• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      中溫固體氧化物燃料電池電解質(zhì)研究進(jìn)展

      2019-01-25 08:49:16孫海濱張振昊張玉軍
      現(xiàn)代技術(shù)陶瓷 2018年6期
      關(guān)鍵詞:碳酸鹽鈣鈦礦質(zhì)子

      孫海濱,郭 學(xué),張振昊,張玉軍

      ?

      中溫固體氧化物燃料電池電解質(zhì)研究進(jìn)展

      孫海濱1,郭 學(xué)1,張振昊2,張玉軍3

      1山東理工大學(xué) 材料科學(xué)與工程學(xué)院,山東 淄博 2550492萊蕪亞賽陶瓷技術(shù)有限公司,山東 萊蕪 2711003山東大學(xué) 材料科學(xué)與工程學(xué)院,濟(jì)南 256216

      固體氧化物燃料電池 (SOFC) 是一種新型能源轉(zhuǎn)換裝置,電解質(zhì)是其核心部件之一。SOFC的中溫化發(fā)展要求電解質(zhì)材料在中溫條件下 (500°C ~ 700°C) 具有較高離子電導(dǎo)率,在電池運(yùn)行環(huán)境下具有良好的長(zhǎng)期穩(wěn)定性。本文主要綜述了氧離子傳導(dǎo)型電解質(zhì)、質(zhì)子傳導(dǎo)型電解質(zhì)和復(fù)合電解質(zhì)的研究進(jìn)展,分析了制約其發(fā)展與應(yīng)用的難題,指出了中溫電解質(zhì)材料的發(fā)展方向。

      固體氧化物燃料電池;氧離子型電解質(zhì);質(zhì)子型電解質(zhì);復(fù)合電解質(zhì)

      固體氧化物燃料電池 (Solid Oxide Fuel Cell, SOFC) 是一種新型的能源轉(zhuǎn)換裝置,可直接將化學(xué)能轉(zhuǎn)換為電能,因具有能量轉(zhuǎn)化率高、無(wú)污染以及燃料多樣性等優(yōu)點(diǎn)而成為近年來(lái)的研究熱點(diǎn)[1]。SOFC由陽(yáng)極、陰極和電解質(zhì)3部分組成。電解質(zhì)是其中的核心部件,其作用是傳導(dǎo)離子以及隔絕燃料氣和氧化氣。傳統(tǒng)的SOFC多采用氧化釔穩(wěn)定氧化鋯作為電解質(zhì),但其所需的工作溫度較高 (31000°C),導(dǎo)致電池高溫密封困難、制造成本高和長(zhǎng)期運(yùn)行穩(wěn)定性差。研究和開(kāi)發(fā)中溫 (500°C ~ 700°C)固體氧化物燃料電池可以擴(kuò)大電池組件材料的選擇范圍并且有效地提高電池長(zhǎng)期運(yùn)行的穩(wěn)定性,是目前SOFC的主要發(fā)展方向之一[2]。然而,工作溫度的降低會(huì)使電解質(zhì)的歐姆阻抗迅速增大,導(dǎo)致電池性能急劇下降。因此,亟待開(kāi)發(fā)新型的中溫電解質(zhì)材料。

      根據(jù)載流子傳導(dǎo)類型不同,SOFC電解質(zhì)可分為氧離子傳導(dǎo)型電解質(zhì)、質(zhì)子傳導(dǎo)型電解質(zhì)和復(fù)合電解質(zhì)三大類。本文主要介紹這三類電解質(zhì)的性能特點(diǎn)、發(fā)展現(xiàn)狀以及提高電導(dǎo)率的主要途徑,并對(duì)其未來(lái)發(fā)展做了展望。

      1 氧離子傳導(dǎo)型電解質(zhì)

      目前比較有代表性的氧離子型電解質(zhì)主要包括螢石結(jié)構(gòu)的ZrO2基電解質(zhì)、CeO2基電解質(zhì)、Bi2O3基電解質(zhì)和鈣鈦礦結(jié)構(gòu)的LaGaO3基電解質(zhì)。

      1.1 ZrO2基電解質(zhì)

      ZrO2在高溫下為典型的立方螢石型結(jié)構(gòu)。但是,純ZrO2的離子電導(dǎo)率非常低。這是因?yàn)檠趸喸诔叵聻閱涡本?,只有?300°C以上才能轉(zhuǎn)變?yōu)榱⒎轿炇徒Y(jié)構(gòu)[3]。研究表明[4,5],低價(jià)元素?fù)诫s可以在室溫至熔點(diǎn)范圍內(nèi)將ZrO2穩(wěn)定在立方結(jié)構(gòu);同時(shí),摻雜還會(huì)使晶格內(nèi)會(huì)產(chǎn)生大量氧空位,從而使ZrO2成為良好的氧離子導(dǎo)體。氧空位的形成可以表示為:

      (1) (2)

      式中,M代表二價(jià)陽(yáng)離子,R代表三價(jià)陽(yáng)離子,ZrZrx、OOx、MZr2(或RZr¢)、VO··分別是位于正常晶格結(jié)點(diǎn)的Zr4+離子、位于正常晶格結(jié)點(diǎn)的O2-離子、Zr4+固有晶格結(jié)點(diǎn)上的M2+(或R3+)離子以及氧空位。

      比較有代表性的低價(jià)摻雜離子是Ca2+和Y3+,可分別形成氧化鈣穩(wěn)定氧化鋯 (CaO-Stabilized Zirconia, CSZ) 和氧化釔穩(wěn)定氧化鋯 (Yttria-Stabilized Zirconia, YSZ),其中后者在800°C以上具有較高的氧離子電導(dǎo)率[6-8]。同時(shí),在氧化和還原氣氛下,YSZ電解質(zhì)都表現(xiàn)出了高的穩(wěn)定性、強(qiáng)度和韌性。因此,YSZ電解質(zhì)在高溫 (800°C ~ 1000°C) SOFC中得到了廣泛應(yīng)用。其不足之處是在800°C以下電導(dǎo)率很低,因此YSZ并不適用于SOFC的中低溫運(yùn)行。近年來(lái),Sc摻雜ZrO2(ScSZ) 被報(bào)道具有更高的氧離子電導(dǎo)率和更低的電導(dǎo)活化能[9-11]。不過(guò),ScSZ的價(jià)格過(guò)高,制約了其在SOFC領(lǐng)域的實(shí)際應(yīng)用。

      1.2 CeO2基電解質(zhì)

      和ZrO2類似,純CeO2材料的離子電導(dǎo)率也很低,一般需要通過(guò)低價(jià)態(tài)氧化物的摻雜提高其離子導(dǎo)電能力。目前螢石結(jié)構(gòu)的摻雜CeO2(Doped Ceria,DCO) 已成為最常用的中低溫SOFC電解質(zhì)材料[12-15]。典型的低價(jià)態(tài)摻雜氧化物是Gd2O3和Sm2O3,分別形成Gd摻雜CeO2(GDC) 和Sm摻雜CeO2(SDC)。圖1給出的是幾種氧離子電解質(zhì)的電導(dǎo)率對(duì)比,可以看出,GDC具有比YSZ高幾倍甚至到幾個(gè)數(shù)量級(jí)的電導(dǎo)率。不過(guò),DCO在低氧分壓或者較高溫度下 (3600°C) 會(huì)發(fā)生如下反應(yīng):

      (3)

      Figure 1 The electrical conductivities of YSZ, GDC and LSGM electrolytes[19,28,29]

      一種避免Ce4+被還原的方法是在陽(yáng)極和DCO電解質(zhì)之間添加厚度為1 μm ~ 2 μm的電子阻隔層 (如YSZ),但多層電解質(zhì)界面上的反應(yīng)物會(huì)降低電解質(zhì)的電導(dǎo)率,并且熱膨脹系數(shù)不匹配容易造成電解質(zhì)開(kāi)裂[17-19]。也有人嘗試采用稀土元素共摻雜的方式來(lái)提高DCO在還原氣氛下的穩(wěn)定性,結(jié)果表明[20,21],共摻雜Sm和Nd元素可以獲得比10 mol% Gd-CeO2更高的電導(dǎo)率,但是其還原穩(wěn)定性并無(wú)改進(jìn)。

      盡管暫時(shí)無(wú)法解決Ce4+易被還原的問(wèn)題,在500°C ~ 700°C溫度范圍內(nèi),DCO電解質(zhì)仍可應(yīng)用于SOFC。這是因?yàn)樵谠摐囟葏^(qū)間內(nèi),DCO的氧離子遷移數(shù)可達(dá)到0.9,足以提供較高的電池性能[20,22]。如果將SOFC的工作溫度降低到500°C以下,其氧離子遷移數(shù)將有望得到進(jìn)一步提高,電子電導(dǎo)甚至可以忽略,不過(guò)這是以犧牲氧離子電導(dǎo)率為代價(jià)的。使DCO在中溫條件下具有較高的氧離子電導(dǎo)率和可以忽略的電子電導(dǎo),是當(dāng)前的重點(diǎn)研究方向之一。

      陶瓷電解質(zhì)為多晶結(jié)構(gòu),其微觀結(jié)構(gòu) (尤其是晶界和晶粒) 對(duì)電導(dǎo)率的影響非常顯著。為了進(jìn)一步提高CeO2基電解質(zhì)在中低溫的離子電導(dǎo)率,晶界和晶粒尺寸對(duì)電學(xué)性能的影響得到了廣泛關(guān)注。一般情況下,CeO2基電解質(zhì)的晶界對(duì)氧離子傳輸起阻礙作用,其晶界電阻通常比晶粒電阻高幾倍。其原因在于,因?yàn)樵霞兌然驙t膛材料高溫?fù)]發(fā)等原因,在電解質(zhì)制備過(guò)程中會(huì)引入一部分Si雜質(zhì),這些Si雜質(zhì)富集在電解質(zhì)的晶界處,阻礙離子傳輸[23]。如果使用高純度原料則可以有效降低雜質(zhì)效應(yīng)對(duì)晶界離子傳輸?shù)挠绊?。在這種情況下,晶界的電學(xué)性能主要受空間電荷效應(yīng)的影響。

      在空間電荷模型中 [圖2 (a)],晶界是由一個(gè)晶界核 (Grain-Boundary Core] 和兩個(gè)相鄰的空間電荷層 (Space-Charge Layer) 組成的[24,25]。大量的氧空位富集在晶界核處,所以晶界核的電勢(shì)為正[26]。在靜電作用下,空間電荷層的氧空位數(shù)量急劇降低 [圖2 (b)],使得該區(qū)域具有電抗性,從而阻礙離子的傳輸。

      圖2 (a) 晶界的空間電荷層示意圖以及 (b) 氧空位在空間電荷層的分布

      Figure 2 Schematic representations of (a) “electrical grain boundary” and (b) oxygen vacancy profiles in the space-charge layer model

      降低晶界電阻的方法有兩種:(1) 降低燒成溫度;(2) 晶粒尺寸納米化。

      Singh等人[27]的研究表明,隨著燒成溫度的降低,電解質(zhì)的晶界活化能由1.03 eV降至0.80 eV,經(jīng)低溫煅燒制備的、晶粒尺寸為0.21 μm ~ 0.89 μm的電解質(zhì)晶界數(shù)量較多,可稀釋晶界處的雜質(zhì),從而促進(jìn)晶界處的氧離子傳輸。

      降低電解質(zhì)燒成溫度的主要方法有兩種:(1) 添加燒結(jié)助劑 (如CoO、CuO、MnO2、Fe2O3、Bi2O3、Cr2O3、NiO等); (2) 采用高活性納米粉體作為原料。其中,添加過(guò)渡金屬作為燒結(jié)助劑,不僅能夠降低CeO2基電解質(zhì)的燒成溫度,還能夠凈化晶界和消除空間電荷效應(yīng)[28]。這是因?yàn)檫^(guò)渡金屬的離子半徑小于Ce4+,且固溶度范圍窄,容易沿晶界聚集并取代Ce4+,從而引入負(fù)電荷。負(fù)電荷可以降低晶界核的正電勢(shì),減弱空間電荷層氧空位所受到的排斥力,從而提高空間電荷層的氧空位濃度,降低晶界電阻。CeO2基電解質(zhì)中過(guò)渡金屬的添加量一般在0.5 mol% ~ 1 mol%。在眾多過(guò)渡金屬中,F(xiàn)e3+和Co2+在清除雜質(zhì)和降低空間電荷效應(yīng)方面的作用尤為突出。

      如前文所述,多晶電解質(zhì)的晶界對(duì)離子傳輸起阻礙作用。不過(guò)在納米結(jié)構(gòu) (或超細(xì)晶粒) 電解質(zhì)中,晶界在離子傳輸過(guò)程中占主導(dǎo),電解質(zhì)的電導(dǎo)率得到顯著提高,這就是所謂的“納米效應(yīng)”。Tschope等人[29]研究表明,隨著CeO2基電解質(zhì)晶粒尺寸的減小,其電導(dǎo)率增大,活化能降低。Christie等人[30]的研究表明,隨著Gd摻雜CeO2電解質(zhì)晶粒尺寸的減小,晶界為離子傳輸提供了連續(xù)的快速通道,晶界電導(dǎo)率增大。在納米結(jié)構(gòu)電解質(zhì)中,晶界的表面能高,有助于提高氧離子的遷移率。Martín等人[31]的研究表明,在納米SDC電解質(zhì)中,晶界處的氧空位躍遷機(jī)制表現(xiàn)為非定域躍遷,與微米結(jié)構(gòu)中的定域躍遷相比更有利于氧離子的快速傳輸,高電導(dǎo)率的形成主要?dú)w因于氧離子的快速傳輸。

      不過(guò),另一種說(shuō)法是納米電解質(zhì)的高電導(dǎo)率是因?yàn)橐肓穗娮与妼?dǎo)[32]。Chiang等人[33]也認(rèn)為,納米結(jié)構(gòu)使得晶界處的缺陷形成能降低,從而產(chǎn)生電子電導(dǎo)。作者所在課題組采用兩步燒結(jié)法制備了平均晶粒尺寸約為140 nm的CeO2-20 mol% Sm2O3電解質(zhì),其晶粒電導(dǎo)率約為微米結(jié)構(gòu) SDC 電解質(zhì)的20倍[34]。通過(guò)設(shè)計(jì)濃差電池,測(cè)試電池在不同氣氛下的開(kāi)路電壓和氧離子遷移數(shù),結(jié)果表明,超細(xì)晶粒電解質(zhì)和微米結(jié)構(gòu)電解質(zhì)具有相同的氧離子遷移數(shù),說(shuō)明晶界電導(dǎo)率的提高并不是由額外的電子電導(dǎo)引起的,而可能是由氧離子擴(kuò)散速率加快造成的,這與Martín等人[31]的研究結(jié)果相一致。關(guān)于CeO2基納米電解質(zhì)晶界的載流子傳導(dǎo)類型,仍需進(jìn)一步深入研究。

      1.3 Bi2O3基電解質(zhì)

      在目前已知的氧離子導(dǎo)體中,按照電導(dǎo)率高低排序:Bi2O3> CeO2> ZrO2,Bi2O3基電解質(zhì)的電導(dǎo)率最高。

      Bi2O3是一種多晶型氧化物,在室溫下呈單斜結(jié)構(gòu) (Bi2O3),650°C以下呈體心立方結(jié)構(gòu) (Bi2O3) 和四方結(jié)構(gòu) (Bi2O3),730°C ~ 825°C呈立方螢石結(jié)構(gòu) (Bi2O3)。其中,Bi2O3電導(dǎo)率最高,在825°C (熔點(diǎn)) 附近的離子電導(dǎo)可高達(dá)0.1 S/cm,相同溫度下比YSZ電解質(zhì)高2個(gè)數(shù)量級(jí)[35]。盡管Bi2O3基電解質(zhì)具有非常高的電導(dǎo)率,但在實(shí)際應(yīng)用中卻存在一些問(wèn)題,如:相變產(chǎn)生非常大的體積變化,導(dǎo)致材料斷裂和性能惡化;在低氧分壓下非常不穩(wěn)定,易被直接還原為金屬Bi,導(dǎo)致電導(dǎo)率下降,并產(chǎn)生電子電導(dǎo)[36,37];熱穩(wěn)定性和相結(jié)構(gòu)在電池測(cè)試條件下的長(zhǎng)期運(yùn)行穩(wěn)定性差。

      為了使Bi2O3能夠在較低溫度下獲得穩(wěn)定的Bi2O3-相,通常采用元素?fù)诫s的方式部分取代鉍離子。常用的摻雜金屬氧化物為Y2O3、Er2O3、SrO、CaO、BaO、WO3、Ln2O3、Gb2O3、Nb2O3或Sm2O3。其中,20 mol% Er2O3摻雜的Bi2O3獲得的電導(dǎo)率最高 (500°C下為2.3 S/cm;700°C下為37 S/cm)[38],比YSZ高50 ~ 100倍。

      為了解決Bi2O3電解質(zhì)在低氧分壓下不穩(wěn)定的問(wèn)題,可通過(guò)制備雙層電解質(zhì)或在Bi2O3表面包覆其它材料來(lái)避免其與燃料氣體接觸。Wang等人[39]制備了基于CeO2/Bi2O3雙層電解質(zhì)的SOFC,與Bi2O3單一電解質(zhì)組成的SOFC相比,最大輸出功率提高了約33%。何嵐鷹等人[40]在Bi2O3表面包覆了YSZ保護(hù)膜,電解質(zhì)在500°C ~ 800°C范圍內(nèi)表現(xiàn)出了較好的穩(wěn)定性。

      為了解決Bi2O3在高溫下長(zhǎng)期運(yùn)行穩(wěn)定性差的問(wèn)題,Huang等人[41]向Bi2O3中加入ZrO2來(lái)抑制相變,當(dāng)摻雜量為5% 時(shí),Bi2O3電解質(zhì)的結(jié)構(gòu)穩(wěn)定,在650°C運(yùn)行1000 h,電導(dǎo)率無(wú)明顯降低。Joh等人[42]將20 wt% Er摻雜Bi2O3(ESB) 和YSZ復(fù)合,電解質(zhì)在750°C運(yùn)行600 h,也表現(xiàn)出了非常好的穩(wěn)定性 (圖3)。

      如何進(jìn)一步提高Bi2O3基電解質(zhì)材料低氧分壓條件下的穩(wěn)定性將是今后的重點(diǎn)研究方向之一。

      1.4 LaGaO3基電解質(zhì)

      LaGaO3是典型的鈣鈦礦化合物 (ABO3),對(duì)其A位進(jìn)行堿土金屬元素?fù)诫s或/和用低價(jià)堿土或過(guò)渡金屬陽(yáng)離子對(duì)B位摻雜均可使LaGaO3結(jié)構(gòu)中產(chǎn)生氧離子空位,從而提高其離子電導(dǎo)率。LaGaO3的電導(dǎo)率與摻雜離子半徑以及摻雜量有關(guān)。A位摻雜通常選擇與La3+離子半徑相近的Sr2+、Ca2+、Ba2+,B位摻雜則通常選擇與Ga3+離子相近的Mg2+。其中,La1-xSrxGa1-yMgyO3-δ(LSGM) 被認(rèn)為是電導(dǎo)率最高的雙摻雜鈣鈦礦材料[43],其電導(dǎo)率與DCO相當(dāng)。與DCO相比,LSGM在很寬的氧分壓范圍內(nèi) (10-20< PO2< 1) 為純氧離子導(dǎo)體[44,45]。

      不過(guò),LSGM用于Ni基陽(yáng)極支撐SOFC時(shí),在陽(yáng)極/電解質(zhì)高溫共燒過(guò)程中容易和Ni發(fā)生化學(xué)反應(yīng),導(dǎo)致電解質(zhì)電導(dǎo)率下降[44,46-48]。Bi等人[49]和Lin等人[50]通過(guò)在LSGM和Ni基陽(yáng)極之間添加La摻雜CeO2(LDC) 過(guò)渡層,避免了LSGM和Ni發(fā)生反應(yīng)。不過(guò),當(dāng)LDC過(guò)渡層較薄時(shí),無(wú)法完全避免Ni擴(kuò)散到LSGM電解質(zhì);當(dāng)LDC過(guò)渡層較厚時(shí),又會(huì)導(dǎo)致電解質(zhì)的歐姆阻抗過(guò)大。Bozza等人[51]首先采用高溫共燒制備LDC多孔陽(yáng)極/LSGM電解質(zhì)雙層結(jié)構(gòu),然后向LDC多孔結(jié)構(gòu)中浸漬硝酸鎳,經(jīng)低溫煅燒生成NiO納米顆粒包覆的LDC陽(yáng)極 (圖4)。該方法既不需要LDC過(guò)渡層,又能避免Ni和LSGM的高溫反應(yīng),獲得了較高的電池性能 (700°C時(shí)達(dá)到750 mW/cm2)。

      圖3 20 wt% ESB-YSZ復(fù)合電解質(zhì)在750°C空氣測(cè)試條件下的電導(dǎo)率

      Figure 3 The electrical conductivity of 20 wt% ESB-YSZ composite electrolytes measured at 750°C in air

      圖4 陽(yáng)極支撐NiO-LDC/LSGM/LSCF固體氧化燃料電池的 (a) 斷面和 (b) 陽(yáng)極支撐體局部SEM照片

      Figure 4 SEM images of (a) the cross-section view of anode supported NiO-LDC/LSGM/LSCF solid oxide fuel cell and (b) the high-magnification images of the anode support

      因傳統(tǒng)的陽(yáng)極大多呈海綿狀多孔結(jié)構(gòu),易導(dǎo)致溶液浸漬不充分。作者所在課題組采用冷凍流延成型技術(shù)制備了一種具有垂直孔道結(jié)構(gòu)的陽(yáng)極材料,經(jīng)電解質(zhì)溶液滴涂、電解質(zhì)/陽(yáng)極共燒、硝酸鎳浸漬、低溫煅燒制備了 (NiO-GDC)-LSGM陽(yáng)極支撐的SOFC (圖5)。這一獨(dú)特的陽(yáng)極獨(dú)特結(jié)構(gòu)有利于NiO浸漬,且避免了NiO和LSGM電解質(zhì)之間的高溫反應(yīng),從而獲得了更高的電池性能 (700°C時(shí)達(dá)到1.61 W/cm2)[52]。

      圖5 冷凍流延法制備的 (NiO-GDC)-LSGM/LSGM/LSCF電池 (a) 斷面及 (b) 陽(yáng)極支撐體局部SEM照片

      Figure 5 SEM images of (a) the cross-section view of (NiO-GDC)-LSGM/LSGM/LSCF solid oxide fuel cell fabricated by a freeze-tape-casting method and (b) the high-magnification image of the anode support

      盡管LSGM的研究取得了一些進(jìn)展,但其組分比較復(fù)雜,制備出符合化學(xué)計(jì)量比的LSGM較為困難,容易產(chǎn)生LaSrGa3O7、LaSrGaO4等雜質(zhì)。此外,在高溫煅燒過(guò)程中,Ga元素容易揮發(fā)。這些因素都會(huì)導(dǎo)致LSGM電導(dǎo)率降低,嚴(yán)重制約其實(shí)際應(yīng)用[53]。

      2 質(zhì)子傳導(dǎo)型電解質(zhì)

      質(zhì)子傳導(dǎo)型電解質(zhì)主要有鈣鈦礦結(jié)構(gòu)、復(fù)合鈣鈦礦結(jié)構(gòu)等類型。

      2.1 鈣鈦礦結(jié)構(gòu)

      ABO3型鈣鈦礦結(jié)構(gòu)是最早發(fā)現(xiàn)的高溫質(zhì)子導(dǎo)體,也是當(dāng)前的研究重點(diǎn)。在ABO3中,A位是二價(jià)離子,一般是Ba、Sr和Ca等堿土金屬元素;B位是四價(jià)陽(yáng)離子,一般是Ce、Zr等元素[54-61]。鈣鈦礦化合物本身并不能釋放出質(zhì)子成分,質(zhì)子的來(lái)源是通過(guò)對(duì)B位進(jìn)行三價(jià)元素?fù)诫s后產(chǎn)生的氧缺陷與環(huán)境中的水分子或氫分子相互作用的結(jié)果。常見(jiàn)的摻雜元素是Y、Sm、Gd、Yb、Eu等三價(jià)稀土元素。

      高溫質(zhì)子導(dǎo)體的質(zhì)子化過(guò)程主要分為兩種情況[62]。在干燥的氫氣中,

      (4)

      在潮濕的氣氛中[63],

      (5)

      此外,在高氧分壓和高溫條件下還可能發(fā)生以下反應(yīng):

      (6) (7)

      可見(jiàn),這些鈣鈦礦化合物在不同氣氛下會(huì)表現(xiàn)出不同的導(dǎo)電性:在干燥氫氣中表現(xiàn)為質(zhì)子和電子導(dǎo)體,在潮濕空氣中是良好的質(zhì)子導(dǎo)體;在高氧分壓和高溫條件下表現(xiàn)為氧離子和電子空穴的混合導(dǎo)體。

      式 (5) 是形成質(zhì)子缺陷的主要反應(yīng),該反應(yīng)為放熱反應(yīng)[63]。質(zhì)子濃度隨著溫度的降低而升高,在中低溫下質(zhì)子為主要載流子。相反地,氧離子濃度隨著溫度的升高而升高,在高溫下氧離子為主要載流子[60,61]。為了獲得良好的質(zhì)子電導(dǎo)率,質(zhì)子導(dǎo)體的工作溫度不宜過(guò)高,一般低于700°C[64]。

      圖6 BaCe0.9-xZrxY0.1O3-δ在濕H2下的電導(dǎo)率

      Figure 6 The electrical conductivity of BaCe0.9-xZrxY0.1O3-δelectrolytes measured in wet H2

      目前研究最多的鈣鈦礦型質(zhì)子導(dǎo)體是摻雜BaCeO3和摻雜BaZrO3。其中,摻雜BaCeO3因具有較高的電導(dǎo)率而被廣泛地應(yīng)用于SOFC中[55,65-68]。然而,摻雜BaCeO3基氧化物在CO2和H2O氣氛中的化學(xué)穩(wěn)定性很差[63,69,70],在10-4atm ~ 10-5atm的CO2下即可與CO2發(fā)生反應(yīng)生成BaCO3和CeO2。在有水的氣氛下,摻雜BaCeO3基氧化物還容易與水反應(yīng)生成Ba(OH)2和CeO2。SOFC使用的燃料氣體中一般都含有水分以提高質(zhì)子電導(dǎo),因此,單純的摻雜BaCeO3體系無(wú)法應(yīng)用于含水的燃料氣體中。摻雜BaZrO3在CO2或H2O氣氛中具有非常優(yōu)異的化學(xué)穩(wěn)定性[63,71],可以滿足SOFC苛刻的工作氣氛,但是其質(zhì)子電導(dǎo)率相對(duì)較低,大約比摻雜BaCeO3要低一個(gè)數(shù)量級(jí)左右[72-74]。此外,BaZrO3的燒結(jié)活性差,需要在1700°C ~ 1800°C高溫下才能燒結(jié)致密[59,64,75]。過(guò)高的燒結(jié)溫度不僅會(huì)導(dǎo)致Ba揮發(fā)而引起材料組分的變化,降低電導(dǎo)率[76],還會(huì)導(dǎo)致陽(yáng)極與電解質(zhì)之間反應(yīng) (和/或相擴(kuò)散) 以及陽(yáng)極燒死等一系列問(wèn)題。

      因?yàn)锽aZrO3和BaCeO3之間可以形成無(wú)限固溶體,所以向BaCeO3中摻雜Zr用以部分取代Ce可以有效地提高電解質(zhì)的化學(xué)穩(wěn)定性[64,74,77-80]。不同的Zr摻雜量對(duì)材料的化學(xué)穩(wěn)定性有著顯著的影響。當(dāng)Zr摻雜量較低時(shí),材料與CO2和H2O發(fā)生部分反應(yīng);當(dāng)Zr摻雜量達(dá)到40% 時(shí),材料在CO2和H2O氣氛條件下顯示出非常好的化學(xué)穩(wěn)定性。不過(guò),隨著摻雜量的提高,材料本身的電導(dǎo)率會(huì)隨之降低 (圖6),同時(shí),其燒結(jié)活性也會(huì)變差。因此,合適的Zr摻雜量應(yīng)使得材料同時(shí)具有好的化學(xué)穩(wěn)定性、高的電導(dǎo)率和燒結(jié)活性。目前,應(yīng)用最多的一種質(zhì)子電解質(zhì)是BaZr0.1Ce0.7Y0.2O3-δ(BZCY)[66]。該材料在CO2氣氛和水蒸氣氣氛下具有較高的穩(wěn)定性,同時(shí)在600°C以下具有比YSZ以及GDC等氧離子導(dǎo)體更高的電導(dǎo)率 (圖7),因而被認(rèn)為是一種較理想的質(zhì)子導(dǎo)體電解質(zhì)。在此基礎(chǔ)上,Yang等人[1]采用Y和Yb共摻雜的方法制備了BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb),材料的電導(dǎo)率得到了進(jìn)一步提高。不過(guò),固相法合成的BZCYYb粉體的燒結(jié)活性差,需在1550°C煅燒10 h才能獲得致密坯體,過(guò)高的燒成溫度仍然會(huì)造成Ba揮發(fā)。

      圖7 不同材料在濕O2下的電導(dǎo)率

      Figure 7 The electrical conductivities of different electrolyte materials measured in wet O2

      盡管BZCY和BZCYYb材料的發(fā)展極大地推動(dòng)了質(zhì)子傳導(dǎo)型SOFC的發(fā)展,但這種材料在高濃度的CO2氣氛以及更苛刻的環(huán)境下并非十分穩(wěn)定。因此,有必要進(jìn)一步改善這些材料的燒結(jié)性能以及化學(xué)穩(wěn)定性。

      2.2 復(fù)合鈣鈦礦結(jié)構(gòu)

      復(fù)合鈣鈦礦結(jié)構(gòu)的分子式為A3B¢1+xB22-xO9-d,其中A表示Ba或者Sr,B¢和B2分別表示二價(jià)和五價(jià)金屬離子。Ba3Ca1.18Nb1.82O9-d(BCN18) 因電導(dǎo)率高而成為這類化合物中研究最多的體系[81-86]。以BCN18為電解質(zhì)的SOFC在CO/CO2環(huán)境下工作100多個(gè)小時(shí)仍然保持穩(wěn)定,顯示出其極好的化學(xué)穩(wěn)定性[82]。然而,關(guān)于BCN18的電導(dǎo)率測(cè)試結(jié)果卻有較大爭(zhēng)議。Nowick等人[82]發(fā)現(xiàn)BCN18在600°C時(shí)的質(zhì)子電導(dǎo)率約為10-2S·cm-1,離子遷移數(shù)大于0.98。Schober等人[84-86]的研究也表明該材料在700oC具有較高的電導(dǎo)率 (0.07 S·cm-1)。但是,Norby等人[87]的研究卻發(fā)現(xiàn)相同條件下BCN18的電導(dǎo)率只有5.5 × 10-4S·cm-1。除了BCN18體系在電導(dǎo)率方面存在爭(zhēng)議之外,其另一缺點(diǎn)就是該材料的燒結(jié)活性很差,通常需要在1600°C高溫下才能燒結(jié)致密[88]。

      3 復(fù)合電解質(zhì)

      復(fù)合電解質(zhì)是由兩種或多種離子電導(dǎo)性質(zhì)不同的材料復(fù)合而成的兩相或多相體系[89]。復(fù)合電解質(zhì)可以使各電解質(zhì)的性能實(shí)現(xiàn)優(yōu)勢(shì)互補(bǔ)。例如,DCO/碳酸鹽復(fù)合電解質(zhì)既可以抑制DCO在低氧分壓或還原氣氛下產(chǎn)生電子電導(dǎo),又能夠解決碳酸鹽在高溫運(yùn)行環(huán)境中穩(wěn)定性差的問(wèn)題。DCO/BaCeO3基復(fù)合電解質(zhì)除了抑制DCO產(chǎn)生的電子電導(dǎo),還能夠解決BaCeO3在含CO2、H2O氣氛中化學(xué)性質(zhì)不穩(wěn)定的問(wèn)題。

      3.1 DCO-碳酸鹽復(fù)合電解質(zhì)

      2001年,Zhu 等人[90]將GDC-碳酸鹽用作SOFC的電解質(zhì)材料,復(fù)合電解質(zhì)在600°C時(shí)的電導(dǎo)率高達(dá)0.2 S/cm,在相同溫度下電池最大功率密度達(dá)到580 mW/cm2。其電化學(xué)性能優(yōu)于氧化物-硫酸鹽/硝酸鹽/磷酸鹽等復(fù)合電解質(zhì)體系。因此,DCO-碳酸鹽復(fù)合電解質(zhì)受到廣泛關(guān)注。

      在DCO-碳酸鹽復(fù)合電解質(zhì)中,DCO相通常為SDC、GDC等,碳酸鹽已經(jīng)由Na2CO3、K2CO3發(fā)展到了(Li/Na)2CO3、(Li/K)2CO3、 (Na/K)2CO3等二元共晶鹽和(Li/Na/K)2CO3三元共晶鹽。DCO相和碳酸鹽相的界面存在相互作用,產(chǎn)生增強(qiáng)效應(yīng),可為離子傳輸提供快速通道。因此,提高復(fù)合電解質(zhì)的兩相界面數(shù)量有助于提高其電導(dǎo)率。Jing等人[91]采用SPS法制備了納米結(jié)構(gòu)的SDC-(Li0.5Na0.25K0.25)2CO3電解質(zhì),在600°C電導(dǎo)率高達(dá)1.23′10-1S/cm。Xia等人[92]的研究表明,只有當(dāng)DCO和碳酸鹽的比例在合理范圍時(shí),復(fù)合電解質(zhì)的界面才能表現(xiàn)出顯著增強(qiáng)效應(yīng)。如果碳酸鹽比例過(guò)低 (£10%),就無(wú)法在復(fù)合電解質(zhì)中形成連續(xù)的兩相界面;如果碳酸鹽比例過(guò)高 (350%),則碳酸鹽易流失,導(dǎo)致電池穩(wěn)定性差。

      與單一DCO電解質(zhì)的導(dǎo)電機(jī)理不同,DCO-碳酸鹽復(fù)合電解質(zhì)是一種H+、O2-共同傳導(dǎo)體。Huang 等人[93]基于SDC-碳酸鹽制備了SOFC,在氫氣/空氣測(cè)試條件下觀察到電池的陰極和陽(yáng)極兩側(cè)都有水生成,證實(shí)了DCO-碳酸鹽復(fù)合電解質(zhì)中同時(shí)存在O2-和H+傳導(dǎo)。Zhao等人[94]用直流四電極法研究了該復(fù)合電解質(zhì)的載流子傳導(dǎo)行為,結(jié)果表明,DCO相和碳酸鹽相中均存在O2-傳導(dǎo),H+傳導(dǎo)僅存在于碳酸鹽相和兩相界面。還有研究發(fā)現(xiàn)[95],向陰極氣體中加入CO2,基于DCO-碳酸鹽復(fù)合電解質(zhì)的SOFC可以獲得更高的輸出功率,證明了CO2的存在促進(jìn)電解質(zhì)的離子傳導(dǎo)。

      DCO-碳酸鹽復(fù)合電解質(zhì)中各種載流子的傳導(dǎo)機(jī)理較為復(fù)雜,仍有待進(jìn)行進(jìn)一步探究。

      3.2 DCO/BaCeO3基復(fù)合電解質(zhì)

      Venkatasubramanian等人[96]和Khandelwal等人[97]制備了DCO/BaCeO3基復(fù)合電解質(zhì)。與單一DCO電解質(zhì)相比,采用該復(fù)合電解質(zhì)制備的SOFC表現(xiàn)出了較高的開(kāi)路電壓 (Open Circuit Voltage, OCV),說(shuō)明電子電導(dǎo)得到了有效抑制。不過(guò),該復(fù)合電解質(zhì)的電導(dǎo)率低于單一DCO電解質(zhì)和BaCeO3基電解質(zhì),其晶界對(duì)于離子傳輸起到了阻礙作用。其主要原因是復(fù)合電解質(zhì)需要的燒成溫度較高 (1450°C ~ 1550°C),在高溫煅燒過(guò)程中易導(dǎo)致兩相界面發(fā)生元素?cái)U(kuò)散和化學(xué)反應(yīng),雜質(zhì)富集在晶界處,造成晶界電阻過(guò)大。Sun 等人[98]采用凝膠燃燒法合成了高活性SDC/BCS (BaCe0.8Sm0.2O3-δ) 納米粉體,以此為原料經(jīng)高溫煅燒制備了復(fù)合電解質(zhì),燒成溫度降低了100°C ~ 200°C,晶界擴(kuò)散/化學(xué)反應(yīng)得到抑制,晶界電阻得以降低。采用該復(fù)合電解質(zhì)制備的SOFC,在700°C、氫氣/空氣測(cè)試條件下,最大輸出功率達(dá)到550 mW/cm2。若選擇合適的燒結(jié)助劑,能夠在進(jìn)一步降低燒成溫度的基礎(chǔ)上凈化晶界雜質(zhì),將有望獲得更高的電池性能。

      4 結(jié)論與展望

      隨著固體氧化物燃料電池的中溫化發(fā)展,開(kāi)發(fā)新型的中溫電解質(zhì)材料成為一個(gè)研究熱點(diǎn)。目前的氧離子傳導(dǎo)型電解質(zhì)和質(zhì)子型電解質(zhì)雖然在中溫條件下表現(xiàn)出了各自的優(yōu)勢(shì),但仍存在一些問(wèn)題,如:ZrO2基電解質(zhì)的中溫電導(dǎo)率低、CeO2基電解質(zhì)在低氧分壓下易被部分還原而產(chǎn)生電子電導(dǎo)、Bi2O3基電解質(zhì)極易被還原為金屬鉍、LaGaO3基電解質(zhì)因成分復(fù)雜難以獲得純相材料等。鈣鈦礦和復(fù)合鈣鈦礦型質(zhì)子傳導(dǎo)型電解質(zhì)則普遍存在燒結(jié)溫度過(guò)高、化學(xué)穩(wěn)定性差、電導(dǎo)率偏低的問(wèn)題。DCO/碳酸鹽、CeO2/BaCeO3基復(fù)合電解質(zhì)可以解決單一電解質(zhì)存在的問(wèn)題,實(shí)現(xiàn)兩相或多相材料性能的優(yōu)勢(shì)互補(bǔ),但其導(dǎo)電機(jī)理更為復(fù)雜。

      固體氧化物燃料電池電解質(zhì)今后的研究方向?yàn)椋?1) 復(fù)合化:利用兩相或多相材料的性能優(yōu)勢(shì),解決制約單一電解質(zhì)在實(shí)際應(yīng)用中的短板問(wèn)題;(2) 納米化:使晶界在離子傳導(dǎo)過(guò)程中占主導(dǎo),通過(guò)晶界的增強(qiáng)效應(yīng)提高離子電導(dǎo)率;(3) 不同類型電解質(zhì)的導(dǎo)電機(jī)理研究。

      [1] YANG L, WANG S, BLINN K, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ[J]. Science, 2009, 326: 126-129.

      [2] WACHSMAN ED, LEE KT. Lowering the temperature of solid oxide fuel cells [J]. Science, 2011, 334: 935-939.

      [3] SCOTT HG. Phase relationships in the zirconia-yttria system [J]. Journal of Materials Science, 1975, 10: 1527-1535.

      [4] POLITOVA T. Investigation of scandia-yttria-zirconia system as an electrolyte material for intermediate temperature fuel cells-influence of yttria content in system (Y2O3)x(Sc2O3)(11?x)(ZrO2)89[J]. Solid State Ionics, 2004, 168: 153-165.

      [5] KITAZAWA K, COBLE RL. Use of stabilized ZrO2to measure O2permeation [J]. Journal of the American Ceramic Society, 1974, 57: 360-363.

      [6] HAILE SM. Fuel cell materials and components [J]. Acta Materialia, 2003, 51: 5981-6000.

      [7] GOODENOUGH JB. Oxide-Ion Electrolytes [J]. Annual Review of Materials Research, 2003, 33: 91-128.

      [8] BRETT DJ, ATKINSON A, BRANDON NP, et al. Intermediate temperature solid oxide fuel cells [J]. Chemical Society Reviews, 2008, 37: 1568-1578.

      [9] DEVANATHAN R, THEVUTHASAN S, GALE JD. Defect interactions and ionic transport in scandia stabilized zirconia [J]. Physical Chemistry Chemical Physics, 2009, 11: 5506-5511.

      [10] SARAT S, SAMMES N, SMIMOVA A. Bismuth oxide doped scandia-stabilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells [J]. Journal of Power Sources, 2006, 160: 892-896.

      [11] BADWAL SPS, CIACCHI FT, MILOSEVIC D. Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation [J]. Solid State Ionics, 2000, 136-137: 91-99.

      [12] MOGENSEN M, LYBYE D, BONANOS N, et al. Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides [J]. Solid State Ionics, 2004, 174: 279-286.

      [13] SAHIBZADAB M, STEELEA BCH, ZHENG K, et al. Development of solid oxide fuel cells based on a Ce(Gd)O2-xelectrolyte film for intermediate temperature operation [J]. Catalysis Today, 1997, 38: 459-466.

      [14] STEELE BCH. Appraisal of Ce1-yGdyO2-y/2electrolytes for IT-SOFC operation at 500oC [J]. Solid State Ionics, 2000, 129: 95-110.

      [15] ZHENG K, STEELE BCH, SAHIBZADA M, et al. Solid oxide fuel cells based on Ce(Gd)O2-xelectrolytes [J]. Solid State Ionics, 1996, 86-88: 1241-1244.

      [16] WANG S, INABA H, TAGAWA H, et al. Nonstoichiometry of Ce0.9Gd0.1O1.95-x[J]. Solid State Ionics, 1998, 107: 73-79.

      [17] TSOGA A, GUPTA A, NAOUMIDIS A, et al. Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology [J]. Acta Materialia, 2000, 48: 4709-4714.

      [18] HORITA T, SAKAI N, YOKOKAWA H. Ceria-zirconia composite electrolyte for solid oxide fuel cells [J]. Journal of Electroceramics, 1997, 1: 155-164.

      [19] TOMPSETT GA, SAMMES NM, YAMAMOTO O. Ceria-yttria-stabilized zirconia composite ceramic systems for applications as low-temperature electrolytes [J]. Journal of the American Ceramic Society, 1997, 80: 3181-3186.

      [20] OMAR S, WACHSMAN E, NINO J. Higher conductivity Sm3+and Nd3+co-doped ceria-based electrolyte materials [J]. Solid State Ionics, 2008, 178: 1890-1897.

      [21] KHARTON VV, FIGUEIREDO FM, NAVARRO L, et al. Ceria-based materials for solid oxide fuel cells [J]. Journal of Materials Science, 2001, 36: 1105-1117.

      [22] MILLIKEN C, GURUSWAMY S, KHANDKAR A. Properties and performance of cation-doped ceria electrolyte materials in solid oxide fuel cell applications [J]. Journal of The American Ceramics Society, 2002, 85: 2479-2486.

      [23] KOSACKI I, SUZUKI T, PETROVSKY V, et al. Electrical conductivity of nanocrystalline ceria and zirconia thin film [J]. Solid State Ionics, 2000,136-137:1225-1233.

      [24] GUO X, WASER R. Electrical properties of the grain boundaries of oxygen ion conductors: acceptor- doped zirconia and ceria [J]. Progress in Materials Science, 2006, 51: 151-210.

      [25] KLIE RF, BROWNING ND. Atomic scale characterization of oxygen vacancy segregation at SrTiO3grain boundaries [J]. Applied Physics Letters, 2000, 77: 3737-3739.

      [26] HAILE SM, STANEFF G, RYU KH. Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites [J]. Journal of Materials Science, 2001, 36: 1149-1160.

      [27] SINGH V, BABU S, KARAKOTI AS, et al. Effect of submicron grains on ionic conductivity of nanocrystalline doped ceria [J]. Journal of Nanoscience and Nanotechnology, 2010, 10: 6495-6503.

      [28] ARUNKUMAR P, MEENA M, BABU KS. A review on cerium oxide-based electrolytes for ITSOFC [J]. Nanomaterials and Energy, 2012, 1: 288-305.

      [29] TSCHOPE A, SOMMER E, BIRRINGER R. Grain size-dependence of electrical conductivity in polycrystalline cerium oxide: I, Experiments [J]. Journal of Electroceramics, 2001, 7: 169-177.

      [30] CHRISTIE GM, VAN BERKEL FPF. Microstructure-ionic conductivity relationships in ceria-gadolinia electrolytes [J]. Solid State Ionics, 1996, 83: 17-27.

      [31] BELLINO MG, LAMAS DG, WALSOE ?DE, et al. A mechanism for the fast ionic transport in nanostructured oxide-ion solid electrolytes [J]. Advanced Materials, 2006, 18: 3005-3009.

      [32] HUI S, ROLLER J, YICK S, et al. A brief review of the ionic conductivity enhancement for selected oxide electrolytes [J]. Journal of Power Sources, 2007, 172: 493-502.

      [33] CHIANG YM, LAVIK EB, KOSACKI HL, et al. Nonstoichiometry and electrical conductivity of nanocrystalline CeO2-x[J]. Journal of Electroceramics, 1997, 1: 7-14.

      [34] SUN H, RAINWATER BH, XIONG X, et al. Interfacial effects on electrical conductivity in ultrafine-grained Sm0.2Ce0.8O2-δelectrolytes fabricated by a two-step sintering process [J]. International Journal of Hydrogen Energy, 2017, 42: 11823-11829.

      [35] 蘇莎, 陳海清, 譚令. 氧化鉍基固體氧化物燃料電池電解質(zhì)研究進(jìn)展[J]. 湖南有色金屬, 2014, 30 (4): 45-48.

      [36] SHUK P, WIEMHOFERB HD, GUTH U, et al. Oxide ion conducting solid electrolytes based on Bi2O3[J]. Solid State Ionics, 1996, 89: 179-196.

      [37] AZAD AM, LAROSE S, AKBARSA. Bismuth oxide-based solid electrolytes for fuel cells [J]. Journal of Materials Science, 1994, 29: 4135-4151.

      [38] 魏麗陳, 王琴. 中溫固體氧化物燃料電池電解質(zhì)材料的研究進(jìn)展[J]. 稀有金屬, 2003, 27: 286-298.

      [39] WANG FY, CHEN S, WANG Q, et al. Study on Gd and Mg co-doped ceria electrolyte for intermediate temperature solid oxide fuel cells [J]. Catalysis Today, 2004, 97 (2-3): 189-194.

      [40] 蘇文輝, 何陳, 劉江. 有保護(hù)膜的Bi2O3基稀土固體電解質(zhì)[J]. 吉林大學(xué)自然科學(xué)學(xué)報(bào), 1994, 4: 63-66.

      [41] HUANG K, WANG C, XU X. Activity of Bi2O3in Bi2O3-Y2O3oxygen ion conductor [J]. Journal of Solid State Chemistry, 1992, 98 (1): 206-209.

      [42] JOH DW, PARK JH, KIM DY, et al. High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells [J]. Journal of Power Sources, 2016, 320: 267-273.

      [43] ISHIHARA T, MATSUDA H, TAKITA Y. Doped LaGaO3perovskite type oxide as a new oxide ionic conductor [J]. Journal of the American Ceramic Society, 1994, 116: 3801-3803.

      [44] HUANG K, TICHY R, GOODENOUGH JB, et al. Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: III, performance tests of single ceramic fuel cells [J]. Journal of the American Ceramic Society, 1998, 81: 2581-2585.

      [45] TAO S, IRVINE JTS, KILNER JA. An effective solid oxide fuel cell based upon single-phase pevroskites [J]. Advanced Materials, 2005, 17: 1734-1737.

      [46] YAMAJI K, HORITA T, ISHIKAWA M, et al. Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85electrolyte in a reducing atmosphere [J]. Solid State Ionics, 1999, 121: 217-224.

      [47] ZHANG X, OHARA S, MARIC R, et al. Interface reactions in the NiO-SDC-LSGM system [J]. Solid State Ionics, 2000, 133: 153-160.

      [48] HUANG K, FENG M, GOODENOUGH JB, et al. Electrode performance test on single ceramic fuel cells using as electrolyte Sr- and Mg-doped LaGaO3[J]. Journal of the Electrochemical Society, 1997, 144: 3620-3624.

      [49] BI Z, YI B, WANG Z, et al. A High-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes [J]. Electrochemical and Solid-State Letters, 2004,7 (5): A105-A107.

      [50] LIN Y, BARMETT SA. Co-Firing of anode-supported SOFCs with thin La0.9Sr0.1Ga0.8Mg0.2O3?δelectrolytes [J]. Electrochemical and Solid-State Letters, 2006, 9 (6):A285-A288.

      [51] BOZZA F, POLINI R, TRAVERSA E. High performance anode-supported intermediate temperature solid oxide fuel cells (IT-SOFCs) with La0.8Sr0.2Ga0.8Mg0.2O3-δelectrolyte films prepared by electrophoretic deposition [J]. Electrochemistry Communications, 2009, 11 (8): 1680-1683.

      [52] SUN H, CHEN Y, CHEN F, et al. High-performance solid oxide fuel cells based on a thin La0.8Sr0.2Ga0.8Mg0.2O3-δelectrolyte membrane supported by a nickel-based anode of unique architecture [J]. Journal of Power Sources, 2016, 301: 199-203.

      [53] MATRASZEK A. Phase diagram study in the La2O3-Ga2O3-MgO-SrO system in air [J]. Solid State Ionics, 2004, 166 (3-4): 343-350.

      [54] DING H, LIN B, FANG D, et al. BaZr0.1Ce0.7Y0.2O3-δproton-conducting electrolyte prepared by gel-casting for low-temperature solid oxide fuel cells [J]. Journal of Alloys and Compounds, 2009, 474 (1-2): 364-369.

      [55] PENG R, WU Y, YANG L, et al. Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3electrolyte thin film [J]. Solid State Ionics, 2006, 177 (3-4): 389-393.

      [56] SCHOBER T. Transformation of an oxygen ion conductor to a proton conductor by solid state reaction [J]. Solid State Ionics, 2005,176 (29-30): 2275-2277.

      [57] PELLETIER L, MCFARLAN A, MAFFEI N. Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes [J]. Journal of Power Sources, 2005, 145 (2): 262-265.

      [58] IWAHARA H. Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications [J]. Solid State Ionics, 1992, 52: 99-104.

      [59] SCHOBER T, BOHN HG. Water vapor solubility and electrochemical characterization of the high temperature proton conductor BaZr0.9Y0.1O2.95[J]. Solid State Ionics, 2000, 127: 351-360.

      [60] YAJIMA T, IWAHARA H. Protonic and oxide ionic conduction in BaCeO3-based ceramics-effect of partial substitution for Ba in BaCe0.9Nd0.1O3-αwith Ca [J]. Solid State Ionics, 1991, 47: 117-124.

      [61] IWAHARA H, YAJIMA T, USHIDA H. Effect of ionic radii of dopants on mixed ionic conduction (H++O2-) in BaCeO3-based electrolytes [J]. Solid State Ionics, 1994, 70-71: 267-271.

      [62] WANG S, ZHANG L, ZHANG L, et al. Two-step sintering of ultrafine-grained barium cerate proton conducting ceramics [J]. Electrochimica Acta, 2013, 87: 194-200.

      [63] KREUER KD. Proton-conducting oxides [J]. Annual Review of Materials Research, 2003, 33 (1): 333-359.

      [64] KATAHIRA K, KOHCHI Y, SHIMURA T, et al. Protonic conduction in Zr-substituted BaCeO3[J]. Solid State Ionics, 2000, 138: 91-98.

      [65] YANG L, ZUO C, WANG S, et al. A novel composite cathode for low-temperature SOFCs based on oxide proton conductors [J]. Advanced Materials, 2008, 20 (17): 3280-3283.

      [66] ZUO C, ZHA S, LIU M, et al. Ba(Zr0.1Ce0.7Y0.2)O3-δas an electrolyte for low-temperature solid-oxide fuel cells [J]. Advanced Materials, 2006, 18 (24): 3318-3320.

      [67] FANG S, BI L, WU X, et al. Chemical stability and hydrogen permeation performance of Ni- BaZr0.1Ce0.7Y0.2O3-δin an H2S-containing atmosphere [J]. Journal of Power Sources, 2008, 183 (1): 126-132.

      [68] FANG S, BI L, YANG C, et al. H2S poisoning and regeneration of Ni–BaZr0.1Ce0.7Y0.2O3-δat intermediate temperature [J]. Journal of Alloys and Compounds, 2009, 475 (1-2): 935-939.

      [69] GUO Y, LIN Y, RAN R, et al. Zirconium doping effect on the performance of proton-conducting BaZryCe0.8?yY0.2O3?δ(0.0 ≤ y ≤ 0.8) for fuel cell applications [J]. Journal of Power Sources, 2009, 193 (2): 400-407.

      [70] CHEN F, SORENSEN OT, MENGA G, et al. Chemical stability study of BaCe0.9Nd0.1O3-αhigh- temperature proton-conducting ceramic [J]. Journal of Materials Chemistry, 1997, 7 (3): 481-485.

      [71] TANIGUCHI N, NISHIMURA C, KATO J. Endurance against moisture for protonic conductors of perovskite-type ceramics and preparation of practical conductors [J]. Solid State Ionics, 2001, 145: 349-355.

      [72] PHAIR JW, BADWAL SPS. Review of proton conductors for hydrogen separation [J]. Ionics, 2006, 12 (2): 103-115.

      [73] SERRA JM, MRULENBERG WA. Thin-film proton BaZr0.85Y0.15O3conducting electrolytes: toward an intermediate-temperature solid oxide fuel cell alternative [J]. Journal of the American Ceramic Society, 2007, 90 (7): 2082-2089.

      [74] FABBRI E, PERGOLESI D, D'EPIFANION A, et al. Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs) [J]. Energy & Environmental Science, 2008, 1 (3): 355-359.

      [75] KREUER KD, ADAMS S, MUNCH W, et al. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications [J]. Solid State Ionics, 2001, 145: 295-306.

      [76] YAMAZAKI Y, HEMANDEZ-SANCHEZ R, HAILE SM. Cation non-stoichiometry in yttrium-doped barium zirconate: phase behavior, microstructure, and proton conductivity [J]. Journal of Materials Chemistry, 2010, 20 (37): 8158-8166.

      [77] ZUO C, DORRIS SE, BALACHANDRAN U, et al. Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe0.8Y0.2O3-αmixed protonic-electronic conductor [J]. Chemistry of Materials, 2006, 18: 4647-4650.

      [78] ZHONG Z. Stability and conductivity study of the BaCe0.9?xZrxY0.1O2.95systems [J]. Solid State Ionics, 2007, 178 (3-4): 213-220.

      [79] BARISON S, BATTAGLIARIN M, CAVALLIN T, et al. High conductivity and chemical stability of BaCe1?x?yZrxYyO3?δproton conductors prepared by a sol-gel method [J]. Journal of Materials Chemistry, 2008, 18 (42): 5120-5128.

      [80] BARISON S, BATTAGLIARIN M, CAVALLIN T, et al. Barium non-stoichiometry role on the properties of Ba1+xCe0.65Zr0.20Y0.15O3-δproton conductors for IT-SOFCs [J]. Fuel Cells, 2008, 8 (5): 360-368.

      [81] DEPIFANIO A, FABBRI E, DIBARTOLOMEO E, et al. Design of BaZr0.8Y0.2O3–δprotonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs) [J]. Fuel Cells, 2008, 8 (1): 69-76.

      [82] DU Y, NOWICK AS. Galvanic cell measurements on a fast proton perovskite electrolyte [J]. Solid State Ionics, 1996, 91: 85-91.

      [83] GRO? B, MARION S, LIND K, et al. Proton conducting Ba3Ca1.18Nb1.82O8.73-H2O pressure-compositions isotherms in terms of fermi-dirac statistics, concentration and fuel-cell measurements, and impedance spectroscopy [J]. Solid State Ionics, 1999, 107: 107-117.

      [84] SCHOBER T, BOHN HG, MONO T, et al. The high temperature proton conductor Ba3Ca1.18Nb1.82O9-δ; II, electrochemical cell measurements and TEM [J]. Solid State Ionics, 1999, 118: 173-178.

      [85] SCHOBER T, KRUG F, SCHILLING W. Criteria for the application of high temperature proton conductors in SOFCs [J]. Solid State Ionics, 1997, 97: 369-373.

      [86] BOHN HG, SCHOBER T, MONO T, et al. The high temperature proton conductor Ba3Ca1.18Nb1.82O9-δ: I, electrical conductivity [J]. Solid State Ionics, 1999, 117: 219-228.

      [87] MURRAY EP, TSAI T, BARNETT SA. Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2cathodes: an impedance spectroscopy study [J]. Solid State Ionics, 1998, 110: 235-243.

      [88] VALKENBERG S, BOHN HG, SCHILLING W. The electrical conductivity of the high temperature proton conductor Ba3Ca1.18Nb1.82O9-δ[J]. Solid State Ionics, 1997, 97: 511-515.

      [89] 田力, 董笑, 田野. 摻雜氧化鈰-碳酸鹽燃料電池復(fù)合電解質(zhì)[J]. 電源技術(shù), 2014, 38 (7): 1374-1398.

      [90] ZHU B, Liu X, ZHOU P, et al. Innovative solid carbonate-ceria composite electrolyte fuel cells [J]. Electrochemistry Communications, 2001, 3 (10): 566-571.

      [91] JING Y, MA Y, PATAKANGAS J, et al. Enhanced conductivity of SDC based nanocomposite electrolyte by spark plasma sintering [J]. International Journal of Hydrogen Energy, 2014, 39 (26): 14391-14396.

      [92] XIA C, LI Y, TIAN Y, et al. A high performance composite ionic conducting electrolyte for intermediate temperature fuel cell and evidence for ternary ionic conduction [J]. Journal of Power Sources, 2009, 188 (1): 156-162.

      [93] HUANG J, MAO Z, LIU Z, et al. Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes [J]. Electrochemistry Communications, 2007, 9 (10): 2601-2605.

      [94] ZHAO Y, XU Z, XIA C, et al. Oxide ion and proton conduction in doped ceria–carbonate composite materials [J]. International Journal of Hydrogen Energy, 2013, 38 (3): 1553-1559.

      [95] WU G, WANG C, XIE F, et al. Ionic transport mechanism of La0.9Sr0.1Ga0.8Mg0.2O2.85-(Li/Na)2CO3composite electrolyte for low temperature SOFCs [J]. International Journal of Hydrogen Energy, 2016, 41 (36): 16275-16281.

      [96] VENKATASUBRAMANIAN A, GOPALAN P, PRASANNA TRS. Synthesis and characterization of electrolytes based on BaO–CeO2–GdO1.5system for intermediate temperature solid oxide fuel cells [J]. International Journal of Hydrogen Energy, 2010, 35 (10): 4597-4605.

      [97] KHANDELWAL M, VENKATASUBRAMANIAN A, PRASANNA TRS, et al. Correlation between microstructure and electrical conductivity in composite electrolytes containing Gd-doped ceria and Gd-doped barium cerate [J]. Journal of the European Ceramic Society, 2011, 31 (4): 559-568.

      [98] SUN W, JIANG Y, WANG Y, et al. A novel electronic current-blocked stable mixed ionic conductor for solid oxide fuel cells [J]. Journal of Power Sources, 2011, 196 (1): 62-68.

      Research Progress on Electrolytes for Intermediate-Temperature Solid Oxide Fuel Cells

      SUN Hai-Bin1, GUO Xue1, ZHANG Zhen-Hao2, ZHANG Yu-Jun3

      1School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China2Laiwu Advanced Ceramic Technology Co., Ltd, Laiwu 271100, China3School of Materials Science and Engineering, Shandong University, Jinan 256216, China

      The electrolyte is one of the core components for solid oxide fuel cell (SOFC), which is a new energy conversion device. To promote the development of intermediate-temperature SOFC, the electrolytes should have high ionic conductivities under medium temperature conditions (500oC ~ 700oC) and have good long-term stabilities in the fuel cell operating environment. In this paper, the research progresses of oxygen ion conductive electrolytes, proton conductive electrolytes and composite electrolytes are reviewed, and the difficulties inhibiting their development and applications are analyzed. Finally, the development trends of medium temperature electrolytes are proposed.

      Solid oxide fuel cell; Oxide-conduction electrolyte; Proton-conduction electrolyte; Composite electrolyte.

      TB333

      1005-1198 (2018) 06-0403-14

      A

      10.16253/j.cnki.37-1226/tq.2018.07.010

      2018-07-14

      2018-10-21

      國(guó)家自然科學(xué)基金 (51702189); 山東省自然科學(xué)基金 (ZR2017BEM033); 山東省高??蒲杏?jì)劃 (J18KA002)。

      孫海濱 (1984-), 男, 山東濱州人, 講師。E-mail: hbsun@sdut.edu.cn。

      孫海濱,男,1984年1月生,講師,山東理工大學(xué)“雙百工程第三層次人才”,主要從事固體氧化物燃料電池、結(jié)構(gòu)陶瓷研究。近年來(lái),致力于將微波燒結(jié)、熱壓燒結(jié)、大氣等離子噴涂等陶瓷制備技術(shù)應(yīng)用于固體氧化物燃料電池,實(shí)現(xiàn)其低成本制備,并研究晶界特性對(duì)陶瓷電解質(zhì)電導(dǎo)性能的影響。截至目前,主持國(guó)家自然科學(xué)基金1項(xiàng)、山東省自然科學(xué)基金1項(xiàng),已發(fā)表學(xué)術(shù)論文30余篇,獲得授權(quán)國(guó)家發(fā)明專利5件,獲省部級(jí)科技進(jìn)步二等獎(jiǎng)3項(xiàng)、市級(jí)科技進(jìn)步一等獎(jiǎng)3項(xiàng)。

      猜你喜歡
      碳酸鹽鈣鈦礦質(zhì)子
      質(zhì)子束放療在腫瘤中的研究新進(jìn)展
      當(dāng)鈣鈦礦八面體成為孤寡老人
      淺談質(zhì)子守恒
      幾種新型鈣鈦礦太陽(yáng)電池的概述
      海相碳酸鹽烴源巖生烴潛力模糊評(píng)價(jià)方法
      鈣鈦礦型多晶薄膜太陽(yáng)電池(4)
      鈣鈦礦型多晶薄膜太陽(yáng)電池(2)
      “質(zhì)子”號(hào)一箭發(fā)雙星
      太空探索(2014年6期)2014-07-10 13:06:11
      超高壓均質(zhì)聯(lián)合二甲基二碳酸鹽對(duì)荔枝汁中污染菌及其微生物貨架期的影響
      碳酸鹽型滑石物相分析方法研究
      商都县| 衡山县| 彰武县| 邮箱| 海兴县| 惠水县| 绍兴市| 囊谦县| 蒙阴县| 庆元县| 泽普县| 习水县| 富裕县| 宜君县| 萝北县| 纳雍县| 九台市| 松江区| 深圳市| 赣州市| 班玛县| 肇州县| 东宁县| 抚松县| 扶沟县| 原平市| 牡丹江市| 沁阳市| 青海省| 鄂托克前旗| 赣州市| 正定县| 安吉县| 松原市| 靖边县| 吉木萨尔县| 天镇县| 津南区| 买车| 洛川县| 永川市|