a tilted shaft in open water. Their simulated results, supported by experiments, showed that LES was able to correctly capture the cavitation development with very good wall resolution needed to correctly capture the cavitation details on the blade.Rhee[6]used a cavitation model coupled with a single-fluid multi-phase flow method to predict cavitating flow around a single propeller in open water. They accurately predicted the hydrodynamic performance of the marine propeller for the noncavitating case. For the cavitating case, comparisons with measured data showed that the method captured many details of the cavitating flows such as the cavitation inception and the cavity shape over the blade. Ji et al.[7]used the partially-averaged Navier-Stokes (PANS) computational model to predict the cavitating flow around a propeller without a hull in a non-uniform wake. The PANS method predicted the fluctuations of the large cavity volume as the blade moved through the wake field better than RANS models using the -kε and -kω SST turbulence models. They confirmed that the whole cavitating flow development process around the propeller could be well reproduced by the PANS method. Di Mascio et al.[8]used detached eddy simulations (DES) to study the wake instabilities around a marine propeller in an oblique flow and purely axisymmetric flow for different loading conditions. They pointed out that the roles of the secondary vorticity which was along the streamwise direction and the hub vortex were crucial in oblique flow. However, they neglected the interaction between the ship and the propeller. Ji et al.[9]simulated the open water characteristics of a marine propeller without considering the hullpropeller interactions. They used a mass transfer cavitation model and the -kω SST turbulence model to predict the thrust and torque coefficients as well as the pressure fluctuations for a highly skewed marine propeller. The predicted hydrodynamic performance agreed well with experimental results and the dominant components of the pressure fluctuation amplitudes were satisfactorily predicted.However, all these studies treated an isolated propeller without the effect of the hull with the complex hull-propeller interactions simplified to a propeller operating with a non-uniform inlet velocity.

    This study used an integral calculation approach to calculate the propeller and hull together. URANS is employed to model the cavitating flow field around a model propeller with emphasis on the hull-propeller interactions. For both the steady non-cavitating and unsteady cavitating calculations, the turbulent flows were calculated by using the -kω SST turbulence model and the Zwart cavitation model with the whole grid containing a propeller and a hull. This letter compares the predictions with experimental data with a detailed analysis of the variations ofTK , the pressure fluctuations and the cavity evolution around the propeller behind the hull.

    The marine propeller was based on experiments at the China Ship Scientific Research Center (CSSRC)with the propeller mounted on the stern of a ship located in a large cavitation channel. The propeller diameter at the blade tip,mD, was 252.63 mm, the design waterline length,WLL , was 9 m, and the width B was about 1.35 m.

    The unsteady turbulent flow simulations around the marine propeller behind a hull used a computational domain including the full flow passage with a propeller and a hull as shown in Fig. 1. The domain inlet was locatedWL1L upstream of the bow with the outlet locatedWL2L downstream of the stern. Along the -Z axis direction, the distance between the ship surface and the computational domain side surface wasWL1L . The whole calculation domain was divided into two parts to simplify the mesh generation.

    Fig. 1 Boundary conditions and computational domain

    The calculational grid was composed of all hexahedra as shown in Fig. 2. The inner field 1in diameter was a rotating field containing the7propeller.The computational grid with about 1.33×10 cells was well refined in the inner domain which would include the unsteady flow and the cavitation. The outer domain was a rectangular static domain including the hull whose grid had about 1.52×107cells. The two split sections of the computational domain were connected together in ANSYS CFX by using the GGI interfaces and the transient rotor stator frame change/mixing model. The mesh around propeller was quite dense while the mesh further away was sparser to improve the prediction accuracy while reducing the computational resources. The mesh transition from the dense zone to the sparse is fairly soothing. The final grid had about 2.85×107cells. The interactions between the propeller and the hull were well predicted by the high-quality hexahedral grid containing the whole propeller and hull. Besides, it should be noted that the alternate rotation model was employed for the advection term in the momentum equations in order to reduce the numerical error.

    The boundary conditions for the cavitating flow simulation has a uniform inlet velocity of =U 6.5 m/s at the domain inlet with the pressure at the domain outlet defined to coincide with the experimental conditions of a cavitation number0.3397. The Reynolds number based on velocity at inlet and chord at 70% span was held at 1.39×106. The propeller rotational speed n is 28 resolutions per second. The no slip wall conditions were applied on the blade surface, the hub and the hull surface. The bottom surface and the side surfaces of the computational domain were all regarded as free slip walls with the free liquid surface set as a symmetry plane.

    In the case of unsteady simulation, 5° per timestep was selected for the first ten revolutions, and then 1° per time-step was set for the next ten revolutions.The residual convergence criterion for the calculation was set as 10-3with the maximal 40 inner iterations.

    Fig. 2 Outline of the mesh for the hull surface and a partial view of the mesh around the stern and the bow

    The accuracy of the unsteady simulation and the hull-propeller interaction were validated based on the cavitation patterns predicted using the whole grid containing the propeller and the hull. The predicted time-dependent cavitation patterns as the propeller rotates are compared with the experimental observations in Fig. 3, where the top row shows the experimental results and the bottom row shows the predictions. The cavitation patterns are visualized by an iso-surface of=1. The figure displays five snapshots for blade position angles from -10°-50° from vertical. As the propeller approaches the hull wake region, the cavity begins to grow from the blade leading edge. Then, a sheet cavity grows across a large span and develops downstream as the propeller rotates into the wake region. Then, the cavity begins to shrink towards the blade tip as the blade leaves the wake and the tip vortex cavity grows downstream.Thus, the simulation can accurately capture the unsteady cavitation patterns and their development around the propeller is well reproduced. The results show how the cavitation evolution on the propeller is affected by the ship hull wake. Thus, the whole region containing the propeller and the hull has to be modeled to reasonably show the interactions between the hull and the propeller.

    Fig. 3 (Color online) Comparison of the experimental and calculated cavitation patterns during propeller rotation with the angle measured from vertical

    The predicted and measured thrust coefficients,, and the error listed in Table 1 agree quite well.

    Table 1 Predicted and measured thrust coefficients

    Fig. 4 Pressure monitoring points on the hull

    The distribution of the monitoring points on the hull surface is shown in Fig. 4. The predicted and measured first blade passing frequencies of the pressure pulsations at these monitoring points are then shown in Fig. 5. Since the monitoring points are at the cavitation locations, the pressure fluctuations on the hull are due to the propeller cavitation. The predicted and measured pressure fluctuations agree well which validates the simulation accuracy. The maximum difference in the first blade passing frequency between the predictions and the measurements is 8%, which is acceptable in most engineering applications. Thus, the results validate the reliability of the simulations and illustrate how the hull-propeller interactions affect the cavitation and the pressure fluctuation.

    Fig. 5 Calculated and experimental first blade frequency components of the pressure fluctuations at monitoring points P1-P3

    This analysis used the -kω SST turbulence model with the Zwart cavitation model to predict the unsteady turbulent cavitating flow around a marine propeller behind a hull. The model included the hull-propeller interactions with the propeller and the hull modeled together to predict the cavitating flow.The experi- mentally observed cavitation patterns, the thrust coefficient as well as the pressure fluctuations are well predicted by integral calculation approach.The main conclusions are:

    (1) The transient cavitating turbulent flow and the cavity patterns on the marine propeller affected by the ship hull wake are satisfactorily predicted, including cavity inception, growth and shrinking induced by the non-uniform hull wake. The predicted cavitation patterns and evolution agree well with the experiments.

    (2) The prediction accuracy was evaluated based on comparisons of the predicted thrust coefficients and pressure fluctuations with available experimental results. The results show that the pressure fluctuations at various monitoring points impacted by the cavitating flow agree fairly well with the experimental data.Thus, the present method that models the propeller and the hull together can be used to reliably predict the pressure fluctuations.

    More work is needed to reliably simulate the cavitating flow around a marine propeller behind a hull due to the very complex flow structure when treating the propeller and the hull as one system.Verification and validation (V&V)[10]is a systematic methodology used to assess the accuracy of numerical simulations. Thus, V&V will be used to estimate the reliability of numerical results when simulating complex flows. The grid independence of the results must also be included with V&V. Our future work will include a V&V study of the complex cavitating flow around a propeller and hull system. In addition, more analysis methods are needed to further understand the complex cavitating flow around a propeller behind the hull, such as the cavitation-vortex interactions[11-12].Our future work will also focus on studying the cavitating flow around a marine propeller behind the hull with the free surface of ship.

    猜你喜歡
    龍?jiān)?/a>新平
    幼兒園里歡樂(lè)多
    幼兒園(2021年18期)2021-12-06 02:45:42
    小螞蟻去游玩
    幼兒園(2021年16期)2021-12-06 01:06:48
    老腔唱新歌
    金秋(2021年22期)2021-03-10 07:59:16
    出滇抗戰(zhàn)時(shí)期龍?jiān)茖?duì)滇軍的治理研究
    創(chuàng)造(2020年6期)2020-11-20 05:58:42
    讓蘑菇
    幼兒園(2020年3期)2020-03-27 07:00:07
    劉新平 油畫作品
    URANS simulations of the tip-leakage cavitating flow with verification and validation procedures *
    你總是給我力量
    Some notes on numerical simulation and error analyses of the attached turbulent cavitating flow by LES *
    Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil*
    久久国产精品男人的天堂亚洲| 国产精华一区二区三区| 久久中文看片网| 老汉色∧v一级毛片| 久久热在线av| 亚洲色图 男人天堂 中文字幕| 一进一出好大好爽视频| 国产97色在线日韩免费| 制服丝袜大香蕉在线| 日本五十路高清| 不卡av一区二区三区| 日本在线视频免费播放| 午夜精品在线福利| 亚洲av日韩精品久久久久久密| 精品电影一区二区在线| netflix在线观看网站| 最新在线观看一区二区三区| 亚洲一码二码三码区别大吗| 啦啦啦免费观看视频1| 日韩中文字幕欧美一区二区| 久久热在线av| 精品无人区乱码1区二区| 男女下面插进去视频免费观看| 91麻豆精品激情在线观看国产| 精品国产国语对白av| 首页视频小说图片口味搜索| 免费搜索国产男女视频| 亚洲精品美女久久av网站| www.自偷自拍.com| 欧美激情久久久久久爽电影 | 麻豆av在线久日| 99精品在免费线老司机午夜| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区激情短视频| 神马国产精品三级电影在线观看 | a级毛片在线看网站| 国产一区二区三区综合在线观看| 久久婷婷人人爽人人干人人爱 | 国产一区二区三区综合在线观看| 亚洲av成人不卡在线观看播放网| 一本综合久久免费| www.熟女人妻精品国产| 麻豆国产av国片精品| 欧美日韩乱码在线| 男女下面进入的视频免费午夜 | 久久久国产精品麻豆| 亚洲美女黄片视频| 一级a爱视频在线免费观看| 亚洲欧洲精品一区二区精品久久久| 国产极品粉嫩免费观看在线| 51午夜福利影视在线观看| 国产91精品成人一区二区三区| 好男人电影高清在线观看| 色婷婷久久久亚洲欧美| 成人18禁高潮啪啪吃奶动态图| 免费在线观看黄色视频的| 亚洲一码二码三码区别大吗| 十八禁网站免费在线| 久久久久亚洲av毛片大全| 亚洲欧美精品综合一区二区三区| 久久青草综合色| 成熟少妇高潮喷水视频| 国产色视频综合| 日本 av在线| 悠悠久久av| 亚洲va日本ⅴa欧美va伊人久久| 校园春色视频在线观看| 久久九九热精品免费| 亚洲狠狠婷婷综合久久图片| 波多野结衣av一区二区av| 亚洲精品国产区一区二| 国产亚洲精品av在线| 首页视频小说图片口味搜索| 欧美色视频一区免费| 久久久精品欧美日韩精品| 男女午夜视频在线观看| 中文字幕av电影在线播放| 免费久久久久久久精品成人欧美视频| 香蕉国产在线看| 免费看美女性在线毛片视频| 岛国视频午夜一区免费看| 97碰自拍视频| 欧美成人午夜精品| 看黄色毛片网站| 亚洲精品国产一区二区精华液| 给我免费播放毛片高清在线观看| 国产欧美日韩精品亚洲av| 韩国精品一区二区三区| 亚洲一区中文字幕在线| 欧美成人免费av一区二区三区| 99在线人妻在线中文字幕| 丝袜在线中文字幕| 天天一区二区日本电影三级 | 无限看片的www在线观看| 亚洲精品国产一区二区精华液| 久久精品91无色码中文字幕| 深夜精品福利| 人人妻人人澡欧美一区二区 | 亚洲色图av天堂| 精品高清国产在线一区| 亚洲av电影不卡..在线观看| 波多野结衣一区麻豆| 国产成人精品在线电影| 日韩欧美一区视频在线观看| 色婷婷久久久亚洲欧美| 精品电影一区二区在线| 不卡一级毛片| 日本免费a在线| 男人操女人黄网站| 在线观看免费视频网站a站| 妹子高潮喷水视频| 手机成人av网站| 又黄又粗又硬又大视频| 国产成人啪精品午夜网站| 琪琪午夜伦伦电影理论片6080| 97人妻精品一区二区三区麻豆 | 法律面前人人平等表现在哪些方面| 国产成人啪精品午夜网站| 级片在线观看| 国产成人av激情在线播放| 中文字幕久久专区| 9191精品国产免费久久| 好看av亚洲va欧美ⅴa在| 无限看片的www在线观看| www日本在线高清视频| 国产精品国产高清国产av| 亚洲国产高清在线一区二区三 | 天堂影院成人在线观看| 午夜成年电影在线免费观看| 夜夜躁狠狠躁天天躁| 制服人妻中文乱码| 国产成人av教育| 制服诱惑二区| 国产欧美日韩精品亚洲av| 久久精品aⅴ一区二区三区四区| 99久久久亚洲精品蜜臀av| 久久久久久人人人人人| 国产亚洲精品久久久久久毛片| 欧美不卡视频在线免费观看 | 久久青草综合色| 国产aⅴ精品一区二区三区波| 国产区一区二久久| 欧美在线一区亚洲| 天天添夜夜摸| 欧美黑人精品巨大| 国产av在哪里看| 精品电影一区二区在线| 亚洲中文日韩欧美视频| 正在播放国产对白刺激| 女警被强在线播放| 午夜福利视频1000在线观看 | 精品久久蜜臀av无| 久久亚洲真实| 久久人妻熟女aⅴ| 午夜福利免费观看在线| 人人妻人人爽人人添夜夜欢视频| 妹子高潮喷水视频| 天天一区二区日本电影三级 | 国产精品亚洲一级av第二区| 国产精品98久久久久久宅男小说| 一区二区三区国产精品乱码| 日本vs欧美在线观看视频| 欧美在线一区亚洲| 女生性感内裤真人,穿戴方法视频| 一级a爱片免费观看的视频| 精品福利观看| 精品国内亚洲2022精品成人| 天堂影院成人在线观看| 少妇的丰满在线观看| 欧美日韩福利视频一区二区| 免费高清在线观看日韩| 在线免费观看的www视频| 国产一区二区三区视频了| 一边摸一边抽搐一进一出视频| 热re99久久国产66热| 两个人看的免费小视频| 麻豆国产av国片精品| 国产色视频综合| 一区二区三区精品91| 最近最新免费中文字幕在线| 国产精品精品国产色婷婷| 啦啦啦 在线观看视频| 亚洲激情在线av| 欧美在线黄色| 黑人巨大精品欧美一区二区蜜桃| 麻豆成人av在线观看| 欧美乱色亚洲激情| 日日爽夜夜爽网站| 两个人看的免费小视频| www.熟女人妻精品国产| 午夜成年电影在线免费观看| aaaaa片日本免费| 精品欧美国产一区二区三| 日本免费a在线| 国产又色又爽无遮挡免费看| 国产av一区二区精品久久| 久久亚洲精品不卡| av视频免费观看在线观看| 久久精品91蜜桃| 国产精品98久久久久久宅男小说| 激情在线观看视频在线高清| 精品国产国语对白av| 久久 成人 亚洲| 少妇的丰满在线观看| 久久久久久亚洲精品国产蜜桃av| 国产亚洲欧美98| tocl精华| 亚洲五月婷婷丁香| 久久精品国产亚洲av高清一级| 叶爱在线成人免费视频播放| 久久中文字幕人妻熟女| 午夜福利一区二区在线看| 成人三级黄色视频| 亚洲全国av大片| 老熟妇仑乱视频hdxx| 久久精品91蜜桃| 老汉色∧v一级毛片| 少妇熟女aⅴ在线视频| 欧美中文综合在线视频| 校园春色视频在线观看| 99久久综合精品五月天人人| 18禁黄网站禁片午夜丰满| 亚洲成av人片免费观看| 99riav亚洲国产免费| 在线观看午夜福利视频| 久久天躁狠狠躁夜夜2o2o| 欧美在线一区亚洲| 在线观看日韩欧美| 日韩欧美在线二视频| 看黄色毛片网站| 国产精品亚洲一级av第二区| 国产野战对白在线观看| 他把我摸到了高潮在线观看| 露出奶头的视频| a在线观看视频网站| 日韩一卡2卡3卡4卡2021年| 免费久久久久久久精品成人欧美视频| 久久国产亚洲av麻豆专区| 亚洲国产精品合色在线| 老熟妇仑乱视频hdxx| 美女午夜性视频免费| 琪琪午夜伦伦电影理论片6080| 夜夜爽天天搞| 国产麻豆成人av免费视频| 欧美久久黑人一区二区| 亚洲国产欧美网| 国产高清视频在线播放一区| 两个人免费观看高清视频| 国产av精品麻豆| tocl精华| 午夜成年电影在线免费观看| 搡老熟女国产l中国老女人| 999久久久精品免费观看国产| 国产午夜福利久久久久久| 国产精品久久久av美女十八| 日本精品一区二区三区蜜桃| 国产欧美日韩精品亚洲av| 51午夜福利影视在线观看| 日本一区二区免费在线视频| 午夜成年电影在线免费观看| 国产熟女xx| 丝袜在线中文字幕| 99re在线观看精品视频| 色综合站精品国产| 国产精华一区二区三区| 狂野欧美激情性xxxx| 久久 成人 亚洲| 国产精品亚洲一级av第二区| 日韩成人在线观看一区二区三区| 国产一区二区激情短视频| 少妇被粗大的猛进出69影院| 免费女性裸体啪啪无遮挡网站| 国产成人av教育| 九色国产91popny在线| av电影中文网址| 成人av一区二区三区在线看| 少妇被粗大的猛进出69影院| 欧美激情高清一区二区三区| 日韩有码中文字幕| 最近最新中文字幕大全电影3 | 亚洲一码二码三码区别大吗| 精品无人区乱码1区二区| 亚洲在线自拍视频| 亚洲 欧美 日韩 在线 免费| 婷婷六月久久综合丁香| 国内毛片毛片毛片毛片毛片| 亚洲五月天丁香| 成人三级做爰电影| 国产亚洲精品av在线| 亚洲三区欧美一区| 97人妻精品一区二区三区麻豆 | 亚洲欧美激情在线| 欧美在线黄色| 久久人妻福利社区极品人妻图片| 后天国语完整版免费观看| 国产精品一区二区在线不卡| 无限看片的www在线观看| 此物有八面人人有两片| 精品人妻在线不人妻| 亚洲九九香蕉| 免费在线观看黄色视频的| 人人澡人人妻人| 日韩有码中文字幕| 国产亚洲欧美精品永久| 超碰成人久久| 亚洲伊人色综图| АⅤ资源中文在线天堂| 黄片大片在线免费观看| svipshipincom国产片| 超碰成人久久| 亚洲自拍偷在线| 亚洲狠狠婷婷综合久久图片| 一区在线观看完整版| 日韩欧美国产在线观看| 手机成人av网站| 国产蜜桃级精品一区二区三区| 51午夜福利影视在线观看| 老司机午夜十八禁免费视频| 免费观看精品视频网站| 又紧又爽又黄一区二区| 一区福利在线观看| 男女之事视频高清在线观看| 精品无人区乱码1区二区| 中文字幕久久专区| 欧美日韩黄片免| 日韩欧美三级三区| 丝袜人妻中文字幕| 正在播放国产对白刺激| 欧美不卡视频在线免费观看 | 亚洲人成电影免费在线| 久久国产精品人妻蜜桃| 在线观看免费视频日本深夜| 国产蜜桃级精品一区二区三区| 国内毛片毛片毛片毛片毛片| av福利片在线| 国产成人av激情在线播放| 精品国产超薄肉色丝袜足j| 久久天堂一区二区三区四区| 一边摸一边抽搐一进一小说| 在线播放国产精品三级| 精品国产国语对白av| 亚洲精品在线观看二区| 亚洲人成77777在线视频| 老司机午夜十八禁免费视频| 国产亚洲精品综合一区在线观看 | 欧美人与性动交α欧美精品济南到| 亚洲天堂国产精品一区在线| 欧美国产精品va在线观看不卡| 欧美在线黄色| 一个人观看的视频www高清免费观看 | 国产成人精品久久二区二区免费| 色婷婷久久久亚洲欧美| 亚洲美女黄片视频| 最近最新中文字幕大全免费视频| 亚洲avbb在线观看| 不卡av一区二区三区| av中文乱码字幕在线| 91av网站免费观看| 非洲黑人性xxxx精品又粗又长| 精品卡一卡二卡四卡免费| 女人高潮潮喷娇喘18禁视频| 黄色视频,在线免费观看| 成年女人毛片免费观看观看9| 亚洲午夜精品一区,二区,三区| 亚洲av成人不卡在线观看播放网| 女性生殖器流出的白浆| 免费在线观看亚洲国产| 香蕉久久夜色| 亚洲第一av免费看| 男女下面插进去视频免费观看| 黄色丝袜av网址大全| 999久久久精品免费观看国产| 亚洲精品粉嫩美女一区| 免费在线观看亚洲国产| 成人永久免费在线观看视频| 欧美av亚洲av综合av国产av| 大型av网站在线播放| 多毛熟女@视频| 国产成人欧美| 欧美日韩中文字幕国产精品一区二区三区 | 久久人妻熟女aⅴ| 成人三级做爰电影| 国产精品99久久99久久久不卡| 久久精品国产亚洲av香蕉五月| 丝袜人妻中文字幕| 精品久久久久久久久久免费视频| 亚洲成人久久性| 免费高清视频大片| 三级毛片av免费| 淫妇啪啪啪对白视频| 搞女人的毛片| 丁香欧美五月| 91av网站免费观看| 国产激情久久老熟女| 热re99久久国产66热| 好男人电影高清在线观看| 日本精品一区二区三区蜜桃| 久久中文字幕一级| 自拍欧美九色日韩亚洲蝌蚪91| 精品福利观看| 国产精品一区二区三区四区久久 | 日韩欧美一区二区三区在线观看| 午夜免费激情av| 91精品国产国语对白视频| 涩涩av久久男人的天堂| 亚洲五月天丁香| 精品第一国产精品| ponron亚洲| 男女之事视频高清在线观看| 国产激情久久老熟女| 999久久久精品免费观看国产| 国产精品爽爽va在线观看网站 | 国产一区二区三区综合在线观看| av片东京热男人的天堂| 亚洲一区中文字幕在线| 午夜福利,免费看| 一进一出抽搐动态| 国产免费男女视频| 亚洲激情在线av| 在线观看日韩欧美| 美国免费a级毛片| 欧美午夜高清在线| 免费在线观看黄色视频的| 一本大道久久a久久精品| 麻豆国产av国片精品| 91精品国产国语对白视频| 国产成人系列免费观看| 日韩高清综合在线| 色综合婷婷激情| 欧美黑人精品巨大| 两性夫妻黄色片| 丝袜美足系列| 男人舔女人下体高潮全视频| 亚洲人成电影观看| 在线国产一区二区在线| 国产真人三级小视频在线观看| 一本久久中文字幕| 在线播放国产精品三级| 嫩草影视91久久| 91大片在线观看| 久久婷婷成人综合色麻豆| 香蕉丝袜av| 亚洲天堂国产精品一区在线| 亚洲专区中文字幕在线| 久久精品国产亚洲av高清一级| 欧美一级a爱片免费观看看 | 久久这里只有精品19| 成人国产综合亚洲| 天堂√8在线中文| 婷婷丁香在线五月| 999精品在线视频| 国产高清有码在线观看视频 | 亚洲第一电影网av| 精品电影一区二区在线| 两个人视频免费观看高清| 九色国产91popny在线| 91成人精品电影| 一级,二级,三级黄色视频| 看片在线看免费视频| 精品一品国产午夜福利视频| 中文字幕人妻熟女乱码| 亚洲色图av天堂| 国产一区二区在线av高清观看| 老司机福利观看| 精品电影一区二区在线| 欧美成人性av电影在线观看| 国产99久久九九免费精品| 巨乳人妻的诱惑在线观看| 香蕉国产在线看| 又黄又爽又免费观看的视频| 99在线人妻在线中文字幕| 国产激情久久老熟女| 乱人伦中国视频| 久久精品成人免费网站| 精品卡一卡二卡四卡免费| 国产精品免费一区二区三区在线| av片东京热男人的天堂| 九色亚洲精品在线播放| 久久久国产精品麻豆| 日韩欧美国产在线观看| 女同久久另类99精品国产91| 极品教师在线免费播放| 国产日韩一区二区三区精品不卡| 麻豆成人av在线观看| 中文字幕人成人乱码亚洲影| 亚洲av第一区精品v没综合| 69精品国产乱码久久久| 国产伦一二天堂av在线观看| 国产欧美日韩综合在线一区二区| 9色porny在线观看| 精品国产亚洲在线| 成人亚洲精品一区在线观看| 日本三级黄在线观看| 在线观看免费视频日本深夜| 黄片小视频在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| av天堂久久9| 久久欧美精品欧美久久欧美| 一个人免费在线观看的高清视频| aaaaa片日本免费| 老司机深夜福利视频在线观看| 人人妻,人人澡人人爽秒播| 久久精品91无色码中文字幕| 天堂影院成人在线观看| 日韩中文字幕欧美一区二区| 91麻豆精品激情在线观看国产| 亚洲人成电影观看| 老司机深夜福利视频在线观看| 91麻豆av在线| 黑人巨大精品欧美一区二区mp4| 黑丝袜美女国产一区| 我的亚洲天堂| 一a级毛片在线观看| 性少妇av在线| 亚洲中文字幕日韩| 琪琪午夜伦伦电影理论片6080| 级片在线观看| 亚洲国产看品久久| 久久这里只有精品19| 欧美国产精品va在线观看不卡| 国产精品二区激情视频| 中文字幕人妻熟女乱码| 精品卡一卡二卡四卡免费| 成人三级黄色视频| а√天堂www在线а√下载| 亚洲av电影不卡..在线观看| 亚洲伊人色综图| 中文字幕人妻熟女乱码| 亚洲五月色婷婷综合| 亚洲av美国av| 国产精品秋霞免费鲁丝片| 久久精品91蜜桃| 夜夜爽天天搞| 丁香六月欧美| 久久精品国产亚洲av香蕉五月| 又大又爽又粗| 亚洲情色 制服丝袜| 亚洲全国av大片| 久久性视频一级片| 99国产精品99久久久久| 欧美日本亚洲视频在线播放| 首页视频小说图片口味搜索| 免费在线观看黄色视频的| 午夜日韩欧美国产| 亚洲第一av免费看| 国内精品久久久久久久电影| 又黄又爽又免费观看的视频| 免费在线观看完整版高清| 人人妻人人澡人人看| 麻豆久久精品国产亚洲av| 日韩精品免费视频一区二区三区| 这个男人来自地球电影免费观看| 在线播放国产精品三级| 91字幕亚洲| 性色av乱码一区二区三区2| 精品久久久久久久人妻蜜臀av | 嫩草影视91久久| 欧美在线一区亚洲| 国产在线精品亚洲第一网站| 午夜福利18| 国产麻豆69| 又黄又爽又免费观看的视频| 日本精品一区二区三区蜜桃| 一进一出抽搐动态| 亚洲欧美日韩高清在线视频| 午夜福利一区二区在线看| 美女 人体艺术 gogo| 12—13女人毛片做爰片一| 亚洲色图 男人天堂 中文字幕| 精品少妇一区二区三区视频日本电影| 19禁男女啪啪无遮挡网站| 99久久精品国产亚洲精品| 亚洲精品国产区一区二| 免费女性裸体啪啪无遮挡网站| 国产片内射在线| 亚洲专区国产一区二区| 久久久久久久精品吃奶| 人妻丰满熟妇av一区二区三区| 美女午夜性视频免费| 亚洲一区高清亚洲精品| 欧美日韩精品网址| 日韩三级视频一区二区三区| 日韩欧美在线二视频| 亚洲一区二区三区不卡视频| 精品一品国产午夜福利视频| 日韩有码中文字幕| 身体一侧抽搐| 19禁男女啪啪无遮挡网站| 首页视频小说图片口味搜索| 又紧又爽又黄一区二区| 电影成人av| 热re99久久国产66热| 99re在线观看精品视频| 99精品久久久久人妻精品| 老司机靠b影院| 高清黄色对白视频在线免费看| 免费观看精品视频网站| 欧美日韩黄片免| 成年人黄色毛片网站| 国产成+人综合+亚洲专区| 国产精品一区二区三区四区久久 | 色播在线永久视频| 黄色女人牲交| 一级作爱视频免费观看| 午夜两性在线视频| 两性夫妻黄色片| 久久精品国产综合久久久| 一个人免费在线观看的高清视频| 一卡2卡三卡四卡精品乱码亚洲| 波多野结衣av一区二区av| 久9热在线精品视频| 女人被躁到高潮嗷嗷叫费观| 国产精品久久视频播放| 黑人巨大精品欧美一区二区mp4| 两个人视频免费观看高清|